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1. Introduction. The paper contains a derivation of the Selberg

trace formula for the complex group SL(2, Z[i]) with the entries being

Gaussian integers. We apply Zagier’s method [24] which gives the better
understanding of the trace formula in this case and exhibibs its connee-
tions with number theory.

The original Selberg’s paper {18] of 1956 became inspiring for further
investigations of the eigenvalue problem for the Laplacian on Riemann
surfaces and also for invariant operators acting on homogeneous spaces
of a more general type. The case of non-compact spaces with finite volume
is more difficult than the compact one, the reason being the presence
of continuous spectrum of differential operators in the non-compact
cage. For the unimodular group I' = 8L(2, Z) with integer entries the
spectral decomposition of the space L*(I™\H), H being the upper hali
plane, and the explicit trace formula describing the discrete spectrum
of the Laplacian have been given by Selberg [18]. This paper contains .
also foundations of the theory concerning more general groups. Don
Zagier in his paper [24] has presented a new proof of the Selberg trace
formula for SL(2, Z) which is based on the spectral decomposition of
the gpace I*(I™\H) but the trace of an integral operator with the kernel

K, is caleulated as the residue of the integral

I(s) = [ Koz, 2)B(z;8)de.
INIT
The following property of Bisenstein series is then used: resE{z;s) does

8=x1

not depend of the first argument; hence resI(s) is proportional to the

8=1
trace of the integral operator. The investigation of the integral I(s) is
based on the simple principle, due to- Rankin [16] and Belberg [17], as-
serting that the integral of a I™invariant function against the Eisenstein
geries equaly the Mellin transform of the constant term in the Fourier
expansion of this fonetion. This principle applied to the kernel K, gives
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rise to @ represenfation of I(s) as an infinite sum each of whose terms
represents the confribution of either a conjugacy class of elements of I'
or of the continuous spectrom. The Dedekind zeta functions of quadratic
extensions of the rationals ¢ appear here in a natural way. The ferms on
the right-hand side of the frace formuola arve either proportional to the
class numbers of gquadratic fields or they are congbants in the Laurent
expansion of the Riemann zeta function (e.g. the Huler constant). The
contribution from the continuouns speetrum leads to integrals of ths log-
arithmic derivative of Riemann zeta function or of gamma functions,

The above method of deriving the trace formula provides a direct
connection with the arithmefic theory of binary gnadratic forms. Com-
pared with the original Selberg’s proof {e.g. Appendix to EKubota’s book
f12]) we make use of more properties of special functions than of the
geometry of fundamenfal demains; the latter for SL(2, Z[i]) is rather
complicated. The convergence guestions in z neighbourhood of a cusp
of a discrete subgroup, existing for non-compact fondamental domaing,
reduce here to 3 study of soine properties of the involved special funcetions.
For these reasons the proposed method iz (besides its theorebical signifi-
cance giving a deeper understanding of the origin of various terms appear-
ing in the frace formula) more satisfactory from the aesthefic point
of view due to its invariant character.

The explicit form of the trace formula for SL(2,Z[£}), considered
as & discontinuous group of fransformations of the three-dimensional
hyperbolic space, has been established by Venkov [21], Tanigawa [19]
and de Ia Torre [20]; each one applying basically Selberg’s approach. The
general case of real R-rank one semisimple Lie groups and non-ecompach
fundamental domains has heen treated by Warner [22] and Gangoli,
Warner [5]. . _

This paper is an attempt to apply Zagier’s method to the complex
case. The individual contributions to the trace formula are now related
to quadratic extensions of the field % = g(i); the role of the Riemann
zeta function for 8L(2, Z) is played by the Dedekind zeta function of
this field. There appear bilinear quadratic forms with coefficients being
complex integers together with the corresponding Dedekind zeta functions
of the gquadratic extensions of k. This fact is consistent with the similar
phenomenon appearing in the paper [9] of Jaequet and Zagier concerning
GL, over the adéle group of a number field. The jntegral transforms
which appear in our paper are in many cases similar to those from [247,
but alse there are some new ones related to the conjugacy classes which
are not presented for the group SL(2, Z). Perhaps it is worthly of mentio-
ning that elliptic elements of trace zero give the contribution to continuony
spectrum and we need here the generalized hypergeometric series of the
type . F,; this place required subtle considerations of fundamental domains

icm

The Selberg trace formula for the Picard group SL(2, Z[l 393

in the papers cited abowve. The method used here is also conneeted with
the utilization of the Fourier expansion of Eisenstein series; it corresponds
to the application of the Maass —Selberg relations in the original proof.

The second section of the paper has an introduetory character and
containg some known material. It seems that Proposition 2 contains
o new information about location of the first eigenvalue of the Laplace —
Beltrami operator, 4, = =% the important thing here is fhe estimation
A, >> 1 which implies that there are not purely imaginary #/’s (4; = 147,
j=1,2,...) in the trace formula. The sitnation here is similar to that
of SL{2, Z) where the exceptional eigenvalues do not exist either; i.e.
such that 4; < 1. Section 3 constitutes the main part of this work, in
which the integral I{s) is calculated for Res > 2 (the Eisenstein series
for SL(2, Z[7]) has a pole at s = 2) and the analytic continnation of indi-
vidual terms of I(s) together with their principal parts i3 investigated.
The value of resI(s) gives us the trace formuls which we find in Section 4.

g=2

The title of the paper is related to the fact that a systematic investi-
gation of discrete subgroups of BL{2, €} was begun by Picard [15] who
gave 2 description of the fundamental domain for the group SL(2, Z[i]).
This subject embraces a part of the monograph [3] of Fricke and Klein
where we find connections with the theory of complex guadratic forms
due to Diriehlet [2] (see also references added in proof).

T would like to express my gratitude to Professor Krzysztof Maurin for
his permanent encouragement in the work. It is my pleagant duty to thank
Professors Don Zagier for many helpful discussions on the subject and Hen-
1yl Twaniec for eareful reading the manuseript and improving some parts
of it. T am very grateful fo the Mathematisches Institut der Universitét
Bonn for providing me with comfortable conditions in which to work
during my visit in 1979.

2. Preliminaries.

2.1, Eisenstein series. The syminefric space corresponding to the
group @ = SL(2, C) can be parametrized as follows

H={u=(2,v); 20, v>0}.

