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1. Introduction. Let oy, &, -.., &, be non-zero clements of an algebraic
number ficld K of degree D over the rationals. Such numbers are said
to be multiplicatively dependent if theve are rational integers by, Bay ey B,y
not all zero, sueh that '

' B b 1
(1) alo ... a =1.

We shall shew that the integers by, ..., b, in the relation (1) can be chosen
to have absolute values relatively small in terms of s, D and the sizes of
the algebraie numbers ay,...; o,. In particular, we &re interested in,
circumstances i which these heunds do not depend espliciily on the
degree D. , _

Our interest in these results stems frem their application to lnear
forms in the logarithms of algebraie numbers. Specifically, an estimate
for the gize of the exponents in the multiplicative velation (1) reduces the
general problem on linear forms in logarithms to the case in which the
algebraic numbers satisfy a certain independence relation, (Cf. [1]; Section
8, or [7].) In his original work, Alan Baker obtained the required bound
for the smallest multiplicative relation by adapting the transcendence
argument used to produce lower bounds for linear forms in logarithms,
whereas the method used in [7]is quite elementary.

Recently, Bijlsma and Cijsouw [4] have considered thiz problent
under slightly different hypotheses. They note that if the exponents
by, ..., b, in (1) are relatively prime, then there are D linear relations

(2} bllogaa,+b21c)gaa2—!— ... +8,logeoa, =90,

where ¢ runs through the D embeddings of K into the complex numbers
and logog; denotes an appropriate value of the logarithm, the branch
depending on both ¢ and j. Bijlsma and Cijsouw use a variant of Baker's
method vwhich allows them to deal with simultanecus linear forms in the
logarithmns of algebraic numbers. However, the complicated tranzeendence
argument s not needed in this context. We shall obtain more precise
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results by a comparatively elementary method from the geometry of
‘mumbers. In [7], we used a primitive version of the same idea in the course
of obtaining explicit lower bounds for linear forms in logarithms, The more
refined results of the present paper do not give any improvements in this
direction. However, we speculate that a comparison of the results obtained
by the two methods indicates that the current estimates for linear forms
in logarithms are close to best possible.

We would like to thank Lex Bijlsma for some valuable ecomments
on a preliminary draft of this paper. In particular, these remarks encour-
aged us to look for Theorem 2 and Bxample 2.

2. Heights and denominators. Let « be a non-zero element of an al-
gebraic number field X of degree D over the rationals and let f(z) be the
characterigtic polynomial of the @-linear map #—az on K. If 4, is the
least common denominator of the coefficients of f(s), we can write

. ) D
Af(@) = AP+ AP 4 L Ay = 4, [ [(a— ),
=1
wherea = o, o, ..., o® arethefield conjugates of aand 4,, 4,,

are relatively prime integers. The absolute logarithmic
I(a} of « is given by

e dp
height

: D
h(a) = D7log [ 4| [ ] max{t, 1]},
i=1 '
and we define a normalised denominator for « by
d{a) = D~'max {log|4,],log|4,!}.
It will also be useful to define an archimedean analogue of d{a), namely
' D D :
s{a) = D 'max {2 log* |af, 2 log* [a(“')l‘l},
=1 i=1
where log*a = max {0, logz}.
All three of #(a), d(a) and s(a) are independent of the field K in

which we happen to work. Further, h(a™!) = h(a), with obvious analogues
for d{a) and s(a). Tndeed, we can rewrite %(a) as

b
h(a) = D (log | 4yf - 3 Tog* 1a®)) = D 3 log* al,.
i=1 v

In the final sum, ¢ runs through all the valuations of I, both archimedean
and non-archimedean, normalised so that the product formula,

Z log |ai, = 0,
v .
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holds for all non-zero elements o of K. The claim that A{a™") = k(a)
now follows immediately. We ean also remark that

logldy = 3 log*lal,, logidpl = 3 log¥la,

where now the sums are restrieted to the non-archimedean valugtions of
K. (Further details on these matters can be found in [2], Section 3.1.)

Tet ¢ be o non-zero element of K. We shall use the fundamental
inequality of transeendence theory, namely

D
3) log 4| -+1og [N gl =log|dg+ D logla® >0,
=1

which follows immediately from the procuct formula. Thus, should this
inequality not hold for some ¢ in K, we may conclude that ¢ = 0. .

