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Abstract. Let H(Xmn) denote the group of isotopy classes of homeomorphisms of the space
Xom,n which is oblained by removing 1 points and the interiors of » disjoint closed disks from the
2.sphere. Presentations of H(Xm,) are known for all m, It has also been shown that H(Xom) Is
isomorphic to H(Xm,e). In this paper the groups H(Xym,n) are determined for all values of m and n.

1. Introduction. Let p, ..., p,, be m points in S* and let Dy, ..., D, be n disjoint
closed disks in S with p; not in D; for any i or j. Let X,,,, denote the manifold with
boundary obtained by removing the points py, ..., p,, and the interiors of the disks
Dy, ..., D, from 8% The homeotopy group of X,,,, denoted H (X, is defined
to be the group of all isotopy classes of homeomorphisms of X,,,. The group
H(X,,) has been studied extensively. Detailed descriptions of this group are given
in [7] and [2]. Tn [9] it is shown that H(X;, o) is isomorphic to A (Xo,). The groups
H(X,,1) and H(Xy ;) are discussed in [6]. In this paper we use some of the techniques
and results of [9] and [10] togetber with various facts about “dial” homeomorphisms
to determine H(X,,,) for any m and n.

The presentation. of H(X,,,) is obtained in three main steps. First a presentation
is obtained for the group of isotopy classes of orientation preserving homeomorphisms
of §% which send. the set P, = {py,....Pn) to itself and also send the set
0, = gy, -, q,} to itsell where g, is in the interior of Dy, 1<i<n. The presentation
of this group is then extended to a presentation of the isotopy group of the space of’
all homeomorphisms sending P,, to P,, and @, 0 Q. Finally, this last group is shown:
to be isomorphic to H(X,,,)- Since H(Xa,0) and H(Xy,,) are known, we will restrict
attention to m and n with m-4-n>2.

2. Ovientation preserving homeomorphisms. Let F = P,uQ, and let
HT(S?, P, Q) devote the group of isotopy classes (relF) of orientation preserving
homeomorphisms of $* which send P, to P, and Q, to Q,. Define H'(S, F) to
be the group of isotopy classes (relF) of orientation preserving homeomorphisms 7
of §2 which are fixed on F, i.e. h(x) = x for all x in F. Let S, denote the symmetric
group on p objects. Define i: H'(S? F) » H *(§2, P,, 0, to be the inclusion
map and define r: H¥(S%, P, Q) = Sux S, t0 be the map which sends the isotopy
class of a homeomorphism s onto the restriction of /1 to F. Since the image of { is
clearly the kernel of r we have the following lemma.
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Lemma 1. The sequence
1— HY(S?, F) =5 H*(S%, P,,, Q) = S, %S, — 1 is exact,

In order to use the above lemma to obtain a presentation of H *(S2,P,, 0,)
we need the following fact concerning group presentations and exact sequences.
LemMA 2. Given an exact sequence of groups

145851,
Suppose A and C have presentations given by

A =Lay, v ay rfa) =1,1<i<py
and
C={eg, ., 0 rie) =1,1<i<q) .

Let b, = a(ay), 1<i<s and choose b; such that B(b) = ¢;, 1<i<t. Then B has
a presentation-with generators {by, ..., b, by, ..., b} and a complete set of relations
as follows:

2.1 rd) =1, 1<i<p,

@2 ri®) =w®), 1<igq,

(23) bbbt = w(®), 1<i<p, 1)<y,
(2.4) bith;by = w(b), 1<i<p, 1<j<q.

Proof. The relations in (2.3) and (2.4) exist since ker f§ is normal in B, Using (2.3)
and (2.4) all the remaining relations in B can be put in the form w(b) = w'(b),
i.e. a word in the elements b, , ..., b, equal to-a word in b, ..., b,. Relations of this
form are in turn consequences of the relations in 2.1 and 2.2. In particular, relations
of the form w(b) = | are consequences of the relations in 2.1.

In order to apply Lemma 2 to the short exact sequence in Lemma 1 we need
presentations of H'(S?, F) and S, % S,. Moreover, the generators of S, x S, should
be given in a form which makes it convenient to find clements in H*(S2, P,,,0,)
which are sent to these generators by r. To this end, we relabel the points ¢, ..., ¢,
85 Pyt s Putn 80 assume the POINLS Py, .y Py Pytts oes Putn 16 arranged
on the equator of S?. Next define d; to be the homeomorphism of §* which “dials”
P to piyq in a counterclockwise direction and is fixed outside an annulus which
contains p; and p; .4 but no other points of F. In more detail, if 4 is an annulus in
the Euclidean plane parametrized by (r, 0) where 1<r<2 and 0 is a real numbet
'mod2x and e is an imbedding of 4 into S* with ¢(3,0) = p,,, and e(Z, ®) = p;,
then djfe(d) = ede™" where d is the homeomorphism of 4 given by d(r,0)
= (r, 0-2n(r—1)) for 1<r<1.5 and d(r, 0) = (r, 0-2m(2~r)) for 1.5<r<2
"Aspicture indicating the action of J is given in Figure 1d of [1].

