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A Goldbach theorem for polynemials of low degree
over odd finite fields*

by

Gove ErrmveER (Lewiston, Maine)

1. Introduction. Let %, be the finite field of g elements and Iet 3 be
% monlic polynomial of degree + in one variable & over k. We call I o 3-
primes polynomial if there exist irreducible monic polynomials Py, P,
and P, with degP, = r, degP, <2 r, and degP, < r such that ¥ = P, +P,+

- +P,. In this paper we shall prove the following Goldhach-type theorem

for such polynomials of low degree:

TrrorEM 1.1. Let &, be the finite field of ¢ elements where g i¢ odd and
let I be o monic polynomial in k {x]. If the degree of M is 2, 3, 4, 5, or 6,
then 3I is a 3-primes polynomial, Purther, if degM =7 and if q> 207,
then again M is a 3-primes pelynomial,

This result supplements & theorem of D. R. Hayes which requires
the following definition: a monic polynomial A7 over %, is called even
if ¢ =2 and M iy divisible by @ or #-+1. Otherwise M is called odd. This
theorem then is as follows (see [5] or [L1]):

TreorREN (D). R. Hayes). For every degree v = B, there exists a ¢, (de-
pending on v and deereasing as v increases) such that if g2 q,, then every
odd monic M of degres 7 in k,[2] is a 3-primes polynomial,

A close analysis of the proof of the Hayes Theorein (see [5], Chapter I)
reveals that g, < 6,340,567 (Le. we are guaranteed by the theorem thatb
if. g2 6,340,567, then every monic 5th degree polynomial over %, is a 3-
primes polynomial), ¢, < 5,297, and g, < 479. Moreover, we observe that
the Hayes Theorem saye nothing at all abont polynomials of degree less
than 5. Theorem 1.1, therefore, sapplies ns with much information about
the exigtence of 3-primes polynomials not supplied by Hayes’ asymptotic
result. :

" We will see bélow that the cages » = 2 and 3 are essentially trivial,
depending only upon elementary properties of the traee funetion, and
that the cases r = 4 and 5 are easy when one utilizes informatién about

¥ This paper is deriﬁad from the author’s Ph.D. thesis, wiitten under D. R.
Hayes at the Univemity of Massachusetts.
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orthogonal geometries over odd finite fields. However, the cases r = 6
and 7 are considerably more difficult to analyze. Here an asymptotic
techniqme, first suggested by the work of 8. D). Cohen [4], is employed,
resulting finally in the information that if q is odd and > 19 (respectively
207), then every monic 6th (respeetively Tth) degree polynomial in k, [}
ig a 3-primes polynomial. Finally, we will merely “check® the fow remain-
ing cases (g = 3 through 17) for » =6 on the computer. Theorem 1.1
will then be proved.

The asymptotic technique used in what follows to analyze the cases
r =6 and 7 actually applies to polynomials of arbitrary degree, but
here, opposite to the Hayes Theorem, the *g.’s” ineresse as + increases.
Thus for polynomials of degree = 8, we obtain less information than the
- Hayes Theorem obtains; for example, the Hayes Theorem ¢, is less than
or equal fo 137, whereas our technique yields informdtion only. for odd
fields of order approximately 2,000 or greater, This explains then why

our Theorem 1.1 “giops” -at + = 7.

' The long-range goal to which the Hayes Theorem and this work
ecntribute is the following:

THE POLYNOMIAL 3-PRIMES CONJECTURE. fvery odd monic polynomial
M of degree =2 over every finile field is a 3-primes polynomial, ewcept
Jor ihe case g even, M = a?ta (o ek).

This result is the “best possible™, for it is easy to show that over ks,
the even polynomial M = #*--&" (r even but otherwise arbitrary) is
not a 3-primes polynomial, and over every %, with ¢ even, a*+-a (a ek,)
is not & 3-primes polynomial (see [5], Chapter IT). The reader it referred
to [5], Chapter V, for a summary of what remains at this time to be proved
to obtain the above stated conjecture.

2. A general approach 1o low degree polynomials and the cases » = 2
and 3. We state here onee and for all that all polynemials considered
in this paper are monie.

Our method for solving the 3-pmnes problem for polynomials of
low degree will be as follows: suppose M has degree . We will seek an
irredueible Py of degree 7 such that M —P, is monic of as low degree as
posgible. Now find P, (irreducible} such that (M —P,)—P, iz monic and
irreducible, hence is our necessary P,. If r = 3, for exarmple, it will suffice
if P, can be found so that M —P; is quadratic (monie) and then if P, is
found so that (M —P,)—P, is linear (monic), for all linear polynomials
- are irreducible. When r = 5, we ‘would like, for example, M —P, tc be
cubic and then (M —P;)—P, linear, ete.

DerNrrioN 21, If P =& vo™ a2+ fam L., then z will
be called the first or trace coefficient of P, ¢ will be called the second coe-
flicient, etc.

It is clear from above that if we know that there exist irreducibles
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of degree 2 and 3 with arbitrary first coefficient, then we can solve the
3-primes problem for gquadratic and cubic polynomials. Likewise, if there
exists irreducibles of degree 3 through 5 with arbitrary first end second
coefficients, we will be able to solve the problem for the eases r = 4 and 5.
We shall do precisely this in this and the following section.

To solve the cases == 2 and 8 we need only the following:

PROPOSITION 2.2. Let v = k, and r = 2. Then there exists an irreducible
polynomial P of degree r whose first coefficient is v except for the case g even,

r=27=0.
Proof. Casel. Let p = char(k,) and suppose p t7. Pick any ¢, primi-

7--trace (£,)

tive in the extension %k, of k&, and let f =1,— . t be algo
primitive in & and r

+trace(t
trace(f) = trace(t,) —trace (—-————T p ( °)) = trace({t,} —7--trace(t,) — —z.

Let P, be the minimal polynomial of # over %, then P, has first coef-
ficient <.

Case 2. Suppose p |r. Sinee k,r/k, is separable, the trace funetion
iy mot identic-allv zero. Helect f, e kr with trace(f,) # 0, then for any

7 € kyy )tn hag trace{l) = —7, so frace: kr—.»kq iz onto.

( trace (tn)
But trace is alto an additive homomeorphism, so for every v e k,, #{iek,r|
trace{t) = —1! = ¢ /g = ¢ *. It r>2 then r —1 > 7/2, but there are
at most ¢"* non-primitive elements in k,ry 80 there exists a primitive ¢ with
trace(t) = —z. As above P; is our desired irreducible. Finally, however,
if r=2 and ¢ =2° (¢2=1), then kernel(irace) == k,, so there are no
primitive elements ¢ with trace(i) = 0. This completes the proof. m
We observe that the technigue used in Case 2 above actnally applies
in general, but we chose to separate off the case p +r becaunse it illustrates
the important idea that under thiz hypothesis we can obtain all frace
coefficients by “translation,” and hence it will suffice to study polynomials
with trace coefficient = 0. .
ProrosrTioN 2.3 (“Translation”). Suppose that for a =k, there are
o (@) irreducible polynomials of degree r with irace coefficient = 0 and 2nd
coefficient = a, where v and ¢ ave relatively prime. Lot v e &y, then the number
n (@) of irreducible r-ih degree polynomigls with trace coefficient = v and
. 2
2ad coefficient = o 4s exactly n, (a~— (;) ;—) . Hence, for any =, the set of
numbers {n, (&
aecks}.
 Proof. Suppose that fe k, has minimal polynomial of the form
@ --aw’ "% +..., then t—v/r is also primitive in k. and has minimal poly-

V@ ek} is just a permutation of the set of numbers {n,(a)}
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—(f+m* 1+() AN ) a(@ ™ 4 )
2
== g St 1—]—(( ) i J—a) a4,

Since this process is clearly reversible, we obtain the stated correspon-
dence. &

COROLLARY 2.4. dssume (g, r) = 1. If n distinct values in &, appear
as 2nd coefficients in irreducible polynomials of degree v over k, with trace
coefficient = 0, then n distinct values will appear for every trace coefficient.

Proof. Obvicus from Proposition 23, =

WWe will make considerable use of these results in the sections to
follow.

Proposition 2.2 allows us to solve the 3-primes problem for quadrabic
and cubic polynomials over odd fields. Suppose that ¢ is odd amd M
= @2 }-pp+a. Proposition, 2.2 guarantees us that there exisfs an irre-
ducible P, = 22+ (v=2}z-+a’ for some o’ in k. Let P, = 2+a and P,
= g—a', then M = P +P,-+P; as required. Now if M = *+ra*-+ar+b,
then there exists P, = o®-+ (z—1}at -2’20 and Py = 22 - (o —a’' —1)a+
+b”, so that M-—P,—P; =a-+b—b"—b" =P, Hence we have:

TaREOREM 2.5. If ¢ is odd, then every quadratic and cubic polynomial
over ko, is a 3-primes polynomial. m

Note: A slightly closer look shows us that if ¢ is even but A |

= g2yt has ¢ # 0, then M is a 3-primes polynomial, and moreover
every cubic M over every finite field is a 3-primes polynomial (see [3],
Theorems 2.9 and 2.10). Since we are concerned here only with odd fields,
the -above suffices.

3. The distribution of irreducible polynomials with respect to their
first two coefficients. As observed above, we will be able to solve the
3.primes problem in the cases r =4 and 5 provided that arbitrary
combinations of the 1st and 2nd coefficients of irredueibles can be found.
Tn thig gection we show that for odd ¢ this is the cage. The resnlts obtained
here will also be of essential nse in the case ¥ = 6 and 7

" We make the assumption for the remainder of this paper that ¢ is
odd. : _
Drrmsrrios 3.1, Let t be o primitive element of %, and let P, be ifs
minimal polynomial over k, We shall denate the 9nd coefficient of P,
})y A(t)
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ProrosiTION 3.2.
Aty = oty e o B g,

0<1.,J<2'
£<j

Proof. Just multiply out P,(#) = (@—8)(#—19)...(c—t% ). =
Uniike the trace, 4 (f) fails to be a linear functional of k. However,

it does have the following nice property with respect to addition which
will he important in what follows:

PROPOSITION 3.3. Suppose 1, 5 € kyr with irace(t) = 0. Then
' A(t4s) = A1)+ A (s) —trace(ls).
Proot. Observe that since ¢ = p°, p = char(k,), we have (t-,—s)q

= 1@ 157, Now,

Af4s) = 3 (t+s)fed
O, j=r
i%f

= (4+8) (t+-8)0 (E48) (F+8)T o I ()T
e (T8} (F 159 () (1 Ls®) o (T T T (T 157
= (71187 i g1 - (11 s tﬂ‘su”f)'

ren (20 NI A
e A A(8) LTt .+ Y+

C I T T s T e )

= A()-LA(8) ts—1%0—.., 1€ ¢t (sinee trace(t) = 0)
= A(f) +A{s)—trace(fs). m

4tqr-— r— :_Sqf“"‘-rqr"’l)

P2y gt

Note that this proposition requires that only one argument have
trace = 0. We also have

PrOPOSITION 3.4. If a €k, then J(at) = g2A4 (1).