We shall also require the following observations ¢n & question of
Lebmer. There is o positive constant A(D), depending only on D, such
that if « is a nonzero algebraic integer of degree D and R{e) < MDD,
then ¢ must be a root of unity. {This follows by a simple compaetness.
argument.) By a recent sharpening by Cantor of a result of Dohrow_olnskl
163, we can take A(D) = (2—¢) (loglog Dflog D)y for any & l>ﬁ-DO, providing
D is sufficiently large relative to e. The example a = 2Y7 shows that
A(D) cannot exceed Jog2.

3. Simultaneous linear relations. We shall prove three theorems,
assuming progressively- less about the sizes of the nymbers Gyy eeny Oy
and their logarithms. Firstly, we suppose that we are given the complet.e
set of conjugate linear relations (2). Part (A) of the theorem below 18

* a sharpening of the result of Bijlsma and Cijsoaw [4]; in particular, the

dependence on all the parameters is now totally explicit. A simpler resuiEE ];Ls
obtained by setting the parameter B equal to ¢ {=2.71828...). The
improvement brought about by the correet vz.\hw of E seems to. cecur
whenever we can use the fact that an algebraic number ha‘,s eon.]ugatez
close to 1. In part (B) of the theorem, the Qata; are grouped in a dlf.fer‘(zl:i
way. The proof contains a curions maxim'lsatmn p:f'oblem which, in 1)e
simplest case, comes down to the following: Maximise l(zl—.—l) (z2_< Iy
where #2,, #, are complex numbers in the sector {e:f¢| <1, |arfgzi\£(f}
gubject 1o |2,2,] > 7. We would like to thank Es.ther Szekeres E‘r ﬁp
in unravelling the intricacies of this -pleasant little ?rob}epl. ifma Y,
part (0) illustrates the extent to whieh the argunment simplifies if ¢y, ...
...y @, aTe units. : . : .
TEoREM 1. Let ay, @y, -..) @, be non-zero algebrait nambers belong;;ng
to an algebraic number field K of degree I over the rationals. Suppose that
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there are rational integers b,, b,, vouy by, 0ot all zero such that
blogaf? +B,logafd+ ... Lhlogd? =0 (1<ix D)
Jor some determinati 7 : ;
Lot 1 wmation of the logarithms laga}} which may depend on both
(A) Define
B = min max{e, d(e;)log2/ max. [logof)]}

1<gi<n 1<i<D

’

and
V. = ) I oo, o o ol . 5 .
; = max {d{q;), (0/1053)11;132 flogal}flog(BflogB) (1<i<n).

Then there are integers gy, ey ooy @y, 10t all zero, such that

{4) g:logef) - gplog o ... +g,l0gd® = 0 1<ig D)
and b
(5) Gl <m-11[] 7 a<k<n),

i#k

(B) Let py, = 0:313518639 ... be the smallest positive root of the equation

4cos*plog(2c0sg) +log (2 2cosg) = 0
g f = 0. Choos
and Tet = = (2008 99)1,52*"65%63 @) oose @ such that 0 <g< g,

‘; ; — INAX, h @€ 10 T I i }' ] -
J { ( i}/ g b @ ;ix llnlﬂg a] i (1 “<-. é_ W’)
.{Z ﬂ:en’ onee agtﬁl%, tke? e are ’“Ztege‘;' 8 gj’ -SCZZ‘E;Siy’L‘I’Lg (4) [L40) fz (5)-
((J) .] lmfdly, Supp 8 Cil 2y .y
08¢ that [0 a o, are . -
‘ ‘ ( ] . ?Mi& 1 Jbﬁ /1 13667 ¢ are Ibﬂte

gl < (n—1)!(tog2)~= [T max Jlog o)
iRk 1isg Iy g
Vdmlizogff.fgf} Let & be an integer with 1<% < @. Recalling that the
N, .1 Ml E eo‘nw.;;c:x body {(¢:, ..., y,): Zf'yj]'\gl} in B™ iz 9™/ml,
e a1 ]f)y n‘owskl 5 convex body theorem, as in 5], page 73, and ses
atthere are integers ¢,, ..., g, not all zero, such that ’ |
g il —hafbl <1 and jgi<m-1) [T,
2 ! -
Set — 4 o In 5 i i -
@=a d e and fix loga? = 3¢ logal, Then, for each i,

. , n . n
loga®) = ,é’ sloga| —| 3 (g, —b,g,/b,)10g oY

=1

(< k< n).

n
< 2 V314~ byq.0,] max flog oY/,
=1 14D I

< Elog2-log(Bjlog H).
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Tn particnlar, {loga®] < log2. Bub [(e¥—1)/w] < (e —1)j1w] < 1flog2

for hwl<log2, so _
(6) | —1] < [toga|log2 < E'log(E log B).