An element g = (Z Z) operates on H by the linear fractional fransform-

ations

(02 +b) {0z -+-d) --ad0’ v )
lez+dP e 7 jez-FdP 4ot )

1) g-(z,0) = (

This action is transitive, the isotropy group of the point u, = (0,1) is
the maximal eompact subgroup K = 8U(2) of G, and one can identify
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the gpace H with the homogeneous space
@K s gRrgu,eH.
We give now, following Eubota [11], a description of the Eisenstein

series related to the discgete gubgroup I' = PSL(2, Z[i]) = SL(2, Z[i])/
[{ 21} of the group & = G/{ I}, I being the identity matrix. Let I, =
{:}: _(a, Z) € I’} be the stabilizer of the unique cusp oo for I', For a complex
variable s the Fisenstein series iz defined as follows
(2.2) 1 Bluss) = > o(c-w), wuel,
oel o\
where o(-) stands for the corresponding ¢-part in (2.1). The Hisensbein
series eonverges absolutely in the region Res > 2 and defines there a holo-

morphie function of 5. It is a real analytic function in the variables (z, v, %)
and can be written more explicitly in the form

B vis) =7 O

de&[z}
( erd)=1

——_—_Icz—f—dl Kwp @z)s, 7 = mnHQ.

The summation is taken over all pairs of relatively prime Ganssisn in-
tegers. For later needs let us write the Fourier expansion of Hisenstein
geries. Letting a = Z[4], a* the subset of all nmon-zero elements, X

= {s eq; Rea >0, Ima 2 0} the sector in a, and [,(s) the Dedekind
zeta, fonction of the field k = Q(4), i.e.

Gfs) = D)™

neX

with |n]* = »¥%.

We have then

I(s—1)8(s—1)
(s} 25(s)

27y

T e e

Here =,(n) it the divisor function which for sny » £ ¢ and any # €a* is

(2.3) Ez,v38) =v"In DA

T, (B) Ky (47‘: (n|v)exp{mi{ne ‘Hw)}

defined by _
al ~ '
7,(n) = = =mr D
ad=1 d|n
acn*, de X : deX

The Bessel functions are given, for example, by the intégral formula

-] .
K, {z) = f exp(—zcosht)cosh(p)di, =» ¢eC, Rez> 0.
[
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If one infroduces the normalized zeta funetion Zi(s) = $n (s} (8),
then Ci(s) = {3{1—s), and the normalized Fisenstein series T*(u;s)
= {3(8)E(w; ), then (2.3) takes the form

(2.4)  B*(z,v;8) = (et Lih(s =120+

+8% 21‘3_1(9; o1 42T m]w)exp{m(m—l—nz)}

fea*

As an immediate corollary from the Fourier expansion (2.4) one deduces
the meromorphic continuation of E*(u;s) to the whole complex plane,
the only poles are at 8 = 0, § = 2, and they are simple omes. Since

t{n) =7_,{n) and K (2)=KE_(),
another eorollary from (2.4) is the functional equation:
B* (w3 8) = E¥{u; 2 —s).
Furthermore (2.3) and (24) yield:

2

resF (s 8) =Tesii(s) =1, resP(u;s _—— T
s=2 (138) s=1 x5 =1, sm2 (1) LRy 4527
(2.5) E(z, v; 3) — O(ﬁmu(ﬂes,szes})

for fixed z as v oo, because the sum of Bessel functions tends to zero
exponentially.

2.2. The Rankin-Selberg method. The symmetr'ie gpace H has

the G-invarjant measure

dwdydw

dp(w) = ———,

u = (z+y, v).

Ry the Rankin-Selberg method ({167, [17], [24]) we mean the principle
that a sealar product of a function f: I'\H + € with Eisenstein series
equals the Mellin transform of the constant term in the Fourier expansion
of f. . ' :
ProrosrrioN 1. Let f be a I-invariant function on H of a rapid decay,
i.e f(z,v) = 0@0™") as vi>o0; for some ¢ > 0. Then the scalar product

¥(s) = (f, B(38) = [ f)B(u;s)ap(u)
. . INE .o .

' converges absolutely in the infinite strip: —s < Res < 21-¢, and it is given
by :

w 1 1-
1
¥ (s) =5 f f f S m—i—w{y,'z))v“*dmdyd'v.
0 ¢ 0



396 J. Szmidt

The proof goes by inserting the series (2.2) into the scalar product
and applying termwise infegration. ' :

2.3, The spectxal decomposition. The Laplace—Beltrami operator
on the symmetric space I is given in the standard coordinates by

Y ,
e T T "

T%-js G-invariant and hermitian operator acting on a dense subgpace of

LF{INH). The space L*(I'\H) of square integrable functions has the

speetral decomposition with respect to D:
LHINH) = COQLHINH)® Ly (INH),

C stands for the one-dimensional subspace of constant functions, L (I H)
for the subspace of functions with constant fe¥m zero (the space of eusp
forms). The operator D has only discrete spectrum in LZ(INH), f,=1
corresponds to the eigenvalue 4, = 0, and we take {f;};, to be an ortho-
gonal basis of €@ L{{I™\H) consisting of eigenfunctions of —D:

~Dfy =4f; hh<h<h<..., mljmm_
J—oa
We write the eigem-equation in the form
—Df; = @4+ F=0,1,2,..., 7 =V_1,

the numbers r; are real or purely imaginary since —D is pogitive definite
and there is a priori only a finite number of imaginary ones; necessarily
with |#;| < 1. The operator D has continuous spectrum in the subspace
r:cmt(-rl \-H ) .
Kow any bounded function fe Z*(I"\JH) has an expansion

N\ 1 f‘” . .
2.6 W) = ; P ; H
@6)  flu) ;‘ Gy 10T 5 | Vs B L) Bl 1 in)a
The spectral deecomposition is a consequence of the general theory of
Eisenstein series (Langlands [14]) or can be proved in this case along
the lines presented in Zagier [24].

The fundamental domain 2 of the group I' = PSL(2, Z[i]) acting
on H can be chogen as follows (Picard [157):

D = {{w+iy,v) e H; 0< @,y <1/2, @?-Fyi+o? > 1}

The picture of the fundamental domain ean he found in Fricke and Klein
{[3], p. 82); it s a tetrahedron in R®. Tts volume is r&lated to the residue of
the Risenstein senes- namely one has

@y,

' vol(I\H)“ = 2resH(u;s) = ﬁ%
g2 %
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In the case of the modular group SL(2, Z) the first eigenvalue of the
Laplacian satisfies 4, > 1/4, this fact iz due to Roecke (Sitzung. d. Heidel-
berger Akad. d. Wiss., 1956). A simple variant of the proof, elaborated
by M. F. Vigneras and published in Deshouillers, Twaniec ([1], Th. 3),
gives in fact the sharper estimation 1, > 3x%/2. We adopt this method
to the group PSL(2, Z[i]) to prove the following

Prorosimion 2. The first eigenvalue of the operator —D satisfies:
Ay = (for the final shape of the trace formula it suffices a weaker bound
A >1).