Lemma 3. Let d; denote the restriction of d; to F. S,,xS, is generated by
{di 1Sism—1, m+1<i<n+m~1}. 4 complete set of relations is given as follows:
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@1y didiy d = digrdidiyy, i<m—1 or izm4+1 s
(3.2) didg = didi,  |i~k|>2,

(3.3) om-1)* =1,

(3.4) @dp*=1.

Proof. This presentation follows from the presentation given on page 64
of [3] by observing that d] denotes the transposition (i, i+1).

Next we give a presentation of H'(S?, F). For 1<j<k, let oy denote a simple
closed curve in-S* which encloses the points pyand py, ..., Poyy,. That is, one of the
open disks bounded by oy, contains these points and the other disk contains
F={Pjs Pir 15 Puin}. Moreover, assume that oy is below the points pjy g, ., Py
when j<k—1, i.c. assume the “neck” of oy, is in the southern hemisphere. Let ay, be
the twist homcomorphism corresponding to oy, as defined in [10]. Let @ denote
the equivalence class of ay, in H'(S?, F).

Lemma 4. If m+-n<2, then

mtn

H'(S?, F) is generated by ) {dy: 1<j<k}
k=3

and in terms of these generators a complete set of relations is given by the relations
in Theorem 4.1 of [10].
Proof. This lemma follows by Theorem 4.1 of [10].
We are now in position to determine H *(S‘Z, P,, Q,). Let d, denote the equi-
+

mtan
valence class of d; in H*(S* P, Q,). For m+n>2, let 4 = kL_JS {a;: 1<j<k}

and let B = {d;: 1<i<ni+n,i# m}.
TreoreM 1, If m+n>2, then HY(S? P,, Q,) is generated by A B and in
terms of these generators a complete set of relations is given by:

(1) The relations involving the elements of A given by Lemma 4.

(2) a) The relations obtained from (1) and (2) of Lemma 3 by replacing d; by d;.
b) (¢ lﬂ~Hz~1)2 = e gt s
©) (@)? = asi,

(3 a) d,dpdy = by gy, ifJ<k—1and p=j,
b) d,dudy "t = g e g P =1,
Q) A,y dyt s by A Gpmy g If o= mtn and j<k—1 and p = m+n-1,
&) @iy = Uy 8y B e g o s Tt ot r2 Gy I P = k=1,

J <k -1, '

€) d,dydyt = dy for all remaining choices of j, k and p.

Proof. The above theorem is obtained by applying Lemma 2 to the short exact
sequence in Lemma 1 using the presentations in Lemama 3 and Lemma 4. The rela-
tions in (1), (2), and (3) of Theorem 1 correspond respectively to relations of
Types 2.1, 2.2 and 2.3 in Lemma 2. Type 2.4 relations are consequences of the rela-
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tions in (3). In particular, (32) yields the relation dj*a;. . d; = @ for j+1<k
and this relation can be combined with the others in (3) to yield all relations of
Type 2.4. Thus in order to establish Theorem 1, it is enough to show that the 1'e1ations
given in (1), (2) and (3) are valid.

The relations in (1) can be obtained by using essentially the same isotopies used
to obtain the corresponding relations in Theorem 4.1 of [10].

The relations in (2a) follow directly from the fizst two relations in Theorem 4.5
of [2] by noting that the homeomorphism d; can be taken to be a representative of
the element w; as defined in [2].

(2b) and (2¢) hold since for any k, 47 is isotopic (rel ') to a twist homeomorphisin
supported by a curve enclosing py and py.;. If k& = m-+n—1, this curve can be taken
to be tpyyp-1,men- If & =1, this curve can be taken to be oy,

The verification of the relations in (3) makes use of the fact that if a homeo-~
morphism f is applied to a simple closed curve «, then the twist homeomorphism
supported by f(x) is isotopic to the homeomorphism faf =% where « is the twist
homeomorphism supported by «. Moreover, if F is a finite subset of $2 and
F(F) = Fand o is in S*—F, then all isotopies can be taken to be relative to F. We
also will make use of the fact that ambient isotopic curves (rel F) support isotopic
(rel F) twist homeomorphisms. A full discussion of twist homeomorphisms is given
in [2]. In particular, the above comments follow from Lemmas 4.6.7 and 4.6.1
of [2].

The relations in (3a) are established by noting that for j less than %—1 the dial
homeomorphism d; applied to the curve ay, yields a curve which is ambient isotopie
(1el F) 0 oty .

(3b) is obtained by noting that ;.. ; () is ambient isotopic (relF) to apgt (0. g 1)-

(3¢) is established by first noting that for the given values of I, j and p the twist.
homeomorphism supported by d,(e;) followed by the inverse of aj_k,laj"kl By 1 18
isotopic (relF) to a homeomorphism which is the identity on the equator. We then
apply a technique of J. W. Alexander (sec Theorem 5.2 of [4]) to show that this
homeomorphism is isotopic (relF) to the identity on all of S2.

(3d) is verified in a manner similar to that used for (3c).