On the other hand, we have for each valuation » of X,
ki 11
loglal, = 3 gloglayl, = 3 (g5—5;/by)log [l
. F=1 ‘ - f=1 . _

s0 we have
' L3
(@) log* laly < D) 15— b;de/bsl 08 sl
=1 .
and & similar inequality for log* |e~!],. Summing over the non-archimedearn
valuations and dividing by D yields

a(e)< D lg— b,-qk/bkld(aj-) = D Vila;—b;0ifby) (0} V; < log (Bflog H).
. &

n
7
=1 7

Now suppose that ¢ # 1. I, as in Section 2, we denote by 4, the least
common denominator of the coefficients of the characteristic polynomial
-of a—1 over K, then

log|d,| = D'log*|a—1|, = 2 log* la], < Dd(e) < Dlog(Blog E),

where » rung through the non-archimedean valuations of F. With (6),
this gives ' ‘

D flog | 4| +log N gy (a—1)) < log (Bflog B) +1og-(E“:110g(E110gE)) < 0.

Thug, by the fundamental inequality (3), we conclude that ¢ == 1.-It fol-
lows that loga® is an integral multiple of 24, though as already remarked
loga?| < log2. Consequently, loga® =0, giving the required set of
eonjugute linear relatioms (4). Moreover, there is no loss of genevality
in supposing that no n —1 of the ¢;, with the given determinations of the
logol?, satisty the hypotheses of the theorem, or that the integers g1, ...; ¢u
above are relatively prime. These conditions fix the g and, since the
choiee of % wag arbitrary, we obtain the required bound (5) for each k.

(B) As before, the application of Minkowski’s theorem yields

[imlog a®™ < @,
and, by way of (7),

d(e) <logr, 8{a)<loge.
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Now congider the problem of maximising the quantity M = J]ls; —1]2 for
complex rumbers 2, ..., 8y satisfying

prenl<g,  [[max{t, lml <, J]maz{, <

At the maximum, jargs;| = ¢ for each ¢ and the second and third con-
straints hold with equality whenever any 2, is outside (respectively, inside)
the unit circle. By elementary ealculus, the #; outside the unit circle all
satisfy |2;] = 7, say, and the 2, inside the unit circle, if any, satisfy |z;| = s~%.
There are four configurations fo consider.

First ease. Suppose that there are k points at ré® and D —% points
at sl with r > 1, s > 1 and 0 < k < D, The constraints on the variables
become r* = sP% — +¥ and we require the maximum of

= {L+r2—Zrcosp) (1+ 52— 25 eosp)? %
= (1+7r2—2rcosg)¥(1+ 52— 23003@) —kg—iD,
Since » and & now play exactly the same role, the extreme cholceis & = LD
and r = § = 7% giving -
M = (1+7*—2r2cosp)P 72 = 7720,
Second casé. Suppose that there are D pomts at re® with » > 1.
Then 7 = 7 = {2cosg)'” and
M = (1+2c0sp—(2cosg)?)P < 7722,
because of the choice of g.

Third case, Suppose that there are k points at 76 and D—7% pomts
at ¢ with # > 1 and 0 < k < D, From the choice of ¢, (2cosp—1) ' < 7
= (2ecose)™?, 50 we can move one of the points from 6 to ¢¢® with
&> (2eosp~—1)"1 > 1, thereby increasing M. Consequently, this case
cannot give the maximum.