Proof. Let us take the two mappings of the space H:

) el

w-{z,7)

then

—& k)
T (2, 0) = ( 2P0 s Iz|2“}‘7-’2), = (-2, v),

where » sends the cusp oo to the point 0 and w is a robation by the angle =.
From the partienlar domain 2 of I we build up the union of four copies
# = ZUpBurFuenr®. It can be checked that # contans the solid figure

I ={(x,9,7)

with o, = ¥2/2; the point (
and we have Z« I c 4.
Let f be a cusp form such that

[iffap@) =1, —Df =i with 2> 0
9

"‘~<-m<%7 _%*{y ﬂz‘v 770}

1, 3,2/2) lies on the sphere @*+y2+o% =1

and we can take f to be real valued. Then using Green’s formula (the
integrals over the boundary of # disappear because of the periodieity
of automorphic functions and the boundary integral over the top of
the troncated fundamental domain vanishes in the limit) we deduce

" that

dmdyd."u dmdydv

4 = [ 1Dfa) = f Flea ) - [

dxdyd dadyd
- [{aren-La) =22 4 [ L1202
“ ) &

dmdydv dmdydv

> [t == [
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From the Fourier expansiun

floy3,0) = Y a(o)exp{miie-+idl),

nea*

it: follows that (# = Ren-+ilmn)

g = m‘{"iy: :

(L) 0 @)1}

d:cdydv _ f

j (F+1) 2, lem(Bem)a, @)+ (2

Ty ngu*

> 2 (2w, f Zian(v)]gi——“(urﬁn f Fdu(u
o %

> 2(2mw,)" f Fodp(u) = b2
a2

Hence 12> =t

24, The spherical transform. Let ¢ be a smooth function on G
=P8L(2, €) of wmfficiently rapid decay which iz E-biinvariant (K
= PRU(2)). Then using the map (the Cartan deeomposition)

_ lad -
b K(j d) Ko a2+ B2+ o2 - P2 —

we can view ¢ as a function of a real variable ¢ & [0, co). Following the
Belberg notation [18] we introduce the new functions &, g and » by

(2.7) Q(w) == f mat it

g(uw) = @ (w)

w >0,

where w = ¢%+e "2, uek,

and_

L R(r) = f g(u) e"du, re C..

-0

The inverse formulae are

glu) = - f A7) e du

™

Lo

and

‘ 1 g (arccosht—jg-)
Pl = ——@'t) = — S—
™ aVi(t+4)

1 fﬁ"h( " n t4-2
_— r
Zr”l/t(t 7 - m(ra:rccos 5 )dr.
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The integral representation of the Legendre functions Pf(coshi), ([EH],
3.7(7)), gives in the particular ecase

2 sinra
~1/2 F
12 {cosha ]/m_,_
11' 1/2( ) inh 2 r ¥

and now the expression of ¢ in terms of its spherical transform % becorues

0o

1 _ 1 i
(2.8) @{t) -_~m(t(z+4)) 14 f r*P; 1_’1,9( E) hirydr.
We impose on ¢ the deeay condition

g{t) = O 0+D%) a5 feoo,

for some constant 4 > 2, this iz equivalent to the holomorphy of the
function k(r) in the infinite strip
freC; Tmr< A2}, h{r) = h({—1).

The smoothness of ¢ is equivalent to the statement that & is of the rapid
decay; precisely that

hir) =0(r1™)

2.5. The kernel function. Let @ be a funchion on the group G with
the properties described above. The function of two variables

for all natural =.

kg, ) =9l "9, ¢ 0 b,

defines an operator

LD g) =

JHe, 01003, f e THINAD,

which can be viewed 28 an integral one

(Tpf) ) = [ K (u,w)f(w)an{u’)
. INE

with the left Iinvariant kernel
E{g,g) =) old ™r9)-
rel” :

We infer from the rapid decay of ¢ that K (u,w) is in L*(I"\H) with
respect to each variable separately. Now we appeal to the celebrated
Theoremn of Selberg saying that every eigenfunction of an invariant
differential operator is also an eigenfunction of I, with the following
correspondence:

(Df = ~(L+)f) > (Lof = h(r)f) .
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for the Taplace-Beltrami operator D. From this follows that
(E(, 7""):fj) = Mr)fy(w), §=10,1,2,...,
and
(E(yu), B(; 1-Hir)) =R(r) B(a'; 1—ir).

The Tisenstein series are eigenfunctions of I which are not square-in-
tegrable. The specfral decomposition (2.6) applied to K(-,:) gives

o

%%)_y(f,,f;, )f,

The last integral, denoted by H{ws, u'), describes the continuous spectram
of the operator L,. For snitable functions ¢ an integral operator I, , with
the kernel

(2.9) Ky{w,u') =

+— f]w)Eu 1 +ir) B (u'; 1—@r)d'r.

E(w, w)—vol (INH) h{(i) —H (4, u")

is of the trace class (it has only discrete spectrum on LZ{I™H)) and

(2:10)  trace(Dy, on LIHINH)) = M'hir) = [ K, (u,u)du(u).
i=1 ™™g

This iz “a general formulation” of the Selberg trace formula. The problem
is to compute explicitly the integral on the right-hand side.

. - 2.6. The conjugacy classes. We ghall write down fhe classification
of the conjugacy classes of elements g e SL(2, ) and their Jordan ca-
nonical form (e.g. Ford [4], Chap. 1).

The unit element: - (1 l)'
Elliptic elements: trg real and '[m'gl < 2, their canonical form is
i(e g) where |s] = 1 and = 3= +1.
Al elliptic elements have finite orders, spéeifically:

order 4 if trg =0,
order 3 i frg = —
order 6 i {rg=1.
Parabolic elements: trg —2 or trg — —2, with canonical form
i(l j) where ze€ and z # 0.

Hyjperbohc eIements trgreal, [trg| > 2, with canonieal form + ( 1;1)
where Z > 1. '
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Loxodromic elements: trg non-real, with canonical form 4 (ﬁ}L _2_1)

where A>1 and [sf =1, &% +1.
Bvery loxodromic element is a compogition of an elliptic and & hy-
perbolic one.

3. The computation of the integral I(s) for Res > 2 and its analytic
continpation,

3.1. The decomposition of I (s). Following the general idea announced
in the introdnction we consider the integral

I(s) = [ Eylu,w) Blu; ) du(w)
~ng

which converges for all s € € different from all the poles of FE(u;s).
Applying the Ranlkin-Seclberg method we obtain

=3[ #@)@ for Res>3,
o

11

where % (v) = f f Ey(u, w)dedy, v = (w-+iy, v) i3 the constant term. of
Kol ). To eva&uate .}f'('v) we make use of (2.9):

Hofw, 1) = Y Bl p-u) —vol (PNH) h{i) -
vell

[0}

Elu; 14ir) Blus 1—irh(r)dr

From the Fourier expansion of the Eisenstein series we find that the
constant ferm of the fumction

H 5 urs Bu; 140 B(w; 1 —ir)
equals
Ck(- ) 0. -2 Cic( iﬂ‘) 2 4-2{r
. ir ______' +
CrELen T ad—m
| 4%*

Vr,, (1) K (2 o).

+ C*(l —ir)r(L +r) L

The integration of the second and the third term againgt the even fune-
tion %(r) gives the same confribution to the integral I(s). We decompoge.
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the constant term % (v) in several parts, the idea of this decomposition
is taken from Zagier [24].