Proof
Alat) = (at)l“'q_‘____ 1 (at )q’—2+g'—1
S LY A (e = all its conjueates)
= azé.(t), o

Together these give us the key result:

g

COROLLARY 3.5. If tekyhas trace(t) =0, then

A@f) = —Jtrace(s).
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Proof. 44 (1) = A(2f) = A(t+1) = A )+ A{) —trace(t® ), 80
—trace(f?) = 2A (). ®

Note that the generalify of Proposifion 3.3 is not needed to obtain
this corellary, but 3.5 will itself be used in the sequel. Also note that
this result makes sense only when ¢ is odd.

Corollary 3.5 allows us to view the 2nd ecoefficient of an irreducible
polynomial in a way which immediately gives us considerable information
aboui it. Let ¥ be kernel(frace: ky—k,), then V is an {r —1)-dimensional
vector space over I, IE (¢,7) =1, then ¥k, = {0} since if 0 # a ek,
then trace{a) = ra = 0. We define now a pairing = of ¥ into k, given
by t * ¢ = trace(ls), and one checks immediately that x is in fact an inner
product on ¥, and that ¥V is nonsénguler with respect to = (see, e.g., [1],
page 106). Forif ¢ £ t e ¥ has trace(is) = 0 for every s e V, thenitVc V
by definition of ¥, and then since A ({IF) = FV < oo, we must have
t¥ = T, which implies that 1 e ¥, which it is not. Thus 7 is nonsingular.
Hence we see that if t € V and iIs primitive in k,r, then the minimal poly-
nomial P, of ¢ iz of degree r with Ist coefficient == 0 and second coef-
ficient = A(f) = —itrace(t®) = —4{i +1).

But now the theory of vector spaces over finite fields {of odd charac-
teristic) equmipped with an “orthogonal geometry”, l.e., a symmefrie
inner product, with respect to which the vector space is nongingnlar has
been thoronghly studied, an excellent source being Emil Avtin’s Geometrio
algebra ({11}, pages 143-143. On these pages Artin gives exact formmulas
for the numbers of isotropic vectors (i.e., vectors of length = 0} and also
the quadratic forms associated with the inner produnct. We smmmarize
thig latter information as follows:

Let T be a vector apace of degree n over &, where g is odd, and suppose
T is equipped with & symmetric inner product = with regpeet to which ¥
is non-singular. Let g be any quadratic non-residue in %k,. Then using
Artin’s notation, for n = 3 we have 4 possible geometry types, the former
two for # odd and the latter two for n even. These are:

Type Associated guadratic form Digcriminant
I 2y oo 20, oy, T2 (—1ytm—2
1T 2@yt 28,4, gL (—1)—ig
nr Dipaig ..+ 2,1, {—1)n2
Iv 2y La o F 28,0 T ——gmi { —-—l)mg :

For any given value a e k,, the number of solutions of the equation
quadratie form = a gives the number of vectors { in ¥V, the square of
whose length is & (i.e. the number of ¢ puch that t+% = a).
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LEMMA 3.6. Let V be as above, n 32 8, and a € ky. Then the JF of elements
tof V* with t+«1=a, is as follows:

t*xf =a, t*l =a,
Type txt =10 a quadratic a non-guadratic
residue residue

qn~l + q(n-—.l)ﬁz gn—l - g(n-—l}la
qn—l _q(n—-l)fz qn—l _i_g(n—l)fz

a 1

b m—1__1
0dd II g

n TII |(@™2—1) g2 +1) gl —gniz=1

: even 1V (qnfﬂ_;,.l)(qnfz—lwl) qn—l +gm‘2—1
|

Proof. We consider first the case where » is even, i.e. types ITI and
IV. The case t* ¢ =0 is given directly by Artin {1}, p. 146, Now since
HV = ¢ and since it ig clear that the number of solutions of the type
IIT and IV quadratic forms will be independent of the valne of o (and
of its quadratic character), we have
HV = FlieV]|ixt=04+(q—1)F eV t+f=a}.
Call this last number N. Hence for type III,

¢ = (@ —I(g" T+ HLHg D),

which yields
gn__l qﬂfﬂ -1 _
N = _ 7ia—1 1
=1 -1 (" +1)
— (gﬂ_l—:gn_gri“---“}‘l)m{qn_z T ﬂ“3+ _}__gnlz—l_{_gn["—-l 1 gnf2—2 4. )
— gn—l n}'h-l_
Likewige, for type IV,
: qn_l qnlz——l -1 .,
N o= - W],
g1 =1 (g +1)

— (qn-l_l_gn—z_}_.-_’+1)__(qﬂ,—2_lr_'“+gnf2;f_gn12—2+qm’2—3+_”+1)
—_ g!1'1,—1_I_qm.!2—-1’

a8 claimed.

Now let » be odd Again [17, p. 146, gives us ¢"~" izotropic vectors
for both types I and IT. Observe now that in type I, we will get a different
number of solutions depending on the quadratic nature of . Suppose
first that & is a quadratic non-residue, then regardless of the value of

@, 2oy, +23, .®, , must be non-zero. By the above argument for
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type TII, this can oceur in ¢* °—¢™ "2~! ways, so the total number of
¥P ’
golutions is

g(g'rm—-E_g(n-—l}iz-—l) =g —1_g(n—-1)/2'

Now suppose a i8 a quadratic resulue and let ¥ ={eV| t=t=a},

o t].len
in ;n— g 1 . ;'n— ] —1)j2 N
1 ( - ) ( 1 (n ]:)f_) 1 (q ) R

which yields

N = 2q ‘1_(!1-11,—1_2(91—1),'2) o gn—-l _Hl(n_lm-

Finally we observe that type 1T is analyzed exactly like type I, but with
the role of quadratic residues and non-vesidues reversed. This completes
the proof: m

This lemma will now yield much information about the distribution
of irreducible polynomials over k, with respect to their first two coef-
ficients. Using » = 4 and 5 as examples, we now demonstrate the kind of
specific mformation which we can obtain.

CoROLLARY 3.7. Suppose that g 45 odd and wnot a power of 5. Then the
number of Bith degree irreducible polynomigls with trace = 0 and 2nd co-
efficient = a over k, is:

| g = 0 Iea,cha#o

=g+ ¢P¢—q¢

=lor4 d5
q or 4 (mod 5) ry 5

f 2+1 —1 T3
g = 2ot 3 {mod 5} (g ;(q ) q;q

Proof. Let ¥V = kernel(trace: kts—%,). As discussed jost afber Cor-
ollary 3.5 above, since ¢ is not a power of 5, ¥V is a 4-dimengional vector
space over k, which is non-singular with respect to i+ ¢ = trace(ls). We
observe that since TNk, = 0, every element of V* is primitive in ks, and
each fifth degree ireducible polynomial over k, with 1st coefficient = 0
corresponds to 5 (conjugate) elements of V. Now it ig easy to see that if
Dy and D, & Are the diseriminants of ¥ and s over I, respectively, then
D,hqs = SDV Since D,‘QS is always & square in kga (see, e.g., [3], p. 403) and
lies in %,, it must be a square in k, also (k;s Nk = &,). Thus the quadratic
.character of D, will mateh that of 3 in %k, and by quadratic reciprocity
we have then that D is a quadratic residue if and only if ¢ = 1 or 4 (mod 5).
Hence we see that V is of type IILif ¢ = L or 4 (mod 5), type IV otherwise.
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The corollary now follows directly from Lemma 3.6 by setting n» =4
and using the above-mentioned 5 o 1 correspondence of elements of V*
with irreducible 5th degree polynomials with 1st coefficient = 0. m
CoROLLARY 3.8. Let ¢ be odd. Then the number of 4th degree irreducible
polynomials with frace = 0 and 2nd coefficient — o over kg is

each a | each o
e=0 quadratic residue = DE quadratic non-residue
¢ =1(mods) ()t | @ +a-2
¢=5(mod8) | g1 | (@+g-2/4 1 (g —q)/4
g = 7 {mod 8) 4 (g —g—2)/4 { (gt
g =3 (mod 8) (¢®+a) it (g*—g—2}/4

Proof. Again let V == kernel(trace: ka—kg), so that ¥V is 3-dimen-
sional over %, and non-singular with respect to * The discriminant Dy
gatisfies Dk .= 4D, so that the two discriminants mateh in their quad-
ratio characters in kg If t is primitive in &, and if f{z} is its minimal poly-
nomial, then D, e N[_ F(£)} where W is the norm function. One shows easily
that if £ has trace = 0 over kpz, then N (f' (t)) and ¥ (1) have the same gquad-
ratic character, and further that N (1) is always a quadratic non-residue.
Hence Dy is a quadratic non-residue in kg

Of the four cases of the corollary, we now go through one carefully
and remark that the other three are very similar. Suppose g = 1 (mod 8).
Since

—_ 2 o
(___gl) = (-1 and (E) = (—1)e 1B,

we see that in this case, both —1 and 2 are quadratic residues in %, Since
Dy is 2 quadratic non-residue, we see that ¥ must be of type I Suppose
¢ (= A (t) for some ¥ £ fr,e; see Definition 8.1) is & zero non-quadratic residue,
then since .4 (f) = —itrace(t?) = —4(t +1), we see that « and @ =4+
have the same guadratic character. Now by Lemma 3.6, there must be
¢ —q elements t.of V witht =t = a. Likewiseifais a quadratic non-residue,
then so is @, and we get ¢2-+4 elements ¢ with ¢ »{ = a.

Now unlike the cases of 3th degree irreducibles, here it is mnot
true that all elements of V* are primitive in ks Let 0 # ¢ € k0¥, then
traicekg‘,,;\g(t) — 0 and so t = —i% Using this fact and Proposition 3.2,

we obtain A(f) = —2¢% Were 4 (f) a non-zero quadratic residue in &,
then so would # be. (we are assuming that —2 iz), whence ¢ ek, Wl.ueh
it is not since ¢t = —i% Hence the equation A () = —2# hag no solutions

if A () is & non-zero guadratic residue, 2 solutions if it is a non-residue,
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and 1 solation (# = 0) if A(t) = 0. Finally dividing by 4 (4 to 1 corre-
spondence of primitive elements of ¥ to trace ¢ irreducibles), we obtain
the desired count in this cage.