Fourth (and most interesting) case. Suppose that there are
% points at re®, 1 points at s~'¢™ and D —k—1 points at % with » > 1,
£>1,5k>0,1>0and b+ < D. We must now maximise

= (L472— 2rcos @) (1 - 8% — 25 08 g0) (2 — 2 eo p)P—F—F =20

subjeet to the constraints r* = ¢ = +P. As before, we can suppose that
r =2 and & =1 and maximise

= (1472 —2rcosg)™ (2 — 2 cos )P ~2P

subject to r* = 2P, We suppose for the moment that k is a continnous
variable, Then the maximum is a stationary point and the method of
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Lagrange multipliers leads to the equations
(2r —2¢05g) (1 +92—2rcose)™! = A1,
log(1 +#* —2rcosep) —log(2—2ecosg) = Alogr.
Thus, the eritical radius, r, say, is determined by

27 (r — coR log(1l +72—2¢cos 2 —2co8
(8) ( ¢) _ log( vl P =2

14-#*—2rcosy logr

and the corresponding maxinmm value of M is
M, = PPN (2 —2cosq)”.

Now, the graphs of the left and right sides of {8) cross at r, which is the
maximum of the right side; the value of the left side is greater.thanm,
or less than, that of the right side, according as 1 <<+ < ¥, OF 7> 7y..
From the choice of g, the latber possibility applies when r = 2cose, 80
7o < 208, On the other hand, from the choice of 7, 7y = v™* > 2cosgp,
since k < 1. So this case cannot give the maximum under the prevailing
conditions on @ and 7. As will be seen, the hypotheses of the theorem have
been chogen to give a tidy value of 7. It would be possible to analyse the
gituation for larger angles ¢, adjusting r appropriately, but thiz would
not significantly improve the theorem.

Summing up, we have shown that under the stated conditions, the
quantity M satisfies M < v7*P. From the remarks at the beginning of
this part of the proof, we can apply the above analysis to N(a—1)
= JJ(e? —1) and we see that |N(e—1)| < v?. However, ¥{a-1) is
a rational number with denominator at most +¥, so we find again that
a = 1. Since Jarga®®| < g, this implies that log a(‘) = 0 for each 4 and so
vields the required result as in part (A).

(C) Already with

V; = max flogd?[log2 (1<j< n),
1<i<cD
we obtain |a® —1] < 1 for each 4. Since a is an algebraic integer (in fact,
a unit), this yields « = 1 immediately and we can complete the argument
as before.

. A single linear relation. Tt is perhaps unnatural to assume that all:
the branches logaf? are given for all the conjugates of the ;. In practice,
we will only hzwe information about one linear relation

b log o+ b.loga, + ... +b,loga, =0,

Although this implies the complete set of conjugate linear relations (2)
for suitable determinations of the logarithms, we must expect gome of the:
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logof? to be large. (Cf. the example in Section 6.) Under these circumstan-
ces, the following theorem may be sharper than Theorem 1. The case n = 2
of the theorem includes the Lemma 2.31 of Bijlsma [3], obtained by Gel’-
fond’s method. Bijlsma has used this result to prove a refined measure
of simultanecus approximation for the numbers a, § and of.

THEOREM 2. Léf oy, dsy ..., ¢, b6 non-zero algebraic numbers belonging
1o an algebraic number field K of degree D over the rationals. Suppose that
there are raiional integers by, by, ..., b,, 00t all zero, such that

b loga, +bslogas+ ... +B,loge, =0,
Jor some determinations of the logarithms. Define
B = min max{e, Dh(a;)log2/2” loga|}
1<i=n
and
V; = max {Dh(a), 27 ellog o] log2}/log (BlogB) (1< j< m).
Then there are integers ¢y Gsy ..+, Gy, 1ot cll zero, such that
qloga, -+ glogay -+ ... 4+g,loge, =0
-and :
g, < (n— 1)'HV 1<k n).

i#k

Proof. We construct ¢ = a;'al®... & a8 in the proof of Theorem 1
and, as before, we obtain . '

- lg—1] < 2‘DE“IIog(E/IogE
and, from (7),

h{a) < D“ilog HlogH).
For the conjugates of other than o, we have the trivial inequality
|a® —1) < 2max{l Iaml}
Now, with » running throngh the non-archimedezm valuations c-)fl K,

2 log* la—1],-+log fNK,Q(a—ln

<Z log™ | alv+10g[a-1| +Dlog2 -+ Z log* [a("[

il

= logja—1{+D1og2 + Dh(a) <

'from the previous estlmates Thus, ¢ =1 and the conc,lunon follows as
in Theorem 1. '
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5. Multiplicative relations. Thirdly, we suppose we have a multi-
plicative relation (1). This is a slightly weaker condition than (2) because
we cannot suppose that the exponents by, ..., 5, are relatively prime.