= an('v)

n=1

. b
D ki, y-uydedy, v = i(j d), I = PSL(2, Z1i)),

(=]

11 o
q} .
afg(«:):ff D by 0 dudy — = fh(r)dr,
Q —_00

o .
,UE 5 Cz ( _,”-)

== ) ey M 2@( y Mo
s = h(r) QO .
*=-5- | warmaasm PRENCE MDD

nea®

According to the classification of eonjugacy clasges we decomnpose X%,
and 2, further: ‘

Ay = A sy T A Leney T 1 en T F Lnyp T F L1ox T+ 1 par

‘(we have distinguished elliptic elements of given order) and ', = A" ;. +
~+# ,en Where :

Fapuslt) = [ [ 2 o,y oy~ | gttt
) t

-
P

[

pua

ben

Jf’g,en(v)=f1f 2 u,y-u)dwdy——m’*frp(t)dt.
g o [N .

s

Notice that in o, we have only elliptic elements of trace zero (i.e.
 those of order 4 au& ¢ = 0). Thus we may write

I(s) ==t 21 (s) Where I.(s) =~;'—‘f (*u)v*““d'u

n=1 0
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3.2. The integral I,(s). At the first instance we caleulate

1,(8) = -—1;:6— ”(2 ”n:i) )( f.K“(un.'fJ) fn”"‘d@)

o R(r)dr
G4ar) i —ir)
The inner integral eguals (see [ET], 6.8 (45))

1 I(s/2y s s
8= T 1’(?3- '}"”)F(E T-'w') for Res>1,

while the series can be transformed into

RPN LA
4 ——
2 < W

nec

Next there holds the identity
o (n)  Lp(8)Lr(s-a) Li(s—2a)

e [y (25 —2a) N

neX

valid in the region of convergence of the zeta functions on the right-hand
side; it can be proved comparing the local factors of the Huler produets
for example.

Putting all this together we obtain for Res> 2

61 Ll =— e f Ck; CRTINGEE ) hyar.
k

e EL(S 1‘5‘@7)51; (1““"')

The analytic continuation of I,(s) follows the same lines as in Zagier’s
paper [24]. We denote the integral in (3.1) by J (s) and introduce the new

one _
[ Dhsf24in) Gi(sj2 —in)
70 = ) Tnamaa—mn PO
f 1 |
A
3T r-plane
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where the path of integration is such that all zeros of the Dedekind zeta
function lie on the left of 1--iP. For the normalized integral Ij(s)
= [F(s)I,(s) we can prove the following

ProposITION 3. We have
1 s\?
—-—“E:(W)J(é?) for Res > 2,
8n

1 1 In(s/2)ZE(s—1)
“8—5"(2) T =m0

where U is a neighbourhood of the point 5 = 2,

Let us caleulate the residue of I,(s) at s = 2. The Riemann zeta
function has the Laurent expansion

s—2
h(z 2.) Jor se U

1
ois) = +y+0(s—1), v the Euler constant,

and

L (s) = n-sfﬂf(g) £s) = Ll + ——(y-log4n)+0(s —1).

The corresponding expansion for the Dedekind zeta function of the field
k= Q(4) is
™ 1

Li(sy = 6o T " Yoty +0(s—1)

where yg; 18 the generalized Euler constant equal to
. 3 1
_ ,Ill—]fo( Z o —rclogn).
Na<n

The summation is taken over all integral ideals of Q(i) with the norm
less than the natural number #. Then

1

* -8 . ) 1

The expansion of Jp(¢) around s = 2
leat to

(3.2) res I,(s)

together with the last equality

a4

1 1 1
= Zh(O)— (;?’Q(z) —Y—lﬂgﬂ) 9(0)—5— f £

= (L+ir)h(r)dr.
\

)
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3.3. The integral I,(s). The integrand in #7,(v) is holomorphic for
0 <Imr< A2 except for a simple pole at r = 4. This enables to trans-
form #3{w) into
L 9 Bitea w
s =8 [ R
2n o Gp(1+s/2)

I( )ds, B< B A
B-ico

In order to caleulate I,(s) we use the Mellin inversion formmula giving

1 G(s/2) h(s

— 2 .
7 Tl+s2) @2) for < Res < A

Now we can state
Prorogition 4. The funclion

Ck S)CL (s/2) ('a, )
2Ck 1+3/2) 2

has a meromorphic continwation, since (3 does, the poles come from those
of the zeta funclions inwolved, and
(3.3) resT; (s) = —h(Z).
=2

3.4. The integral I,{s). To calculate the contribution to the integral
I(s) coming from parabolic elements with ¢ =0 we use the method of
[24], but now we employ the Fourier transform in R® and the corresponding
Poigson summation formula.

Ij(s) = Li(s) L(s) =

ProrosrrtoN B. We fave
£ (s/2) T'(s)2+ir)I(s]2 —ir)
ey _ , h(r)d
La(8) 2R J T (i
§-205 2 If~i—] -
2
in the region Res > 1, and for I;(s) = [5(s)1(s) we have
L) [
* _. 7k 2
(3.4) :EEIZ (s) =i f? e(r)dr.

—oF

3.5. The zeta fonctions related to binary quadratic forms. To investi-
gate the integral 7,(s) we have to consider some zeta funchions related
to the Dedekind zeta functions for quadratic extensions of the field & = § (3).

Let us consider a binary quadratie form
@ (m,n) = emibmn-+ond, mynea =Z[],

with coeffieients @, b, ¢ from the ring a. The group SL(Z,a) operates
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on the set of such forms by the unimodular transformations of variables
(5-B)(m, n) = B(am-ron, bm-+dn), 5 = (Z fz)

Let 4 = b*—4ac be the discriminant of the form @. The collection of

such forms with fized discriminant A == 0 breaks into a finite number

of equivalence classes. Define the fo].lowmg zeta functlons

(8.5) {{s, 4) = [D{me, m)|~

ais [ﬂj_ﬂ {m, n)(e(c: x}u),’Auth

The firat sum iy faken over all 8T:i(2, a)- eqmvalence elagses of quadratic
forms with diseriminant A,
Aut @ = {y eBL{2,q);y D = D}

is the stabilizer of the form and the second sum is taken over inequiv-
alent pairs of Gaussian infegers with respect to the group Autd.

If A is the discriminant of a field K being a quadratic extension
of k& = §(2), then {{s, 4} coincides with the Dedekind zeta function (s}
of this extension. This assertions is based on the fact that we have here
{analogously to the case of quadratic extensiong of the rationals §) the
one-to-one correspondence between ideal classes of K and the SL(2, a)-
equivalence classes of binary quadratic forms with coefficients from a
{see Kaplansky [10] for the proof of such correspondence formulated
there in & more general seeting). The first sum in (3.5) corresponds to the
ideal classes of K, the second sum to the ideals in 2 fixed class and the
value |@(m, n)|* is the norm of the ideal generated by (m, n).