The other 3 cases.follow similarly. m

We must now study the case where r is divisible by the characteristic
of k,. Here the translation technique (Proposition 2.3) does not apply
and so it does nof suffice to study polynomials with trace = 0. Thus
‘we look at two cases: when the trace 7 is nonzero, and when = = 0.

A. The case v # 0. Fix a valne = 7 0 in k, and fix a , € k such
that trace(fy) = r. Let 7 be the orthogenal complement of (3., ie., ¥V
= {t € k| trace(ts) = 0}, then V is of dimension r—1 over k, Let W
= kernel(trace|;), ie., W = {se V| trace(s) = 0}, then W hasg dimen-
sion ¥ —2 over k, and W is a nonsingnlar orthogonal space (exactly as in
the discussion following Corollary 3.5). Observe mow that Wnk, = {0},
for it o eI}, then trace{af,) = o trace(l,) = ar 7% 0. Hence kernel (trace)
= Wak, and every element with trace = v has unique representation
to+-s+o where s e W and ¢ ek, But by Proposition 3.3, since both ¢
and ¢ have trace =0, we have '

Aty+s-+0) = A(ly) +A(s)+A(0) —irace(ts}—trace (of,) —trace(os)
="A (g} +A(8) +0—0—0ar—0 = A{t,)+A (s} o7,

Fix ¢ ¢ W for the moment and lef ¢ run through %, so that or also runs
through %,, and thus 4 (f,+s-o) runs through %, i.e., each value appears
exactly once. Hence as s runs through W, each value appears exactly
¢ times.

B. The case 7 = 6. This situation is a bit more complicated. Let
¥ =: kernel(trace: kp—k;), then V is now a singular (r—1)-dimensional
vector space over k, which contains %, itself. Let W be any complement
of k,in ¥, Then automatically k; and W are orthogonal since trace(%,V)
=0, W iz an (r—2)-dimensional space over k, and is nonsingular, for
as before it 0 = te W satisfies trace(iW) = 0, then tW = W, so that
1 & W, which it is not. Now the elements of ¥ which correspond to irve-
ducible 7th degree polynomials are exaetly § = {o+sek@W]| s = 0}
Moreover,  sinee A(o-+s) = 4(0)+4(s)—trace(ss) = 4 (s), we have
HlotrselS] Alo+s) = o} = q(# {se W| s 0 and A(s) = a}). We have
. proved:

Iemma 3.9. Suppose (g,7) #1 and r > 3. The number of elements of
kg with frace = 7 and A-value = a is ¢ if v % 0, and is q(# {t € W*!
A (1) = o} where W is any complement of kyin V == kernel (trace) if v — 0. m

For an application of this result, we have: :

COROLLARY 3.10. If g = 5° for some ¢ =1, then the number of Btk
degree irreducibles over ky having trace coefficient = v and 2nd coefficient = a
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is @35 if v #£0, qlg*—1)/Bif v = a = 0, and either ¢{g*<+q}/5 or q(g>—) /5
if 7 =0, a #0, depending on the quadratic nature of a in k,. .

Proof. This follows directly from Lemma 3.9 with r = 5 and Lemma
3.6 with n =3. 1 :

In order to solve the 3-primes problem for the case r = 4 through 7,
we will use the following corollary of the orthogonal geometric information
obtained so far, together with the “Translation Lemma® (Proposition 2.3).

COROLLARY 3.11. Let ¢ be odd and Yot v and a be arbitrary elements of
kg Them the minimum number of irreducible polynomials of degree v with

tracé coefficient = v and Ind coefficient = a is as follows:

Degree r ! Minimum ¢ of irredueibles z" +ra7 1 +az'24... >
4 (B—g—2)4
5 (*—g¥/5
6 (gt —g2—2¢—-2)/6 if p = 3, (*—FC—F—DB if p =3
7 (g° a7

Proof. (1) r = 4: Corollary 3.8 together with Proposition 2.3 (“Trans-
Iation”} immediately yield the result. ‘

(2) # = B: Corollary 3.7 with Proposition 2.3 and Corollary 3.10
yield the result. _ o .

(3) r = 6: First suppose that p = char(k,) # 3, so that Lemma 3.6

'aﬁd Proposition 2.3 will apply. Setting # = 5 in Lemma 3.6 (récall that

dimV = n ==7r—1), we see immediately that the minimal eount for
elements of V with any given “length?” is ¢*—¢*. As with 4th degree poly-
nomials, we must now remove non-primitive elements of V. If tekp with
trace(t) = 0, then using Proposition 3.2 and the fach that ¢ = —i, we
obtain A(f) = —3#* which clearly has at most two roots. I # g ks with

“trace () = 0, then using i — 149 and some sweab, we obtain A (f)

= —% ({2172 42), which has at most 2¢ solutions for any fixed value
of A(f). We conclude that the number of primitive elements of ¥ with
given A-value is at least ¢*—g*—2¢—2, and the result follows.

Now suppose that p == 3. Lemma 3.9 now applies with W having
dimengion 4 over kg, 5o by Lemma 3.6 with » = 4 we obtain & mJ_mmum
count of g((g2+1){g-1)) = ¢*—~¢*+¢*~—¢ Again we must eliminate
non-primitive elements, and we nuse & rough (but sufficient for our purposes)
method: we simply eliminate all ¢ elements of %z and the at most ¢*
elements of k,s with the prescribed frace value, so that our new lower
bound  becomes ¢*—q®—g®—g. The desired result follows. N

(4) r = 7: Here, as with # = 5, there is no difficulty with non-primi-
tive elements, and the result follows directly by applying Lemma 3.6
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(with % = 6), Proposition 2.3, and Lemma 3.9 (with dim W =5). In
fact the minimum value ocours in the case p =7, v =0, a = 0.

This completes the prooi. m

We conclude this seetion by looking at irreducible cubie polynomials
a5 we Will need information about them in the following gection. First
suppose that p # 3, then it suffices to use the techniques of Lemma 3.6.
However, ¥V now lhas dimension 2 over %, and by [1], p. 143, we have
that A(f) maps onfo kj, but if ¢ =2 (mod 3) then the value 0 is not
taken on. Upon translation we then obtain:

Levws 3.12. If p +£ 3 and | € k, is given, then there emist drreducible
polynomials of the form -+l +-ha 1§ for ot least ¢—1 volues of h. m

Buppose now that p == 3, then Lemma 3.9 applies with W of dimen-
sion 1. By [1], p- 143, A (7} takes on exactly (g—1)/2 values, so if » = 0,
A (#) is far from onto. However, if v == 0, 4 (¢) is onto, in fact each value
gets taken on exactly ¢ times. Thus: '

Leamga 3.13. If ¢ = 3 end if 1 5= 0 and b are given, then there ewisls
an irreducible polynomial of the form 28+l +he--j. m

4. A solution of the 3-primes problem for r = 4 and 5. We contin
to assume that ¢ is odd. The following theorem is an immediate corollga
of the preceding section.

TaeorEM 4,1, Bvery 4th degree polynomial over every finite field of '

odd characteristic is a 3-primes polynomial,

Proof. Let M = o*+w034aw®+po+y be arbitrary in k,[#]. By
Corollary 3.11 there exists an irreducible Py = #*+7o*+{a—1) a2 +f'z +y',
80 that M —P, = 2*4-(f—p")x +(y —>"). By Proposition 2.2, there exists
an irreducible Py = a2+{f —f —1L)w+y". Let Py = o-+{y—~9 —"), and
we are done. m '

The case r = 5 i3 a bit more involved. Here it is necegsary to separate
off the two cases p % 3 and. p = 3. The following will be used for the
case p % 31

Lexia 4.2, Let v and o be prescribed elements of k, where ¢ > 5, then
there exists f ek, such thai

2% L7t 4 aw® +ﬁm2—ylm 81
and
#° v’ +awd Bt -+ w5y
are both irreducible for some y,, vy, 6y, 8, €k, ond y; # ya.

Froof. Buppose not, then each £ which appears in an irreducible
with first two coefficients » and a respectively would be matched with
a gingle y. But then there would exist at most g{g—1) such polynomials
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(8; # 0). Corollary 3.11 guarantees us at least ¢%(g—1)/5 such poly-
nomials, Since g > b5, this is a contradiction. m
For the ease p = 3, we will need:

Levma 4.3. Let v and o be prescribed elements of k, where q > 5, then
there ewist f, = B, such thaf 2° Lra- am3+ﬂ1m~+y1m~r51 and #°+rat+
Lot +B2% +p8+8, are both drveducible for some vy, vy 01y 6, & kg

Proof. If not, then a single 8§ would appear as a third coeﬁieient,
s0 there would again be at most ¢(g—1) such polynomials, again contra-
dicting Corollary 311 since ¢> 5. m

We are now in a position to solve the 3-primes problem for all 5th
degree polynomials over fields of odd characteristic. Let M = o° +ea*+
+au? +fa? -yt 4.

Case 1. Suppose p # 3, g # 5, ¢ odd. By Lemma 4.2 there exists
a f’ which is matched with at least two distinet 47 and y, in an irredueible
5th degree polynomial. By Lemma 3.12 there exists an irreducible cubie
either of the formn a?+(f—fNa2(y—wm —L)z+8 or 235H{(f—F o2+
A-ly—ya—1)w+0,, and we assume the former. Let P, = o+’
A (a—1) &8+ Bty -8 (for some §), Py = 28 +(f—F) 0 +(y —y —1)a+
+6y, and Py =a-+(6—06 —0y), then M =P, -P,-[P; as reguired.

Case 2. Suppose p = §, g> 9. By Lemms 4.3 there exists a f' with
B—8" 50 5o that P, =o°+ort+{a—1)23+f's° {y'z--4" is irredneible
for some ' and 4. By Lemma 3.13 there exists an imredncible cubic of
the form P, =28+ (f—pat+(y—y —1)e+ 4" for some 6. Letting

=ag(6—58—6"), we again have M = P,+P,+P,

Case 8. Suppose ¢ = §. A lisfing by the eomputer of irreducible
5th degree polynomials over k; shows that there exist more than ¢*(¢—1)/5
= 20 irreducibles for each pair of first two coefficients except z =0,
a =1 and 7 =0, o = 4, where thers arve exactly 20 of each. However,
P4t +2p12, o° - ad 8012, o +H4ed 241, and o°+40°+3x4+1 are
all irredueible, so the conclusion of Lemma 4.2 still holds, and the above
proof (Case 1) still goes through.