" However, even if by, ..., b, are relatively prime, we now have no infor-

mation about the hranches logag-” in any of the relations (2). Our con-
gtruction does not give an element of the field K close to 1, so that we lose
the parameter F in Theorem 2. To general, we cannot hope to remove
the dependence on I} from part {A) of the theorem, in view of the example
in Section 6. Exceptionally, the totally real case in part {B) does lead to
bhounds independent of D hecause it is possible to control the branches of
the logarithms I ({2).

THEOREM 3. Let o, O, ..., @, b6 non-zero algebraic numbers in an
algebraiec number field K of degree D over the rationals. Lel w(K) denote
the number of rvoots of unily in K and define A{D) as in Section 2. Suppose
that therve are rational {ntegers by, by, ..., b, not all zero, such that

mlot ... ar =1,

(A) In general, there are inlegers gy, Ga, .-« 4, n0b all zere, such that

(9) : e dr =1,
] < (n—1) 1w (K) [ [ (Dh(e)/2(D)) (1 <E<n).
il

(B) If K is totally real, then there are inlegers gy, Ga, ..., G, Sotisfying
(9) as above and such that

g < 2% -1 [ [ (blaflog2)  (L<E<n).

_ ivk

(C) Suppose that a, ay, ..., &, are unils and that K is almosi real,
that is K 45 o totally real fwm or an tmaginary quadratic extension of a totally
real field. Then there are integers gy, Qo - ., 4, Sotisfying {9) as above and
such that _

gl < 2% (m—1) 1w (K) H (hle)flogg) (A< E<n),
Ik

where o = ${1--5Y%).

Proof. (A) Set V; = Dh{g)[A(D) for 1< f<m We construet o
as in the proof of Themem 1 and, by Way of (7), we obtain k(a) < A(D){D.
In particular, d(e)< A(D)/D <log2/D, so a is an algebraic integer,
indeed a unit. From the definition of A{D), we conclude that « is a root
of unity. So we have found integers ¢y, ..., g,, 2ot all zero, such that

a® ... &® is a voot of unity and

g < (n—1)4 H V;.

LEL
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(The argument to show that this bound holds for all k is the same as in the

proof of Theorem 1.) Part (A) of the theorem follows since the roets of

unity in X form a eyelic group of order w(X).

(B) Construet ¢ as before, with V; = 4k(e;)/log2. Since K is totally real,
the conjugates of ¢? are all positive. As in part (B) of Theorem 1, we wish
to estimate N gp(a®—1}. This leads to the maximisation problem eonsidered
earlier with ¢ = 0 and = = 2'%. Since only the first ease in the previous
discussion is applicable, we conclude withowt any trouble that N yq (a?—1)
< 7~P, This yields & = 21 and so proves part (B) of the theorem.

(C) An almost real field, &, is characterised by the property that
complex conjugation maps K to itself and commutes with all the embed-
dings of K info the complex numbers. Hence, for o in K, the field eonju-
‘gates of |al* are just the o) with 1 < ¢ << D. We construct « as before,
with V; == 2h{a;)/loge. By the preceding remarks, we find A(]al*) <loge
and a modification of the argument sketched in (B) yields Nz (lal*—1}
< 1. From the additional hypotheges for this case, ¢ is an algebraic integer,
50 |od®2 = 1 for each ¢ and a theorem of Kronecker tells us that ais » root
of unity. Part (C) of the theorem now follows. '

6. Concluding remarks. The first example below shows that the
dependence on the heights of the algebraie numbers in Theorem 3 1§ best
possible. Comparing our results with these in Bijlyma and Cijsouw [4}
then provides some circumstantial evidence that the current lower hounds
for linear forms in the logarithms of algebraic numbers are also cloge
to best possible in their dependence on the heights of the algebraic numbers
involved. We also see that we cannot remove the dependence on the degree
D in Theorems 2 and 3{A). The bounds in Theorem 1 manage to be inde-
pendent of D because of a concealed dependence on J) in the branches of the
logarithms which are required to obiain the complete set of conjugate
linear relations (2).