The investigation of bigquadratic extensions of @ was started by
Dirichlet [2] and continued by Hilbert [7].

Tn the case when 4 = Df*, D being the d_lscnmlna,nt of the corre-
sponding extension of @ (¢), f € X, we have the situation analogous to that
of Zagier’s paper ([23], Prop. 3).

PrROPOSITION 6. Recall that [{s, A} is defined by (3.5), where A4 is as
above, 8 € €, Res > 1. Then

(i) Z(s, 4y = r,‘k(2s}§xn(a) ™™ with n(a) beivig the number of sol-
utions b(mod2a) of the go%gﬂ'uence bt =4 (modéa) in the ring of Gaussion
inlegers.

(id)

0 if 4 =2 or 3(modd),
[Ck( $){p(28—1) if 4 =0,

lck(s)fm(s) 2, w2 wara s, (%)

arf

£(s, 4) =

if 4=0 or 1{modd), 4 0.
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(iii) £(s, 4) has a meromorphic continuation to the whole complex plane,
the positions of poles and the values of residues can be read off from (ii),

We indicate here only the basic ideas which one can use to construct
a proof. The identity (i) is equivalent to the assertion of theorem on rep-
resentation of Gauszian integers by binary quadratic forms over a;
n{s) is the number of SL(2, a)-inequivalent primitive Tepresentations
of the integer ¢ by forms with discriminant A. In the case of rational
integers it is the main theorem of the theory of binary guadratic forms,
see Landau [13], Th. 203. Hence we must write down the analog of this
theorem in the case of a = Z[i] to obtain (i). It can be also proved directly
as in [23]. Concerning (ii) we have written 4 = DJ* with the above meaning

of D and f. [D] iz the con'espondmg Eronecker symbol for the quadratic

extension of Qi) with discriminant D. If

D o
Lpe) = 3 [ i

neX

is the associated L-series, then f(s)Lp{s) is the Dedekind zeta function
for this quadratic extension.
> ar

dln,deX

a,(n) = ve €, neat,

where () is the Mobius function in a defined using prime ideals fac-
torization, anatogously as for Z. The formula for (s, 4), 4 # 0, can be
proved using (i) and the technique presented in Hirzebruch, Zagier ([8],

Prop. 2).
(iii) is & consequence of analytic preperties of the Dedekind zeta

functions.
In the further section (3.10) we will need the ease of {11) when 4 =
(le. D =1, [ =20 = (144 144 ig a prime number ir a). Then

2ey —4) = Bl D)

(114
deX

B 700 ()

we have here u({l) =1, p+i) = —1, p({l+d) =0
Hence :

36 L s, ) = ;,‘(3)2;@)'
with ' .
1(8) — 1+21—28+22rf8f‘2—8_21——38‘.
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3.6. The integral I,(s}. There are employed here the ideas from
Zagier’s paper [24]. It is an important place of the work, since there ap
pear the geta funetions related to number fields. Inserfing the formu].:
for o, {v) into I,{s} we obtain

11
3 4
_ L ff Z B, (07 po)-u)vdu{u)
2 ¢ 0 fpl el N\T
o= Tyogl,

where I, is the stabilizer of the cusp oo, I, the centralizer of y e I', the
brackets [-] demote a conjugacy class in I" and the firgt sum is over al
non-frivial classes; each conjugacy class contains at least one element
which does not belong to I,. We write further

1

w1
1 U
Lo =5 [ [[3 > Dupw oye)pu)casm
0 0 0 iy eel\JT Bele
a—lyaél*w
1
:52 > f (fu,, (67 y0) ) v’ (1)
Ir) 651"?\1"[1" H
ycrs%l"m
We have met above the integral
(3.7) [ B, v u)ordu) = [ @9~ ng)v’du ()
: B i

{p is right and left SU(2)-invariant, » = ¢SU(2)) with r eSL(2, C),
T = (m b) ¢ =0 . '
e al’ . . .
Wae consider the contribution o I; (s) given by non-parabolic elements

Each hyperbolic (loxodromic or elliptic) element 7, when congidered
a3 a conformal mapping of the Riemann sphere

az+b
ce-t-d

has two different fixed points. We will change in (3.7) the variables by

diagonalization of the mairix v, The fixed points of the conformal mapping
T are.

8 —

zelC,

—dFVAa .
_oZIFVA iy,

2 20 i
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In the case of non-parabolic elements (A = 0) the map -

ER VAN

sends the points &y, 2, to 0, co and T¢T! is a diagonal matrix. The change
of variable g7T"'g, in particular

VAl v

TS R

(]

carries the infiegral (3.7} into

14p=
Tlel*

J‘(p UI(TTT—J)g)( 1i2"L'Ui

5 sl"
) du(u) = ]lcjl V (s, tr).

We can write now

tea [[#11 oel NTiT
trp=t 7

(3.8) Il(s):_Z(%}_,‘ > ic(a‘lw)i") A1V (s, 0,

—l,aaél"m
A4 =4,

We work in I’ = SL(2, o) mther than I' = PSL(2, ¢) in order to have
a well defined trace; [[-]] measns a eonjugacy class in I and e{o™ yo)
is the element in the lower left;hand corner of s~ 'ye, I, c I' and o™ ya
e BL(2,a) make sense for yeSL(2,aq) GEPSL(‘_?:,&). .

There is a one-to-one correspondence between conjugacy classes
[[y]] of trace ¢t and BL(2,a)-equivalence classes of binary quadratic
forms & with coefficients from o given by

D{m, n) = em? (4 —a)ymn—bn?,

p j(z g), a+d _=f" My N EA.

The expression in parantheses in (3.8) equals

3.9 A N e
_ {1711 el \T/Tos

tey=t efatye)ex

X is the sector in a. There is a one-fo-one correspondence between I'fI,
and the set of pairg (m, n) of relatively prime ideals in a given by mapping
an element ¢ e I'/I",, to its first column. Let (m,n) be a representative
of the pair (m,n). Under this bijection we have ... . - e

elo~yo) = Bm,n), I, o2 AutPi{+1, +i},

6 — Acta Arithmetica XLIL4
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d (3.9) becomes
N £(s/2,1" —4)

|D(my )| ~F = z.(5)

2 fmyn)e(axa)/Aut &
disor =4 D(m,n)eX
(m,n)=1

The final formmla has the form

N2 A oy, A=t

{3.16) T, {8) == 20T
te d

The absolute convergence of this series will be asserfed in Section 4. The
integral transform ¥ (s, t) of ¢ ean be written, using the correspondence
between ANG/K and [0, co), as

- . lg—A-2{® (v ~A-0) ¥ * dadyde
zT

where A = T¢T! iz the Jordan canonical form of the mairix z and
i == trr.