Case 4. Suppose ¢ = 3. Here we must take a slightly different task.
It suffices (by translation) to study polynomials with trace = 0. A com-
puter check of the 16 (= (g*—1)/b) irreducibles of this type reveals that
we have all possible combinations of the first #hree coellicients except
none of the form #° 4+2s° Laz-1-b. Let f(z) = o° +2a5+a2tpx-+5. For
all M polynomials of degree 5 except for f, subfracting an appropriate

| P, (of degree 5) from M will result in a (monic} quadratic polynomial,

and this can now be written as the sum of &wo irreduciblgs (by Prop. 2.2).
Henée we have left to analyze f(z). But #° +24° +a*+1, @ +-20°+2* +5 42,
and @ S 2a8 gt 2242 are all meduclble, 50 lething P, = #° 228 a2 - _
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+{y—2)z+06" chosen from these three, then f-—P, = 2x4-(d—¢'), and
now let P, = p(6—08) and Py =w.

We have finally proved:

TEEOREM 4.4. Hoery 5tk degree _@aolynomml over: every fimite field of
odd characteristic is a S-primes polynomial, A

5. An asymptotic result on the first » —1 coefficients of irreducible
polynomials. The technique developed in Section 3 above will not, by
itself, solve the 3-primes problem. for polynomials of degree » = 6 op
higher, simply because for such v, #—2 —2 > 1, s0 we have no assurance
that the M —P, —P, is irredncible. In this section we change tacties rad-
ically snd prove an asymptotic result which will then give us information
about the existence of 6th and Tth degree 3-prime polynomials not pro-
vided by the Hayes Theorem (see Section 1).

We continue to assume that ¢ is odd. -

The central theorem of this section is the following:

THEOREM 5.1. Let (z) be a polynomial of degree n in k{w] where (n, q)
=1 such that f'(z) has n—1 distinct roots oll giving rise to distinct values of
flz). Then for sufficiently large g, there ewists an o EL such that f(z) —e
18 drreducible. .

This theorem tells us quite simply that given a polynomial f whose
derivative is “well-behaved”, then if ¢ is large enough (depending on
the degree of f3, we can make f irreducible by altering its comstant term,
The general procedure for using this $heorem to solve the 3-primes problem
(for large enough g} will be as follows:

Starting with an arbitrary +th degree polynomial M, obtain P, irre-
ducible of degree r so that (M-—a)—P, = f(#) has degres r—2 and
satiefies the hypotheses of Theorem 5.1. Then if w is as gnaranteed by
the theorem, we have

M = Py +(f (@) ~ o) +a+o),

ie., we have successfully written M as the sum of 3 irreducibles, one of
degree r, one of degree r—32, and one linear.

Of course this technique works for arbitrary », but it is asymptotic
in ¢, and it turns out that only for » = 6 and r = 7 does the technique
improve on the Hayes Theorem (of course, the cases 2 < r < 5 are already
solved).

The proof of Theorem 5.1 involves considerable machinery from
algebraic and analytic number theory and depends centrally on the gen-
eralized Riemann Hypothesiz for function fields as proved by A. Weil,
We now state the theorem in a more directly provable form.

In all that follows we assume that f(x) is an nth degree polynomisl
in k. {#] where q i3 odd and that f(z) satisfies the hypotheses of Theorem
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5.1, i.e., its derivative f'(z) has »—1 distinet roots all of which give rise
to distinct values of f(z). We let £ be an indeterminate and let B = split-
ting field of f{)—1 over k,(f), the rational function field in ¢&. If w ek,
and if ¢ —o, which of course is & prime in k,[?], is unramified in E, then

[Eikq(t)]

i—o

is the Artim symbol for t—w, e, is the conjugacy class of elements of
Gal {E/kq(t)) which are the Frobeniuns automorphisms of primes p lying
over {—o (see, eg., [157, p. 91).

We now state the equivalens:

TerorEM 5.2. Let f(x) be an n-th-degree polynomial in ky[z] which.
saiisfies the hypotheses of Theorem 5.1 and let t and ¥ be as above. Then
Gal(B/[k,(0)) = 8, (the symmetric group) and for sufficiently large g, there
Ef‘kq(t)

ewisls an w €k, such that [
e 3]

] 18 the closs of m-ecyeles, and t—~w is
unramified in E.

Theorem 5.2 implies Theorem 5.1. Suppose that Theorem 5.2 is.
true and that m ek, iz as guaranteed by that theorem. Let p be a prime
Biky(t)

t—w
the decompogition group D is eyclic of order n (¢ is unramified), but
D, =~ Gal(@,/p over (k,[])/i—w) (see, e.g., [15], p. 89; by €, We mean.
the local ring of p-integers in #), i.e., the residnal degree of p over {—o
is n. But now let @, be a root of f(#)—t in ¥ and view x, as lying in the
completion F, and f(z}—% as being a polynomial over the completion
gy (t)_o Bere x; is integral, i.e., #; € 0y and in fact O,fp ~ &, (%,) where
¥, is the image of @, under &,—0,/p. Bince k,(})/{{—o) =k, we have
then that deg (k,(%:)/k,) = n. But &, is a root of f(x)—1 = f(#)—w and
is primitive in kg, so f(z)—e must be irreducible. w

We will prove Theorem 5.2 by produsing for fixed n an asymptotie-
formula {¢—co) for the number ¥, of unramified linear pnmes t—c & ky{f)

such that [E; L ()] is the class of n-cycles. This formula will he of

in B whick lies over t—w sk,[t]. Sinee o, e[ ] is an n-cycle,

the form
+1
¥, =L o)

where fthe constant in the errer term depends only on n. We should state-
hers that we are much indebted to the work of 8. D. Cohen, for in a 1970
paper [4] he proves a result (Theorem I, p. 256) of which our Theorem
5.2 is an easy corollary. However, his proof technique does not yield the.
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actual exror term constant easily and hence is not ideal for our purposes.
Recall that our goal here is not only a proof of Theorem. 5.2 but also the
speecific caleulation of the error term. To get the desired result
we use the theory of Artin non-abelian L-functions and the work of A,
Weil

We follow here the definition of the Artin L-funections as developed
by Martinet in [6], pp. 1-11, but specialize the notation slightly to fit
only the cases which we need.

Let ¢ be an irreducible, non-trivial complex representation of §,
and let y be the associated character, le., Vre S, x(r) = tracep(r).
Observe that y is a class funetion on 8§, since yx (7} = x{zery). Let P
be any finite prime in k,(¢) and let p be any prime over P in K, the splitting
field of f(x)—¢ over k() as in the previous section. If P is unramified
in # then we let o, be the Frobentus automorphism, ie., & generator of
the decompeosition group D,. More generally, whether or not P is rami-
- tied, we may define o, £ D, ,’I where I, is the inertial group of p. ¥ o: §,
~»GL(V), then we define

Vh = {se V| o(n)(®) = &, Yz e Ly},

i.e., V'e is that part of ¥ left fixed by all elements of I,. Observe that
on V7, o(oy) is well-defined. Moreover, if ¢ ¢ C, then det z(1—o0g(cy))
does not depend on the particular prime p over P which is picked, for
the conjugate transformations g{e,,) on VI_"I and g(o,,) on V' have the
same minimal polynomial and hence eigenvalues, so that 1—co(s,)
and 1—cg{cy,) also have the same eigenvalues.

We are now in a position to make the

DermirTion. The Artin non-abelion L-funclion asscciated with y is
Lis, = ] (det n{t—(g"5")"0(a,))) ™

Poall
primes in kq{t)

where p iz any prime of ¥ lying over P and s is a complex number satis-
1tying Re(s) > 1.

Facn, This serieg is convergent for Re(s) > 1 (see [67). For convenience
we substitute # = g~°, so-that we may write

= H (deisFIlj {1—o(a,) ﬂdch))—l ;
7

The central fact that we will need in the sequel is the following.

THEOREM (Generalized Riemann Hypothesis for Function Fields —
A. Weil), L(u, x) s & polynomial in « of degree (2g-—2)n,+degfy where
g 8 the genus of the base field k, (i), n, is the degree of the non-trivial rep-

L(%: 1)
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resentation p, and Ty 4 the conductor of the characier y. Morcover, all the roots
of L{u,x) have absolute value ¢ .

‘Proof. See [18], p. "9. m

We observe that since the genus g of the raiionsl fanction field & At
i5 0, we obtain in our case that L{x, ) is a polvnomla.l of degree = decffy—

..)L . .

DEENITION 5.3. For P an unramified prime in k (1), let y(ap)
= x{0;) = trace (g(oy)) for any p|P, where o, is 5 generator of D, As
remarked eaalier, #(op) 15 well-defined since y is a clags function. More
generally, if m™is a positive integer, then by »(s™) we simply mean
traceo{ay).

DEFINITION 5.4. Let I’ be a ramified prime in %,() and let p. in B
divide P, then we define
| =Y o

¥, 2{1);

2 (cF) =
T—i—G’m

tmder_
DPQDP 17, 3

that is, for ramified: pnmes wo define y(oF) as an average over preimages
of o
We are now in & position to use the ultra-important theorem of Weil
to obtaJm an upper bound for | Z’ x ap)} where y is the character ag-
d

sociated with any non-trivial wreduelble representation ¢ of §,. In order
to make the connection between the above definition for ra.m1ﬁed primes
and the ecalewlation below, we need the following:

Lexva 6.5, Let P be ramified. If yx(oF) 45 as in Definition 3.4, then
(o) = trace ryo(ay)  (p[F).

Proof et p be any prime over P and let v e D, bs a preimage
of of under D,>Dy/I,. If ccl, amd 2 € ¥, then

2@ o) @) = elen)0) = () 0) = o(x){o(¢)(0)) = 2(2)(0),

where we have used the definition of V'» and the fact that I, is normal
in D,. Hence p(z) restriets to a transformation of ¥’ and induces a trans-
formation on ¥V, both of which we shall call o(r). Now

i - 1 ) _—
Y = - = tr -
2{d7) 7 "I}p .z(fﬂ) ¥, lg aceve(?t)

= trace 1, (g(r) 41’}1 2 Q(L)) —i—131‘&11(3{317.,?,13J (Q(T)}%Z Q(n)).
ar : ’

2 — Acta Arithmetica XLIL4
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In the {irst term, each ¢{¢) is the identity transformation, 8o ——

2 S

is also the identity transformation. In the second term, we observe su.nply
that if 7e V/V% and :el, then

e (3 e@)®) = (3 ew)®), e,
(Det)®m =10, ie,

29(;) is the zero transformation on V/V7.