Exavrpre 1, Let p; =2, p, =3, ..., p,_; be the first n—1 primes
and let K = Q{pl*, pis, ..., pi)), s being a positive integer. Thus
D = [K:Q] ="' Further, let « and v he relatively prime positive
integers with, say, u < o < 2u, Set

— - o - -
(10} g = P7Y g = PIPF™: oy Gy = Do oPpiyy O == Pp_1-

Then 4y, @s, ..., 8, are multiplicatively dependent and the minimal
relation, ¢ a?...a, =1 is given by by =uty"d, Next, set o; = a;®
for 1< j < . Then oy, s, ..., 6, ave multiplicatively dependent; slements
of K having the same multiplicative relations as ay, ¢y ..., 6,. Hor
each 7,

hlay) = 7' h{a;) = s~ max fulogp;, vlogp;_,} < A(njs™u,

icm
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where A (n) stands for a positive eonstant independent of s, # and o, but
possibly depending on n. Thus

by = uF P * > A(n)D f_[ Rle) (A<b<n).

%k
Thiz example momentarily seems to contradiet Theorem 1. However, if
we use the notation o with I = (I;,...,1,_;) to denote the conjugate of
o in K obtained by sending pj® to p}*exp{2wily/s), then we can obtain
the complete set of conjugate relations (2) with

logad) = s~logay--2mis (L, 0— T, u).
Since the 4 run from 0 to s—1, we have
max log a?| ~ A{n)u
)]

for large s, and all is well

The second example shows that the dependence on the heights of
the algebraic mambers in Theorems 1{A) and 2 is besh possible and Hlus-
frates the role of the parameter H.

Exampre 2. Choose distinet primes p,, g; (1 <j<<n—1) satisfying
X< p;<2X and 0 < p;—q; < ClogX for each j and for some positive
constant ¢. (This is possible because =(2z)—=(w} » ®/loga.) Construct
a3, ..., @, by modifying (10) as follows. Set

a; = (Mg,

erey a-n_l

Ay = (Pr/@) (Pafq2) 7"

= (Ppa/ln-2) (Pa1[Caa) ™ @ =(Pp /8 1)
with 4 =X, v = X +1 and X a large integer parameter. We can now
apply Theorem 1(A) to the multiplicatively dependent numbers @, ..., a,,

taldng K == O and D == 1. (In this case, Theorem 1(A) and Theorem 2 are
equivalent.) We find

loga; = O(ulogp;/g;) = O(logX),
as X — oo, with an implied constant depending only on 5, and
h{a;) = d(o;) = O(ulogp;) = 0(XlogX).
Aecording to the prescriptions of Theorem 1(A),

B = min d(a;)log2floge, > 4A(n) X,
1<j<n

where A (n) stands for a positive constant depending only on #, and

V; = d(a;){log(BjlogH) = 0(X).
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As hefore, the minimal relation byloga; + ... +b,loga, = 0 has coefficients

by = 19", and these satisfy

B, > A{n)n Ve

FEk

justifying our earlier assertions.
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On the diophantine equation y*-}-D™ = p”
by

o

Mass0 Toxoroumr (Tokyo)

1. Introduction. Tet [} be a positive square free integer grenter
than 1 and let » = 3(mod4) be a prime number not dividing I. Let
further @ be the order of a prime ideal divisor of {p) in the ideal clags group
of the quadratic field Q(¥ — D). In the present paper we comsider the
diophantine equation
(1) y2+D??l :pn

in positive integers y, m, n. The aim of this paper iz to prove the following
two theorems,

THEOREM 1. Assume D =1, 2{modd) and p?—D is a square. Then
the equation (1) implies that m = 1 unless {p, D) = (3, 2).

THEOREM 2. The only posilive integer solutions of the equation

() PRI LR,

are given by (y, m,n) = (1,1,1), (6,1,3), (1,3,2), (7,3, 4).

‘We shall complete the proof of the above theorems by using the
techniques of [2].

2. Proof of some lemmas. _

Lrnmaa 1. Let & and D be as in Theorem 1. Assume thei s s a fived
positive integer and D 5= 0(mod3). If the equation '

(3) y2+D23+1 — :pn
s imteger solutions for y and n, then the equation
yg_]_Dz(s—l)+1 — Pn

has also integer solutions for y and n.

Proof. Since p— D is 2 square, — D is a quadratie residue modulo p.
Then from the theory of quadratic fields, it follows that (p) = PP’, where
P and P’ are distinct eonjugabe prime ideals in the quadratic field ¢ (l/_:l_)).