3.7. The hyperbolic classes. We carry out the summation (3.10)
over ¢ being rational integers with |¢] > 2. After using the expression (2.1)
for the action of 8L(2, €) on the symmetric space H and doing some
simple manipulations with the argument of ¢ in (3.11) we obtain that

[

2t o o \° dudyd
V(s,t)=f¢(AH2 )( ,, ) ., A>o.

i 7 g —1{+o* v

The calculations similar fo those in [24] lead to
(312)  Ti(s, ) '

@ml(s) [ s s .
- _m__f pla(1-+r)) F (7’551; T +v2) (147 ar,
22*1*( ) 2
2

where F is the hypergeometric function. It can be verified that V (s, f)
i3 a holomorphic fanetion of s in the region 0 < Res < 214, We will
need ity value at ¢ = 2;

1

where { is the function (2.7) used to define the spherical trana-
form of ¢.

Q(4),r 4 =14,
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ProPOSITION 7. The contribution to the sntegral I,(s) of the hyperbolic
conjugacy classes has the form

£{s/2, 4)
= r(8)

[f>2

with V(s,1) given by (3. 12-), and

(3.13) resl, pon(s 55 Z Q& —4)resi (—— P -—4)

§=2 &=2

Il,hyp(s) = [4 [glzv(s ) t)

l‘l)-

The values of residues of the involved zeta funcfions can be read
off from Proposition 6 (ii); they are expressed by the elass numbers of
quadratic extensions of the field & = @ (¢) having diseriminants D which
are rational integers (see Hagse [6], Sec. 26, for related formulae).

3.8. The loxodromic classes. The confribufion of these classes is
similar to that of the hyperbolic ones. The Jordan canonical form of
a loxodromic element = ESL(‘> 0) (t =trv has a non-zero imaginary
part) is

:i:(si gz_l) with some 1> 0 and [s] =1, ¢ & £1.
The argument of ¢ in the formula for V(s, ) becomes

lo—zsf +(o—70)°  L—(AFPFHL ="  |dl[s] + Ayt
o{z-v) N v o : !

»

where A4 =1*—4 and
. 112
(3.14) Agyy = (z+7) —4> 0.

Every loxodromie element is a composition of an elliptic and a hyperbolic

ones (ez 51_1) :(8 g) (}L rl)

henee Ay, corresponds to “the hyperbolic part” of the given loxodromic
element.
The counterpart of the formula (3.12) is now -

(27)°T'(s)

22.11(8+1)
2

(813) Vi(s, 1) =

8

2 e 2\ -~8/2,
xnfqu(!zur +Am>F(2 : 1,1_1_’2)(1—{4-) ar,
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where again V(s,{) is holomorphie in the region 0 < Res < 2+A Its
value atr ¢ =2 is .
1

2
V(‘"”t) ?’iﬁi

Q(Ahyp)

The final formulae concerning the contribuiion of loxodromic classes

we write down as '
PROPOSTTION "8, We have

{(s/2, 4) .
El S APRY (s, t
llox(s) - Ck(é') } | _ .(.S‘ )
Imi0

with V{s,t) given by (3.13), and

1 Y . §
(3.16) IGEI:{,IGX(S) == QC;.(Q) s Q(Ahyp(t))f_&EC (‘2“'5 A):
: Inietapeo '

where Ay, is given by (3.14); in fact it is o function of the trace .

We.are dealing here with the guadratic extensions of the field & = §{3)
having diseriminanty which are Gaussian integers of non-zero imaginary
part

3.9. The elliptic elements of order 3 aml 6. The contribution to the
integral I{s) given by these elements (i.e. the ones of trace 1 and —1)
is equal fo :

[{s/2, —3)
£ils)

where K = Q(V—1, I/———3) is a Dbiguadratic extemsion of the rationals
and (s, —3) = Lx(s) the corresponding Dedekind zeta funetion of this
field (discr K = —3). The formula for the class number of K (e.z. Hasse
[6], Bec. 26) gives

(817)  Lrane(s) +luenge(s) = |diser KI%2(V (s, 1)+ (s, —1)),

resg(i, —3) _ mlog2+V3) ,

s=2 \2 9

where 2--V3 is the fundamental unit of the real field Q(I/S_ ) The integral
transforms of ¢ in (3.17) ean be calculated following the same way as

for the hyperbolic elements. The Jordan canonical form of elements
having frace 1 is

o ) 1B
T = ( A,_.i) Wlth. A = 2

icm
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and for elements of trace —1 we must pub i = (—1$'ﬂ/§)/2; there are

two conjugacy clasges in each case. The action looks like
7+ {z, v) = (A2, ).

The corresponding formulae for the infegral transforrn have the form

(318) V{5, —1) = Vs, 1) = fqa(s if;'-)( v ) dosdydo
H

|z —1]7 +-o* 7
9

(szfs) 1:
PN 2’ ’1+¢

e [

) L4+ dr,
9281’1(

Vis,1) is a holomorphic function of s in the region 0 <<Res<2-+A4

‘ and its valne at s =2 1is

R B
V(2,1) =590 == [ M.

I we mﬂtiply (8.17) by £i(s), we have
ProrosITION 9. We have
I3 an)(8) 17 ongey(8) = 8-3nsr(s/2, —3)V (s, 1)
with V(s,1) given by (3.18), and
‘f:ezsuien(a) (s) —}"If,eu(s)(s)) = §1Og(2 +]/§) g(0)

3.10. The elliptic elements of order 4. Tet us consider first the elliptic
elements of trace zero and ¢ = 0, ie, these

y=i(q’ _j}) with bea.

The eontribution of these elements to the kemnel funetion K (u, u) appears

as follows
' 22 +b|*
ZHWVM Zjﬂzﬂ)

and its constant term equals

(B2 oty s s
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The decomposition of #°(v), which has been written down in Section 3.1,

implies that _ ‘
fz,e]l('v) =0.

We pay now an attention to the elliptic elements of trace zero and

¢ = 0. Their contribution to the integral I (s) is given, according to (3.10), by
£(s/2, —
b ANt A
1&11(4]( ) C ( )
where from (3.6) we have thaf
5  F A s\ LS ot
(3.21) z(g, —4) Zt (5) 1(5) -~z (5) (22t TE o' Y

and for the integral transform

4]z v . \® dedydy
Vs, 0) = f‘P( i )( IZ—1!Z+?)2) PR
H

The last formula for ¥

(3.20) 23V(3 0),

R

¥ (s, 0) follows from the fact that the Jordan form
of elements having trace zero is T ( —i) . The caleulations similar to those
for other non-parabolic classes yield '

(27:)?1"'(3)_ o 8
9zsf(s+1)20f‘p(4’ )F(:a &}

2

Vis, 0) = S 15 )(1+fr)‘s’°rdr

14l

(27)°T'(s)
= —————— A (s},
grep (.3 +1 ) _

2

We use now the spherical transform ( .7) of ¢ and make the s’ubstitution
r2( 1—]-72 = 4 to obtain ) '

1
_A(,g) _ 2“471:_—3& fh(r)rﬁfu“”‘*(l Wﬂ)(s—-:ﬁ)[ﬂ %
—00 [}}

1-u s 8
®P;Y, (1—16 ) F(E,—L;, 1; u) dudr.