It follows that y(o}) = trace,z, (o(z)) _tra,ce:l_,fp(g(o‘p ). =
Now we do some computing. Let 2,(P}, 4,(P), ..., 4.(P) be the sigen-
values of Q(Up) where r = dim V% (p|P), and note that # = n, = deg
of p if P is unramified. Then
det_r, (1 ~u2sTg( H (1—uieP2,(P)).
==l
Hence, _

log {(det {1 —yls? g(ap)))“l) = — Elog (1 —uEF1,(P))

i==1

LI umdegP;{zn(_P)
B 2 2 m

(by Taylor's

. Theorem)
i=1 =1

_ 2“’ w™E8Py () (hy Definitions 5.3 and
< m 5.4, and Lemma 5.5).

So the logarithmic derivative of L(u,y) with respect to  is

Ty )

d ) a
L(ﬂf’ x) = E;(IOEL ('Lh Z)) = Eq; (2 log (det(l—udegPQ(gp)))"l);

_yi Ny o)
du \ L n
P m=1

Yy mdegl’eam“@ (o)

(lety = degP)

-

P me

L2 3 D

v=1  degP=¥ m=1

(replq,ce my by &)
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(33

v=d degP=v

j( ’fmd:n(Z)) w?t

=1 vid
= 3 x{oE).
degP=v

On the other hand, we know by the Weil Theorem that L (%, x) is
a polynomial of degree = degfy—2n, Let {#,} be the roots of this poly-
nomial. Then [6; = ¢—** and we write

l

&
) 8

2] u

1
%

I

BT

where we define my,(x)

Ty 01
Lu, z)

{we have set N = degfy—2n,)

'b
®
-

=1

s Tll\dz

ﬁ
M 3
g&
M
g}

L (uy x)
L(‘”’:JC)

S(Z mdh:(x)) = —S’(Z 3—@) d-1

d=1 r|d g=1 ¢=1

We now set these two expressions for equal, obtaining

- Equating coefficients, we must have

Z w”d]u.(X) =

#id

:\1‘
L]
Y
t=1

Finally, setting d =1, we get simply

> alop) = 2 o7t

deg P=1

)

degF=1

_ We save this result as

go that

x(op)ls M-
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THEOREN 5.6. Let g be a non-trivial érreducible representation of 8, of
degn, and lei y be ils assoczaz‘ed character with conducior §y. Then,

LD el (dogfy —2n,) 1/q

degP 1

This theorem will allow us to write down our desired asymptotic
formula.

Let f(x) satisfy the hypotheses of Theorem 5.1. Then by Lemma 3,
D. 423 of [2], the Galois group of & (the spltting field of f(a)—t) over
k,(f) is the full symmeiric group 8,,. This then ig the first part of Theorem
5.2,

DerixerioN 5.7. Let ¥, = number of unramified Ist degree primes

Bk,

t—ea in k,{#) such that [%L)-

] is the class of n-cycles.
—

Lmamaa 5.8, Let G be any findle growp and Tet i, ..., 75, be the characters
of the irredurible eomgﬂex representations of G, so that b = F of conjugaey
class in G, Let ¢(g) = # of elements in the conjugacy class of ge@ and

denole (g7 by y(g)*. Then

HEG
th(y) ) = [ e

otherwise,

if g’ is conjugate to g,

" Proof. This is Proposition 7, p. 20 of [16]. ®
COROLLARY 5.9. Let o be an n-cydle in 8,, then

1 —
= Mo yie) =

yirred

ll if = is an n-cycle,

10  if v d8 not an n-eycle.

Proof. o and v are conjugate in §, if and only if v is also an n-cycle.
Moreover, ¢{o} = # of n-cycles = {n—1}1, s0 48, /c(c) = n. The resuls
follows now from Lemms 5.8. m .

We use Corollary 5.9 now to get a generating formula for N, (see
Definition 5.7). Fix an a-cycle o in 8,. Now,

¥yN= N = -
* Lad 2 x(o) z(o
degP=1 yirred

P unramified

{by €orollary
8.3 and 5.7)

5.9 and Definitions

: 1 v
= D= N o e —
all degP=1 zirred
D)
%
deg P==1 % irred
P ramified

%(0) z{op) . (see Definition 5.4
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ey et ) 33
= a a 3
P x{o)® x(f 2(0)* 2(op)
xFE X flegP=1 degP=1 ¥
Pramified

where we have split off the frivial character in the fivst term and used
the fact that there are ¢-+1 primes in k,(f) of deg = 1, the finite primes
{t—a| ack,} and the (unique) infinite prime P,

DEPINITION 5.10. Let

1 ~
E, == > x(0)]-{degfz—2n,)/q
ek )

and leb

: deéP=1 ’ %
P ramified
We have established above that ¥, > (¢--1)/n—~F, —E,, where in

writing &, we have used Theorem 5.6 to get an upper bound for ] 2 2{op):
degP=1

Below, we will establish. that E, is in fact 0 (f ) by establishing an upper
bound for (degfy-—2n,) independent of ¢ (Proposition 5.17), provided
only that (w,¢) = 1. Moreover, it will also he shown below {Corollary
5.13) that there are at most #—1 finite linear ramified primes, so that
there are at most # termas in the outer sum for #,. By Definition 5.4 and
Corollary 5.9,

x(a)’*z(sp)].

= 3o ale)

will equal the number of preimages of ¢, in D, which are n-cycles, 8o the
sum has greatest valze when all preimages are n-cycles, in which case

= o) 2ton) =~ Z(%_:

n, which of course is O(1). We will have shown, then, that

2(E) = 1.
Henee U, <
¥, =L oy o,
so Theorem 5.2 will be established.
We wish to save

TaworeM 5.11. Let W, be as in Definition 5.7
Definition 5.10. Then,

and B; and I, as in

= (Q“i"l)/'n"—El""Egv ]
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The task before us now is (specifically) to evaluate the error terms
X, and &, in order to find the minimal ¢ (depending on ») for which N, is
positive. Both E; and ¥, however, depend npon the ramified primes:
with F, this is obvious since it is a sum over ramified primes, but .E, also
depends on the ramified primes precisely becatuse the degree of {y is a sum
of degrees of “local” conductors, and these degrees are non-zero exactly
when the corresponding primes are ramified. Hence we must agk the
following questions: {1) What are the ramified primes in %, (¢) for the
extension F, or at least, what is the sum of their degrees? {2) What are
their ramification indices? And (3), using (1) and (2), what can we say
about degfy for an irreducible character y? We now will answer these
questions one at a time.

Prorosrrron 5.12. Let f(x) e k,[»] have degree n and lel ®4 be a root

of flz)—t in B (the splitting field). Then,
N kq(zl,bfkq(t) (f ()

i8 o polynomial in kq'[t] of degree ai most n—L.

Proof. Let v, be the valuation on k,(f) with respect to the co-prime,
80 that o, (g(t)) = —degg if g e k,[t]. Let &, ..., 2, be the roots of f(x}
in F and for each %, let v, be the extension of B 10 k,(2;, 7) such that

W o (#;) = —1 {ie., if h(w) 'is ‘& polynomial over kg in ;, then o, (k(x)

= —degh). Then v, (1) = v, (flag)) = —n, 50 each e, has ramification
index n over v, Low, '

deg{¥ (' (z,)))

f

H%WWmM=—%

- ([T

=]

Toy (N (' (1))

N
1
- - ;2 (@) =~ ()
= degf'(#;)<<n—1. m

CoroLLARY 5.13. The sum of the degrees of the finite primes of ky(t)
which ramify in H (the splitting field of f(z)—1, degf = =) is at most n—1.

Proof., First suppose that P is s prime which does not ramify in
Ky (y, 1) where @, is a Toot of f{(z) —1 in ¥, then P will not ramify in &, (=, £)
for any @; @ root by Galois action in H. Lefting p be any prime over P
(in any k,(%;;?), then the extension of complete local fields %,(x;, %), over
kg(f)p is unramified, so by Proposition 8, p. 49 in [I2]; P must remain
unramified in E.
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Hence P ramifies in F i and only if it ramifies in k,{a,, {), which
will be true if and only i Dy . 0 is divizible by P. But since the ideal
generated by f'(r;) is contaned in the different d of %,(w,, {) over &,(f)
(see, for example, [15], pp. 95-96), we have D|¥ (f (x,)). Hence P dlwdes
D implies P divides N (f’(ml)), but by Proposition 5.12, N(f’(ml)) has
degree at most n—1. W

We now turn to the seeond guestion concerning ramified primes,
i.e., what are their ramification indices? We first prove a result which
tells how under appropriate conditions we can obtain the ramification
index of a prime in & compeosite extension given its ramification indices
in, some subextensions. The appropriate condition will only be that the
ramification be “tame”.

ProrogrTioN 5.4 (The Least Common Multiple Lemma). Let % be
a field complete with respect to a valuation with residue class field of charac-
teristic p. Let Iy and L, be finite ewtensions of k with ramification indices
e, and e, respectively over &, where p+ees. Then the mmfwatwn mdw e of
L, L, over k is exactly {es, &p.

Prooi. Let B, and B, respectively be the maximal unramified exten-
sions of %k in L, and L, and let E; he the maximal unramified extension
of kin L,L, so that in particular B, = B H. (see, for example, [12], pp.
40-54). The extensions L,/H,, L,/H, and L,L,/F; are all tofally and
tamely ramified.

Let = be a uniformizer in k& and let », and x, be uniformizers in I,
and L. respectively, so that L; = E,(2) and L, = F,(2,), and 1 = u,x
and 2% = 14,7, Where u; and u, are units in the valuat1on rings of E, and F,
respectively. Write ae; +be, = d, where d = g.c.d. (e, e;). Define ¥ = 2%,
50 that ¥ e L,L,. We claim that ¥ generates I,L, over F, and that
Fére = o'z (for ' some unit in ), which will prove the resuls.

First the latber claim. We have

Flene — 5011’@1’82)562(81’&2)' = 'mil(bﬂzld)mgz(aelfd)

_ (ulw).bgzm(wﬂn)aeljd — “In(bcz+azl)ld = u'n
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as required. Now for the former-claim, it suffices to show that @, e #,(¥),
for then by symmetry LDy = B B, (2, #,) € Fy(Y). Let 0 = Tl
then we have . )

d. - - les _ ‘
w® = Tay? = i = alfarte = (uuy) e B\ B, < H.

Hence o & LnLs and o ¢ By If vy, is the extension of the valuation
Uy, of E, then we have

dop, 1, (0) = vp 1, (07) = evg, ((u,0:7)") =0,

80 w is & unit in I,L,. We claim finally that in fact o € E,, which will
give &, = @¥*r@e e B, (T) as required. The extension F,(w) ramifies
over F, if and only if /(o) is & non-unit where f(z) = 2% —q, (aq € B).
But 04, (' (@)] = Ppyay(de®™) = 2(d)+(@—1)v(w) = 0 since p +d. Hence
By (w) is an vnramified extension of &, (and hence of &) in .5y, so Ey(w)
< E, ie, €&, Thiz completes the proof. m _

YWe may now compute the ramification indices of all ramified primes

ot E (7).

PRrOPOSITION 5.15. Lef f{x) satisfy the hypotheses of Theorem 5.1. Then
the ramification index of every finite ramified prime of k () in B is 2, and
if ptn (the degree of ), then the ramification index of the oco-prime is n.

Proof. As observed in the proof of Proposition 5.12, the ramification
index of the cc-prime in each k,{@., t) i %, so it p ¥n, then by the L.C.M.
Lemma (Proposition 5.14), its ramification index in & must be n.

Kow let I be a finite prime of %,{t), i.e., an irreducible polynomial
int. Then P will, by Hensel’s lemma, ramify in %, (x,, t) (where @, 13 5 oot
of f(z) —t in E) only if when we factor f(#)—t over the completion k,(8p
and then reduce to the residue class field &, [{1/P o~k (where degP = ),

f(x)—t has a multiple root (see, for example, [3], p. 271, Theorem 3, and

p. 275). But by assumption f(z) = (f(m)‘—t)’ has distinet roots, so if
f{z)—t has multiple roots, then their multiplicity can be at most 2. Thus
if P ramifies in k {z,, #}, its ramification index cannot exceed 2,

We finish the argnment by merely pointing out that since ¢ is odd,
p12, and so Proposition 5.14 applies again to give us the resolt, m

Finally, we must develop a way of computing degfy where fx is the
-condnctor of the character y. This, however, is given to us directly by
Serre in his Local fields [17]: His terminology is as follows: & is the galois
group of E/K where B and K are complete local fields (so @ corresponds
to the decomposition group D, in the “global” situation), and &, is the
inertial group. The decomposition groups G, = &, 2 G, > ... as defined
in Section 1 of Chapter 4 in our case satisty ¢, = @; = ... = 1 by Prop-
ogition. 514 as long as we asyume p+n (see Corollaries 1 and 3, Ip. 67).
In faet, also, we know that if P is a finite ramified prime, then J@G, = 2,
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and if P ig infinite, then #G, = n. Now the degree of the loeal conductor,
. =,

& #b,

® (x(1)~z{@;)) which simplifies in our ease to f{y, P) = (1) —z(6,) where

z(1) is jnst the degree », of the representation g associated with y and

#{Gy) is defined on p. 100 as

flz,.P) is given on p. 100 in -Gorollary 1, specifically f(3,P) = e

1
2060 =—per D) 2(8)-
Beldy
We obgerve then that it P is unramified, ¢, = 1 and so f{y, P) =0, i.e,
only ramified primes econtribute to the degree of the conductor. For future
use we make the
DEFINITION 5.16. Tf y is an irreducible character of 8, associated
with p and if P s & prime of k,{#), then define

ST

M(B) = D206

) Seldy

where @, is the inertial group of a prime p in # over I’
Now, the global conductor of y is defined simply as

fy = H_PI(Z,P)

akk o

([17], ». 104),

and so

fz, P){degl).
all ramified P

degfy =

Hence we arrive at _ _
PROPOSITION 5.17. Lel ¥ be the character associated with the irreducible

representation o of 8, = Gal(B[k ()] where (n,q) =1. Then
degfy = D)

Z
all ramified
Pin kgll)

(m, —m, (P)){degP)

where n, is the degree of the representation @ and m, is defined in 5.16.

We now have all the information we need to evaluate the erfor terms
E, and ¥, given in Definition 5.10 for any given #. In the next section
we do precisely this for the cases n =4 and 5.

6. A pariizl solution to the 3-primes problem for the cases r =6
and 7. Tn this section we gather the fruits of our labor for the cases n = 4
and 5 and in so doing obtain a partial solution to the 3-primes problem
for polynomials of degree 6 and 7. '
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We start with the following odd sounding lemma:

Lemya 6.1, Let f(o) = o' +ba® oot tdr+e e k,[2] and lot y cky
for some jz= 1. Suppose that d 5= (b/2)(e—b2[4). :

(1) Then f(x)—y ecannot have 2 roots each of multiplicity 2.

{2) Suppose p# 3. Let §, and B, be the raots of 7 (#) = 1222 +6bx +2e,
and suppose that d = —(4p1-+3b01+2¢p,) and d == — (465 1+-3b% +266,),
then f(@) satisfies the hypotheses of Theorem 5.1,

(8) Suppose p = 3. If ¢ = 0, then f(w) satisfies the hypotheses of The-
orem b,

Proof. (1) Just suppose that f{z) —y did have 2 roots each of multi-
plieity 2, then

fey—y = (w—a)* (@ —ay)?
= o' —2{a; o) 0¥ {a} +0f +ay0;) 2 — 2010, (0 + o) 2 +Halel.

Hence, b = ~2(o;+wy), ¢= o] +d}-da,a = (a1+a2)5+2a1a2, and &
= —2ay0.(a;--a,). But then,

¢ = (—b/2)*-+2a.a, = 20,0, = c—b2/4,

i I

This contradiction proves statement (1) of the lemma.

(2) We assume p 3= 3, so f'{w) is a quadratic polynomial with roots
By and 8. f'(«) ean have a multiple root only if it shares a root with (),
but if §, (say) is also a root of f'(x), then we have 44343087 +2¢8,+d = 0
which contradicts our assumption. Similarly for £, so we econclude that
J'(z) must have distinet roots ¢y, a,, and a; Finally we must check that
Flas}, Flay), and f(ay) are distinet values. Suppose, for example that f(a,)
= fla,), then o, and a, are both roots of f(w)—f(e), and since {f(z)—
—f (-al))’ = f’(z), both must be multiple roots. But this eontradicts part (1)
of the lemma. Hence f({2) satisfies the bypotheses of Theorem 5.1.

80

(3) Assume p =3, now () == 2¢ ¢ 0 by assumption, so f'(z) -

must have digtinet roots since its derivative has no roots at all. The rest
of the argument iz as in part (2). =

COROLLARY 6.2. Let f(») be as in Lemma 6.1 and satisfy all hypotheses
there. Lei P be a finite prime of k,(t) which ramifies in T and let p be any
prime of B over P. Then the inertial group I, is generaled by o single trans-
position.

Proof. This is & refining of Proposition 5.15, wherein it was shown
that #I, — 2. Lemma 6.1 (1) shows that f(w)—t = f{@)—y can. have
only one multiple root, which says that the inertial group will consist
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of one tramsposition. For if I, = ((ab)(cd)}, say, then under the ca-
nonical bomemorphism
D,/T,-+Gal{0,fp over Op[P),

the permutation (ab)(cd) of roots of f{x)—t becomes the identity, which
says that the roots of f(s)—t = f(x) —y are identified in pairs, i.e., that
flz)—y has two multiple roots. m

We are now in a position to calculate the error terms P, and FE, for
the case n = 4 (see Definition 5.10). At this point we know that the sum
of the degrees of the finite ramified primes is at most 3 and each hag
ramification index 2, in fact satisfies I, = {(ab)y, and we know that
the co-prime has ramification index = 4. Hence in the expression for
degfy (Proposition 5.17), we may pubt all the finite ramified primes
together and write : '

degf; < {ng—m,(finite))3 + (n, —m, (P))1

since the degree of the oco-prime is 1 (since Op (P, ~Fk,), and where
m,(finite) = Jg{x(tra.nsposition) +x(1)] (see Definition 5.16) and m,(P.)
= %—(2x(4-eycles)+ x (bwo transpositions) +g(1)). We compute then, using
the character table for S, (see, e.g., [13], p. 285),

g, =%(2 mm(( ' (n-m (P acgP) —2%9))1/5

L2 Pramified
= 3((3—-2)34-(3—0)1—2(3)) +(B -1)3+(3 1)1 -2 (3))+
HL-0)3+E—0)1—2(L))[Ve
— 3((343—6)+(6-12—6)+BE+1-2)/1 =1q = Ve-

We turn now to the computation of H,. As discussed following ‘Defi-
nition 5.10, a given ramified prime contributes to. E, only # 1 or more

© preimages of a generator of D,/I, is a 4-cycle. Buf if P is a finite ramified

prime, then we know that I, = {(ab)y and I, must be normal in D,
One checks that it is impossible for a subgroup of 8, contaning & 4-cyels
to contain a normal transposition, and hence no finite ramified prime can
contribute to H,. The oc-prime, on the other hand, satisfies I, = ({1234))
(say), and one checks easily that Dyl =4o0r3 and in any case at most 2
preimages of a generator of D/l can be 4-cycles. Thus

A WG (CAEE S (£ 3 10 2(2)) = %
¥ -r—;ganer;:nDr of .'D.p,}'Ip . *

Hence we have shown that in this case; by Theorem 5.11, -

N, = (g+1)/4—Vg—1/2,
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and the right-hand side is strictly positive provided
g+1—-2> 4:‘vfg—¢r(g—-1) > 4V’Q_ < gq?—2g+1 > 16¢
g2 —18g+1 > 0« g > (I8 +V187—4)/2 =

We have proved ‘ :

THEOREM 6.3, Let f(x) satisfy all the hypotheses of Lemma 6.1. Then
there crists an w €k, such that f(x)—c is drreducible provided g > 19 and
8 odd. &

We now solve the 3-primes problem for 6th degree polynomials
provided that g > 19 and odd. Let M Dbe an arbitrary 6th degree poly-

17.04.

nomial in k Ux], As ouflined just following Theorem 5.1, we wish now to.

produce & Gth degree irreducible P, such that 3 — x—P, = f{x) satisfies
the hypotheses of Lemma 6.1, Then by Theorem 6.3 we are gnaranteed
of an w & &, such that f(z) —w is irreducible, and we will have M = P, +
+{f(2) — o} +(z+w), i.e., we will have written 3 as the sum of 3 irre-
ducibles. To find our appropriate P, it is unfortunately necessary to lock
at two cases: when p 523 and p = 3.