The representation'of Legendre functions ([EHE], 3.2(16)),

-1/ 1",—“ e 2l
P, ( 1_ﬂ) =2 ‘”‘u”“(l —_— -"F(-—w, 1—ir, ¥ u),
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implies that

i

(3.22) _1? f R{r)r? f (1_M)8[2—ir—!x

1 3 ) 5 8
x T (»2— —ir, 1—1‘1‘,5 ; %)F (_5’ 5! 1; u) dudr.
To calenlate the inver integral above we utilize the formula ([EH], 2.9
(33)),

Iey'(e—~a-—b)

(3.25) I'(o—a) '(c-b)

Fla, b, e;2) = Playb,atb+l—e; 1—2)+
I'{e)I(a—+-b—o)

T T Trare

(1—2z)*2Fle~a, c—b, e +1l—a—b;1—2)

iz the particular case of the hf@ergeometrie function P (3—ir, 1—if, 55 ).
After putting into 4 (s), in the place of F(3—ir, 1—ir, 3; w), the fivst
term on the right of (3.23) one has the coniribution fto the inner
integral

@I (2ir)
I +in I

3
f (l __%)312—1'1-—1 X
+ir) 4

X F(s/2 —ir,1—ir, 1L =2ér; L—u) F(s/2, 8/2, 1; u)du.

Bi(s, 1) =

When expsnding the first hypergeometric funetion ag an inﬁnite series
and using the integral representation ([EH1, 2.4 (2)) (which in our case
ig valid for 0 < Res << 2 and the coefficient of % in the hypergeometrio
function equal to 1) we have to consider the imfegrals inside the sum
OVer n;

1

f(l web)sfz_""l'“"lf’ (%, —, 1 fu) du
] . B
- I'(s)2 —ir+mn) g & 85 )
_ Z  pra1amy1
Tisj2 —ir+1+n) F(z gy T

_ T(sfg—ir+m)I(—sj2—ir-+14n)
- I(—ir+1 -4+n)? ’

see [EH], 2.8 ‘_(46_)..
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In this way one can. obiain the representation
(i
I DL+ (L —ir)

g 2""7 TE—ir4n) T —2ir) (82 —ir +n) I'( —8/2 —ir +1 +n)
’ < Tg—ir) T (1 —2ir+n) (L —ir+n) o

B(s,r) =

We have met here the generalized hypergeometric function of the type
oIa(a, by e;u, v32), see [EH], Chap. 4.

Tt is in our case the value at 2 = 1 of such series with the parameters:

@

. s .
& == n —iry, b= — 2 ww_—H, ¢ = L—ir,
% = Ya+bte) =1 +ir, = 2¢ = 1—2ir.

This value is given by Watson’s theorem ([EH], 4.4 (6))

1
st(a b, 035 (a+b+1), 20;1)

1 1 a—l—b—.—l 1 @ b
rlg) vl s) 1) Pl -5 )
ofe 1 b1 1 a 1 b\’
WETﬂFE+§PT+E“ﬂPF+E—ﬂ

The application of standard identities for the invelved gamma functions
rednees the formula for B, to

{8 iy ] ir 1

s 2 A A el

1 (4 2)F( 4 2'*"2)
Kir s dr 1 s ir )
rfe-g+3)r(-r -5+

4 2
The second term on the right-hand side of (3.23) gives the contribution
to the inmer integral in (3.22) as

B;(S, ?“) =

&) I'(—2ir)

Brlear) = (‘ ar) (1 —ir) f( —w)r

X P(L-tir, bir, 14263 1 —u) F (%,%, 1; u) &u.
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The same way as for B, leads to

By(s,r) = — =

We have calenlated above the inner integral in 4 (s} and aftexr the change
ri»—r in B,(s,r) we have the formula for the integral iransform

iI'(s) %
s-+1
7

(3.24)
s~22fT(

Vis,0) =

] ir $ ir i
o 4z+ﬂfkﬂ+—+“
X .

s ar 1 8 i
e — R SN B |
_T(4+2 +2)F( 3T )
which is valid in the region ¢ < Res < 2. Denote the integral on the
right-hand side of {3.24) by J{s). It is not defined on the lines Res =0
and Res — 2 but has 2 meaning in the other parts of the complex plane.

The function arising from the analytical continnation of J(s) to the region
Res > 2 it not equal to the integral J(s) given by (3.24) there.

The analytic continuation can be done as follows. For the suitable
path '

r-plang

_;/f”f’—_f;{‘-~_

the pole of 1"(—-2—

.

+ ,"‘21 +%) at r = '5(1-—%) lies between R and P.

Let us consider

(3.25) = [F(r)dr
P
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with the integrand

§ 4y N .
Rl B oF RN T Ml
rfe e 2 r(-4 ek i)

F(T)$F 3+w+i r 8 ?:‘?‘_i_l
-(2" ERST R et

Trom the fact that

res p(_i+£+}_)ﬂ_2i

reg{l—8/2)

one deduces the value of

res F(r) = ml—2__
r==7{1—5/2) . )
I'|— —

Having in mind the equality

J(8)—d 5 (3) - 2wi  Tes VF('.\T)

r=i(l—s/2)

we find that the analytical continuation of J (s) is given in some neighbour-
hood U of s =2 by the expression

~1
J(s) = JP(3)+2@v;(2fg) P( 82 ) h(- 2—8)

. | P(i) 73
- N :

where the function Jp(s) is analytieal in U. The modified function

(3.26)

'Ir,éli(4)(3) = Cz'(g)Il,eu(4)(3)1

after ingerting the formulae (3.20) and (3.24), can be expressed in the
region 0 < Res < 2 as : . S

1 g\ fs
I:eu(.;)(s) = o & (E) [/ (E) 2%.J (s).

Its analytical continuation is given by
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PrOPOSITION 10. Ii 4s true in a neighbouwrhood U of the point & =2
that

B Y X A G F AU '
Tran® = 5= (5) 152700+

PRI (—S—) 1(3) 26—

2%/n 2 2

awith 1(sj2) given by (3.21) and Jp(s) by (3.25). _

'The principal part of Ijug(s). Let us consider the second
term on the right-hand side of (3.26). Utilizing the Laurent ex-
pangion for

g\? 4 4 1 .
z (E) = + §—2 (‘“ ?@(i)“"?’—logﬂ) +0(1)

™

and the value I(1) = 1 we obtain that the principal part of this term is
aqual to

1h(0)(s—2)" .