Case 1. p £ 3. We need the following:

LEna 6.4A. Lef = and o be fived. If g > 19 andp #= 2 or 3, then there
exist coefficients f, v, and e such that there are at ?east 4 d@stmct zwedumbles
of the form

a7 + art +ﬁm3 +ya’ 48 te.

Proof. Suppose not, then for every triple (£, v, 2) (¢ 5= 0 since these
polynomials are irreducible), there are at most 3 irreducibles with that
triple as coefficients and  with first two coefficients = and o Hence
the total number of irreducibles starting with r and o cannot exeeed
grg{g—1)-3 = 3¢°—3¢*. But on the other hand, there are at least
(¢*—¢*—2¢—2)/6 such polynomizls by Corollary 3.11. Hence

7 gt —2¢—2

Lo

3g3.—3g‘3 =

A

< 18¢3 ~18¢* = ¢' g% —2¢ —

gt =18 +1T¢2—2¢—2 <0 =g << 17.

This confradicts our assumption that ¢>19. m
Suppose now that ¢ 2> 19 and let M be an arbitrary 6th degree poly-
nomial. Suppose in fact thab

M~z = a7’ +(a+1) 5" + By s+ 6'm o

Let g, v, and e be ag guaranteed by Lemma 6.4A. Then we have at loash
4 distinet” irreducibles P,; (1 <4< 4) of the form

P, = oo’ Last + B +yu> + S -boe,

icm

A Goldbaeh iheorem for polynomials of low degree 357

50 that ‘
Mg —P g = o+~ B)ad 4 (7' —y) a2+ (8 —b)a +2' —e

=t Lhad - ent L dp e,

From the set {d}i_,, piek one &, so that it does not equal any of the 3

nurabers in Lemma 6.1 (1) and (2).
= M —g—PF,; satisfies all hypotheses of Lemma
6.3 iz true for f{z). We have proved:

THEOREM 6.5A. Tel ¢ 19, odd, and suppose p s 3. Then the 3~prm139
problem is solved for all 6ih dEJiE_C’ pol’ ynomials over k, W

Bet d =d, and Py =P ;. flz)
6.1 and hence Theorem

Casge 2. p = 3. Here we need:

Leaara 6.4B. Let p = 3 and let 7, a, and y" be given. If ¢ 2 27, then
there emist coefficients §, v, and & such that there are af least 2 distinct irre-
ducibles of the form

al ra® -+

Proof. There are at most g-g-(¢—1) irreducibles which have 1s6
two coefficients v and « and have o’ as the a®-coefficient. By Corollary
3.11 there are ab least (g*—q®—g®—q)/6 rreducibles starfing with = and a.
If we toss out all of the above-mentioned polynomials, our new lower
bound is '

am4-+ﬁm3—}—ym2+5iqr+s, and  y =y

(¢~~~ . —1q*+5¢°—¢
4 : L —(g"—g") = G :

Now suppose that for every triple'(ﬁ, y,8), ¥ =y and & 0, there is
& unique iﬂeducible, then we Would have at mosh

L-g-(g—1)-(g—1) = *—2¢*+¢

irreducibles starting with = and « ‘and not having ' in the w-slot.
Hence, .

d__2as LRS-
—2gt+q > —Q—”ig‘lu 130 F1Tg—Tq< 0 = ¢< 1L

But we have assumed that g = 27
‘Now suppose that g>>27 and again let
M = o5 o H{a 1)+ Lyt - St
so that we have two distinet P, ; irreducibles so that

M—5--Pp; = o* +bo?f-cx* +-dz e
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b b?
where ¢ = 0. Choose d;, e (c— T) (see Lemma 6.1), and set P; =P,

and @ = d,. Now all hypotheses of Lemmas 6.1 (1) and (3) are satisfied,
and again Theorem 6.3 holds. We can finally conclude

THEOREM 6.5. Let g be odd and g>>19. Then every 6th degree poly-
nomial over k, 48 a 3-primes polynemial. m

We now turn fo the case #» = 5. We must first develop an appro-
priate analogue to Lemma 6.1. Let p ¢ ks and let f(z) = 2°4+bat+ex®+4-
-+dz*4-em g € k,[#] where we shall now assume in addition to oddness
that p == b. First suppose that f(#) —y had two multiple roots each of
waltiplicity 2, i.e., f(#)—y = (#—a))% {8 —a,) (¥ —ay). Letting ¢ = a;-+a,
and P = g;a,, it is eagy to multiply out and write

fl2) = msm(a3+2s)a}4 F{2048 5242 P 03 —

—(0y8° 20, P +-2P8)2? + (20, Ps +P2) 3 — 0, P2,
We eliminate a; using —b = o;+2s and substitnte throughout. A result
of this is that ¢ = —2bs--3s2+2P, which we solve for 2P and then sub-
stitute throughout. We now obtain

(*) G = 583-1-6bs* - (c+-2b%) e -be.

Since p = 5, this is a cubie equation in s which has 3 roots, call them
81y 8, and s, We also have obtained the expression

(#5%) ¢ = —Bs —dbs?+(—tc—bY)stdct/d — p(s).

Let us call the expression on the right-hand side ¢(s).

Fuorther, the second derivative j”'(x) = (f(z)—y}" = 2022 4-12b2%+
+6co+-2d has 3 roots, say #,, f., and .. If §,, say, were also a root of
I (®) = Ba* +4bw®+360° +2dw +e, then we would have e = — (551 +4bf} -
+30p11-248,).

Suppose now that we do not a,llow the coefficient ¢ to take on any
of the 6 values @(s;), ¢ = 1, 2, 3 or —(58;+4bp%-+8c83 +-2d8,) fors = 1, 2, 3.
Then f'(z) = {f(#)—y)’ has 4 distinet roots, and all must give rise to
distinet values of f(w) (if a,, a, are two such roots and f{a,) = f(a;), then
setting y = f(a,), We see that both e, and a, are multiple roots of () —%,

which is impossible by our choice of the coefficient ¢). We have proved: -

Lmea 6.6. Let f(x) = @°+ba'+co® +du+ew g € k,[w] where ¢ is
odd and not a power of 5, and let 5 € ky for some j. Let {3} —1 be the roots
of (x) and let {8;}}_, be the roots of f* (). Assume that the coefficient o satisfies
¢ 7 p(s,) (¢ defined in (=) above), 4 =1,2,8 and e # — (55t +4bfi+

+3cfi+2dp), i =1,2,3. Then fla)— —v has at most one multiple root of
mulliplicity 2, and f(m) satisfies the hypot]wses of Theorem 51. m
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CoROLLARY 86.7. Lel f(&) satisfy the hypotheses of Lemma 6.6, Let P
be & finite prime of k(1) which ramifies in E and let p be any prime in E over
P. Then the inertial group I, is generaled by & single transposition.

Proof. See Corollary 6.2. m

We now proceed exactly as above to compute the error terms B,
and E, (see Definition 5.10) for the case » — 5. We have now that the
sum of the degrees of the ramified primes is less than or equal fo 4, and
all have the same m-values (see Definition 5.16) asgociated with the group
{{ab)>. The oo-prime has ramification index 5, so ifs m-value is associated
with the group generated by a 5-cycle. Going to the character table for
8; (see, e.g., [13], p- 268),

Elzi«’-(;]g(a)i(( 2 (na—me(P))d-egP) m2ne))l/g_

Pramified
= %_((4—3)4“4—0)1—9(4)”

+{(8—3)4+(8-2)1—2(6)) +
F((4—1)4+{£—0)1—2(4)) +
+{(1 -0+ —1)1 -2y

= % ((4+4~8) +{(12+412) +(12 +4—8) +(4+0—2)) Vg

l_l

=5 (0+4+8+2) Wq _——}/g

The error ¥, iz small again, for just as in the case n = 4, no finite
prime ean contribute. This follows simply from observing that were 3 finite
prime to contribute, D, would have to contain a 5-cyele and a normal
2-cyele, which is impossible (easy check). Hence, only the co-prime can
contribute, and as just preceding Theorem 5.11, we have B, < 1.

Now by Theorem 5.11, we have

_ > (g-+1)/5—%Vg—1,
and the right-hand side is stnctly pogitive provided
¢+1—5 > 14/q < g*—8q-+16 > 196g

204+ (204)5—64
2

= 203.92.

< g?—204¢-1+16 > 0 = ¢>

We hawe proved:

TEEOREM 6.8. Let f(x) satisfy the hypotheses of Lemma 6.6. Then there
emists an w €k, such that fx) —w is érreducible provided g > 207, g s odd,
and p = 5.m : .
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We wish to use this theorem to obtain a golution to the 3-primes

problem for 7th degree polynomials provided ¢ is as in the theorem. Just
as before, we need now, given an arhitrary polynomial M of deg? over
kg, to guarantee the existence of a 7th degree irreducible P, such that
3 —g—P; = f(x) satisfies the hypotheses of Lemma 6.6.

We need the following: ‘ .

- - LExnra 6.9, Let v and a be fized. If g = 43 and is odd; then there exist
coefficients £, y, 6 and » such that there arve at least T distinct irveducibles
of the form S :

& -+’ an’ S+ fut pat - 0r° em L.

Proof. Suppose not, then for each quadruple (8, », 5, %), we would
have ab most 6 frreducibles of the desired form. By Corollary 3.11 we would
then have that '

(¢ —a%)/7 < 6g°(g—1)
@' < 420" —42¢° o ¢ - 42¢° 141 < 0 = g < 49.

(observe 5 # 0)

This is & confradiction. m _
Now suppose that ¢ = 207 and p £ 5 and that

M= m7_+z‘$§+(q}l}ms'—[-ﬁ'mtiuy’wa-{—6’;293—]—5’30 4.

Let (8,4, d, %) be as guavanteed by Lemma 6.9, then we have at least
7 distinet irredmeibles Pp; (1<i<7) of the form '

CPy=a —j—-rmé%ams + B2t +ya’ +82° 4o+,
5o that ' '

M —pPy; = ﬂ’s'f‘(ﬂ'""'ﬁ)m&+(J”—?)$_3+(5'”5)w2+(8'-ﬁ85)$+(?7'—'f))
= 8" +ba’ +ea® -+da® e g,

].S‘:rom the seb {¢;}}.., select one e, which is not equal to any of the 6 numbers
in Lemma 6.6, Set ¢ = ¢, and P, = Py Now flr) = M-z —P, satisties
_a.ll hypotheses of Lemms 6.6, and so Theoreni 6.8 applies, f{z)—ow is
irreducible, and we have Written M = Pi+{f(#)—o)+(z+ ). Thus,

THROREM 6.10. Let g > 207, g odd, and p + 5. Then every Tth degree
polynomial over k, is a 3-primes polynomial. m _

If we now use the fact that g, as in the Hayes Theorém is 479 (see
[5] or [117]), and that there is no power of 5 between 207 and 479, we
may conclude: .

COROLLARY 6.11. Let g > 207 and odd. Then every Teh degree polynomial
over -k, is a 3-primes polynomial. m :

~
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Finally, we remark that for the case # = 6, we obtain B, > (44/6) i/q,
so that g 44* = 1936, which far exceeds the Hayes bound of g > 137
for 8th degree polynomials. Hence the techniques of Sections 5 and 6 fail
to give us useful results for all » > 6.

7. Completing the solution for 6th degree polynomials. In Section 6
we proved that every polynomial of degree 6 over k, is a 3-primes poly-
nomial provided that ¢ is 0dd and greater than or egual to 19, To finish
the problem for odd g, we have left to check the cases ¢ = 8,5, 7, 9, 11, 13,
17. For this we turn to the computer and analyze 4th degree polynomials
over these fields. The idea, as nsual, is: starfing with arbitrary M of
degree 6, subtract off P, of degree 6 with appropriate first and second
coefficient go that M —P, is (momnie) of degres 4. We then show that we
can obtain P, of degree 4 with appropriate 1st, 2nd, and 3rd coefficient
$o0 that W —P,—P, iz monic and linear, hence irredocible.

Hence we wish now to study the distribution of 4th degree irredncibles
with respect to their 1st three coefficients. Because g is odd, we may
always franslate by v/4 and hence it suffices to study polynomials with
trace = 0. We are interested in the question: given some fixed element
a €k, what is the distribution of 3rd coefficients of irreducibles with
1st coefficient 0 and 2nd coefficient «? We firat observe that this distri-

bution depends only on.the quadratic nature of a.

Lenowa 7.1, Let &, = {}0.;. Suppose that there arejn{a, 8,) irreducible
4th degree polynomials with trace = 0, 1st coefficient ¢, and 2nd coefficient §,.
If o and o, have the same quadratic character, then {n(a;, f;)¥,
= {n{as, Bl :

Proof. For any i, let {t,}i*¢1% be the collection (possibly empty)

=1

of elements of %, which have minimum polynomial over %, of the form

#la@® +Bot... If e, =a%, (aek), then {a't;}¥™ is exactly
the collection with minimum polynomial of the form x“-_}—aﬂmg +aP Bt .
Hence,

n(ar, f;) = n{ay, a®4;).

Since multiplying by a® is an automorphism of &, we are done. m
We now turn to the computer and obtain the following information

| on the distribution of 3rd coefficients of 4th degree irreducibles. 'We

observe that except for the firsi number in each sot {which represents
the # of polynomials with 3rd coefficient = 0), the order of entries depends
on the particular 2nd coefficient, but by the lemma the sef of entries
does not.

The table on p. 362 tells us, for example, that over k,, if the 2nd coef-
ficient @ = 0, then there are no irreducibles with third coefficient g =0, .
one with # =1, and one with §=2. If a =1 (the only quadratic residue),

3 — Acta Arithametica XLXT.4
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. Table 1

with frace = 0 for ¢ =3, 5, 7,9, 11, 13, 17

2nd 2nd coefficient quadratm 2nd ecoefficient non-guad-
9| coefficient = 0 regidue ratic residue
31 04+14+1 =2 1+14+1 =3 1404+0=1
5| 241 4+14+1 41 T4142424+1 =7 142404042 =
=6
7 04+3-+3+04+ 242411 4+141 42 =10 | 2414243403124 =14
+04+34+8 =12
9| 4+24242+ 24+24+2+24242 4242+ | 2414144 44 Fd 4
+2+2 424 +2 = 18 +1 = 22
+24+2 = 20 .

1 0434343+ 341484243 4444434+ | 342434341 +3 43 +1
+3+34-3 4+ 24541 = 33 +3+34+2 = 27
+3-43+34

. +3 =30 :

13| 6464040+ 3+4+4+5+3+3 42424 | 34334+ 441204 41
+3-+6434 4343 +5 1444 = 45 +24+4 414443 =39
+8464+34
+0+046 =
= 42 .

17 8 +4 44444 4+4+4 444246 LT3+ | 4434444443 4616
+4 44444 +2+28 T +642444 +8+6 4616 -3 +444+
L T B N 444 = 68 +44+3 = 76
+4 444+
+4+44+4 4
44 =73

then there is one irreducible for each 8, and if o = 2 (the only quad-
ratic non-residue), then there is one with § = 0, and no others.

Observe also that the total in each row is predleted by Goroﬂa.ry 3.8,
For example, sinee —1 and 2 are both quadratic non-residues mod 3,

that result predicts

irredueibles With o = 0,

for a =1, an_d

for o = 2.

(-1  (9-1)
4 4
(°+g)  (9+43)
4 4
(*—g—2) (9-3-2)

== 2

4 -
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We now go about completing the solution of the 3-primes problem
for 6th degree polynomials over odd fields.

First let us suppose that p == 3,

YWe observe in Corollary 3.311 that if the characteristic of the field
is not 2 or 3, then the orthogonal geometric techniques gmarantee s
that given v and « €%,, there exist at least {g*—¢"—2¢—2)/6 irreducible
polynomials of degree 6 with 1st coefficient = v and 2nd coefficient = a.
We now make nse of this fact to dispose of the cases ¢ = 17, 13, 11, 7,
and 3

“e start with an arbitrary

= x° 412" +(a+1) 2t 4 fr* -y’ 4 bz Le.

Let # — {6th degree irreducibles with 1st coefficient = =z and 2nd coef-
ficient = a}, so we know

LB, Y
%g}ﬁ_iﬁ_q_z_

Hence there must exist a '€k, such that if 9‘” {P(=x) eé’{ P{3) hag

3rd coefficient = g}, then
i 8
HP' =

Let # = {M-P| P, e}, ie, .# is some collection of polynomials
of the form

o (B —f)2
We now look at the separate cases:

i. ¢'=17. Table 1, after translation by (§—p')/4 {Proposition 2.3),
shows that for arbltrfa.ry & and b € ky,, there exists an irreducible P, of
+(B--p")x* +ax® +bx ¢ for some ¢. Hence we may pick any
P, e? and then M —P —P, is (monic) linear.

2. ¢ = 13. The table shows that after translation by (§—8')/4, there

is a single value &, and 4 distinet values b, 2,, b,, b sueh that there is
no irreducible of the form

(B —B Yt Fagwt b e ..

+ax’--bz-+¢ - for some a,b,eek, and HM = FP.

But in . there could be at most 1-4-{g—1) == 48 polynmomials of this
form, whereas A # = 363, so we may pick a P; e not of the above
form, and now there is an appropma.te P, of degree 4 such that M —P,—P,
ig (monic) linear.

3. g = 11. The table shows that a smgle value g, paired with a smgl&
value b, which must be avoided. But there are at mosf g—1 == 10 such
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elements of .#, and .4 = 219, Hence we may pick P, e 2’ not having a,
and &, as quadratic and linear coefficients respectively, and so there exists
an appropriate irreducible P, such that M —P,—P, iz linear.

4, ¢ = 7. Just as in the above two cases, 1-3:(g—1) =18 poly-
nonomials at most must be avoided, but H.# = b5.

5. ¢ = b. Here it is close but still okay. There are 2 quadratic coef-
ficients each paired with two linear coefficients which must be avoided,
o there are af most 2:2-(g—1) = 16 elements of & which are bad, but
Hl =19,

TWe now turn to the case p =3.

6th degree irreducibles distribute themselves differently over fields
of characteristic 3. However, we showed in Corollary 3.11 that the mini-
mum number of irredncibles with prescribed Ist and 2nd coefficients
was {¢*—g3—¢2—q)/6. '

1. ¢ = 9. The table shows that fhere are no “holes” in 4th degree
irreducibles over k,, so the existence of a single 6th degree irreducible
with preseribed 1st and 2nd coefficients suffices (as in the case ¢ = 17
above). Since we certainly have this, we are done.

2. ¢ = 3. The techniques used above fail in this case because there
are too many “holes” in the 4th degree irreducibles over k,. Instead, we
return to the computer and look at the distribution of Gth degree fire-
ducibles over k.

' The computer confirms the followmg-

Facr 1. For every 7, a, f €k, there are at least 2 distinot vy and
v, €ky sueh that o®+vo*-Fart+pa° -yt + 60 L2 is irreducible for some
& and ¢ except for the case =0, ¢ =1, § = 0, in which ease only y = 2
gives rise to irreducibles. In this last ease there are 3 irreducibles: »f 42t L
4+2pL1, offat4207 -2 +2, and 2ot 207 L2042,

We also have:

Facr 2. The 8 cubic irreducibles over &, are 3--2z -1, @ +20+2;
o +224-2, oftetto+2, 4+t +20+1; ¥ R20°011, w3420 a4,
48 +20° -2+ 2. _ . ,

We now golve the problem for Z,:

Case 1. M (our given 6th degree polynomial) is not of the form #®-+-
1ot Lo’ 124 ax--b. Select irreducible P, such that

M—.Plv—$3 yﬁg—l"ﬁw—i—s

where ' 0 (possible since there are two choices for the appropriate
quadratic term of P, — see Fact 1). Now select P, from the 6 possibilities
in Fact 2 so that M -—-P, P, =x1&".
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Case 2. M = 2° Lot +a¥ 202 4-aw-+b, Select P, from the 3. irreduc-
ibles listed in Fact 1 so that P, has a as linear coefficient. Hence M --P,
= *+-b'. et Py = 233-22+1, then M —P,—P, = a+b".

We can finally conclude:

TexorEM 7.2. If g is odd, then every Gth degree polynomial over k, is
w 3-primes polynomial. =

If we now combine Theorem 2.5, Theorem 4.1, Theorem 4.4, Theorem
6.5, Corollary 6.11, and Theorem 7.2, we have finally a proof of Theorem
1.1, which was our goal.
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