Considering the first term on the right-hand side of (3.26) we must use

. the Taylor expansion around & = 2;

JIpls) = Tp(2) +(s —2)J5(2)+-0((s 2 |
r i\ (1 i
_ 9 fh(r)dwr(s-z){@ f(—F(H%) ”T(E +f;'—))h(r)dr_
P P

P

In the first and m the second integral one can move the path of inte-
gration from P fo K. The third integral can be calculated using the

eontour PU{—F}; thus - o .

.

fﬂ-"—ar= — ik (0).
g oo
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The prineipal part of the first term is equal to

1 4 4*
_2“5?:"{ (s —2)° * (5—2)

}4 {1+(s—2)log2} {1«——2—(8.—2)101%'2} X

47 (0) —(s—2) f (% (1 + %’) — ]‘%(«u;:dr "—;)) h(r) dr —z(s -2)h(0)l 4

-

X

+0(1)

*

1 -2 [ 1 v b
= 50027+ = Th0+ {2 + - og2) g(0)-

& TR roefu-oon

where
1
Py = . Yo —¥ ~logm.

This enables us to write down the final formula for the residue

*

1 ¥ 5
(3.27) :'EEIT,GH(:;)(S) = g h{0)+ (? -+ 16 10?:“2)9’(0) —

1 I i\ I {1 dr :
_é;hi‘(T(1+E)—?(?+?))h(r)dr'

3.11. The integral I, ,.(s). We now calculate the contribution to
the integral I{s) given by parabolic elements

1 B .
’V=:|:(G 1) with c¢eaq, ¢ #0,
It has the form '

Il,pa.r(s) = Z

¥} aal NIl
c(o—1p o} %0

k(u, (07 po)- u)v°du (u),

where the first sum is over all conjugacy classes of parabolic elements
in the group P8L{2,q). In the integral

028 [ yeme = [oG ymant win 7= ), oo,
b3 . ¥4 . . ‘

we make the change of variable grTy, where T' = ( 1 1). The element y,

icm
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when considered as a conformal mapping of the Riemamnﬂsphere 5,
has the unique fized point 0 and T takes 0 to oo; hence y =T'pT

= (1 ;) has the fixed point co and

T
T

T

Thus (3.28) transforms into

~ v\ le|® . \° dedyde
Hf P) (W) aut) = | q’(?)(lziw) 7

H

1 wal(s—1)

R

r 24,81 m.._j.-'-—V 2
Wﬁrep(u)u du o (5,2}

for 0 < Res < 2; we have followed the similar way to that of [24]. The
final formula for '

-

I:,pam(s) = C;:(S)Il,pa.r(s)
is related to that of I7(s);
Ir,pa.r (S) = I;(Z—S)

2— . Z—8
2 —8) ik (—;—) o F( > 8 +q;r) F( 5 —w) .
= = (3 —8 ) ' Fi (i) I (—ir) |

(rydr,

§-2%g 2 I 5

which is valid in the region 0 < Res < 2. We take a suitable pa,th. of
integration ¥ (as for the elliptic elements of trace zero) and consider

the integral

98 . % —8
P —{—‘W)F( 5

—ir)
hir)dr.

T = | T(

P

I I ——z"r)

We collect the results on Ijp.(s) in
. . * - . .
ProposiTIoN 11. The analytic contintaiion of I3pec(8) ds given by

L BE=DEER) (z sﬂz)

- tg—2 2
87:21’( 2.)

(s —1)Ex(s/2)
—

I (8) = =

JIp($)
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Jor s in some neighbourhood of the point. s =72, and

(3.29)  resl) . (s)
§==3

1 3 1 A o
—'“8“71'(0)"%- (‘a‘;?@(g“?”glﬂgﬁ) g(0) — e f ?'(1-1-'57')7?'(?‘)47’-

4, The Selberg trace formmla. We have considered the intégfa;l

1) = [ Kolw, w)Biu; dp(),
g ‘

where K, is “the discrete part” of the Kernel function K giv
! en by (2.
and the normalized one ; v @

@) =GO = [ o, wE e 8)dpw).
~g :

Since resB'(u;s) =1, we have that resI™(s) = [ K,(uw,%)du(u)
s=2 =3 ~E ! )

The last equaliby is the starting point for our derivation of Selberg’s
trace formula. Using (2.10) we can write now

(4.2) D hir) =TesIs).
: =1 =2

) In the preceding section we have caleulated the integral I'(s) in the
regions of its convergence and investigated the analytic continuation
together with the formmlae for the principal parts of its separate terms
‘&.V(? have left only the problem of absolute convergence of the series de:
fining I,(s) in the region 2 < Res < 4. The validity of the formulae for
L8, n = 2,3, 4, in this region has been asserted in Propositions 5, 4
and 3 Smee_a I(s), as given by (4.1), is well defined (except for poles ,of
the Hisenstein series involved) this gives a posteriori proof of the absolute
convergence of the infinite sum (3.10) defining the funetion I, (s). Insertin,
into {4.2) the decomposition of I(s) written down in the preéedi-ng sectioﬁ
and the fomulae (3.2), (8.3), (3.4), (3.13), {3.16), (3.19), (3.27) and (3 29)
for the residmes of ifs separate terms we obtain ﬁnally’ -

TeponEM. For the discontinuous transformation group PSL(2, Z[:])

of the symiwtric space H = BL(2, C)/SU(2) and the qéwesponda}ng eigen-
values {r;}2, of the Laplace-~Belirami operator there is the equality :

icm
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Dty = 21:“2{- D Qe C(—Z«,tz—éc) 4+

“f teZ > o

v Q) dhnlil (g ;2_4)} +

teZ[{],Imt 50

52 s 3 4 3
+ o frh(r)d?+-é—7;(0)+{§-10g(2+1/3 )+i-é—logg_

-_— 0

T Fa

. 1 ATl
—5 vt Z;‘J’@(«f)} 9’(0)*57—:_& = (1+1T}h(?)f1?~

oo

1 F(I o\ I\ I '
_.—-é—;_i {-F (1-?—*5‘) —?(E ‘“P?) —5-27;(1‘3"”’)}]7’("")‘1’_"

Added in proof. Concerning Proposition 9: J. Elstrodt and J. Mennicke obtained
the similar estimate A; > ?‘gnz. Profosgor J. Mennicke informed me about the exact

numerical caloulation of Ay = 144} with gy o= 8.5856
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Improving on the results of the paper, it is possible to prove

form

Addendum and corrigendum to the paper
“QOn sums of powers and a related problem”,
Acta Arith. 36(1980), pp. 125-141

K. THANIGASALAM (Monaes, Penn.)

by

TagporEM. Al sufficiently large integers N are representable in the

20
x-S
- 3

g=1

(x’s being mon-negative integers).

T __

The proof will appear in Porfugalize Math.
The following misprints are also noted:

23
23
- p. 129, in (30) = fu{ [[f,) should be replaced by :;ﬂzf"’
k=2
p. 136, in (83) K, should be replaced by K, ,
A #
p. 187, in Lemma 24 ¥"5should be replaced by ¥'°

Anta Avithmatiaa WTIT 4
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