Finally, (3e) holds since for those values of p, j and k mnot covered
in (3a) through (3d) the annuli used to define d, and ay, can be chosen to be disjoint
and hence the homeomorphisms commute.

3. Orientation reversing homeomorphisms. Let H(S?, P, @) denote the space
of isotopy classes (relF) of all homeomorphisms 4 of S? with h(P,) = P, and
h(Q,) = Q,. Let f be the orientation reversing homeomorphism of $* defined by
reflection through the equator, ie. f(x,, x,, x3) = (¥y, X5, —x3). Let J denote the
equivalence class of f in H(S?, P, 0,).

THEOREM 2. Let m-+n>2. A complete set of generators of H(S* P,, Q,) is
Jormed by adjoining f to the generators of H*(S>, P,,, Q,) given in Theorem 1. d com-
Dlete set of relations is given as follows:

icm®
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(1) The relations given in Theorem 1.
@rF=1
(3) () Jd,7* =d,*,
) Jap ™" = azt, if j=k-1,
(© Jau =" = (7}.f|11'1,j+2f71—k1‘—’j+1,j+2> if j<k—1.
Proof. We apply Lemma 2 to the short exact sequence

1> H¥(S%, Py 0) 5 H(S? Py Q) S Zy > 1,

where y is the projection of H(S%, P,,, Q,) onto H(S?, P,,, Q) H*(S% P, 0) =7,
Since y( ') generates Z, dnd i is an imbedding, by Lemma 2 { f} U 4 U B generates:
H(S?, Py, Q). Also the relations given in (1), (2) and (3) of Theorem 2 correspond
respectively to the relations of Types 2.1, 2.2 and 2.3 of Lemma 2. Since f = 771,
the relations of Type 2.4 are also covered by the relations in (3). Thus in order to-
prove Theorem 2 it suffices to show that the relations in (1), (2) and (3) of Theorem 2
are valid.

The relations in (1) hold since i is an imbedding.

(2) and (3a) follow directly from the definitions of the homeomorphisms in-
volved. That is, the homeomorphism f? is the identity and fd,f~* = d; *.

(3b) and (3¢) arc verified by using the properties of twist homeomorphisms.
mentioned in the proof of Theorem 1. (3b) is established by showing that for
j = k~1 the curve f(x;,) is ambient isotopic (rel F) to the curve o' and hence the-
corresponding twist homeomorphisms are isotopic. (3¢) is established by showing
that for j<k~1 the curve f (o) is ambient isotopic (rel ) to the curve ajiy, ;4 2(az").

4, The homeotopy group of X,,,. We will obtain the desired presentation of”
H(X,,) by showing H(X,,,) is isomorphic to H (S?, P, Q,). Let Y, be the space
obtained by removing the interiors of the disks Dy, ..., D, from S Let H(Y,, P,)
denote the space of isotopy classes (relP,,) of homeomorphisms of ¥, which send P,,.
to itself. Note that ¥,—P, = X,

LrvMmA. 5. ]{( I};IJI>III)EITT(X;)I,VI)‘

Proof. Let y: H(Y,, P,) — H(X,,) be the map which sends the isotopy class.
(relP,) of a homeomorphism A of Y, with 2(P,) = P,, to the isotopy class of the
restriction of i to ¥,~P,,. Theorem 4.21 of [8] shows that  is an isomorphism from
]I( Y;n ‘Pm) to H( Yn"’Pm) = f[(Xr',rl)'

TueorEM 3. H(S?, P, Q) H(X,,.).

Proof. By Lemma 5 it suffices to show that H (S?, P,, Q,) is isomorphic to
H(Y,, P,). Letn: H(Y,,P,) - H(S* P,, @,) be the map which sends the isotopy
class (relP,) of a homeomorphism k of ¥, with A(P,) = P, to the isotopy class
(zelP,, u @Q,) of the homeomorphism of S formed by taking the cone of & over
cach of the boundary components of ¥,. In Theorem 6 of [9] it is shown. that = is.
an isomorphism from the homeotopy group of Y, to the group of‘isotopy classes.
(rel Q,) of homeomorphisms 4 of S* with £(Q,) = Q,. If we restrict attention fo-
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‘those homeomorphisms which also send P, to P,,, then it is possible to construct
all isotopies used in the proof of Theorem 6 of [9] so that P, is sent to P,, by these
isotopies. Thus by a slight modification of the proof of Theorem 6 of [9] we have
that 7 is an isomorphism from H(Y,,P,) to H(X,,).

Remark. If m and n are such that m-+n = 3, then the presentation obtained
for H(X,,) yields the group S, xS,xZ,. This follows since when F consists of
three elements, the twist homeomorphisms a5 and a,3 are isotopic (rel F) to the
identity and each dial homeomorphism is its own inverse.
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Hyperspaces where convergence to a calm limit implies eventual
shape equivalence

by

Laurence Boxer (Niagara University, N. Y.)

Abstract. Wo introduce the calm fundamental metric as a means of topologizing the collec~
tion 2% of nonemply subcompacta of a compactum X. The calm fundamental metric der induces
a topology stronger than that of Borsuk’s fundamental metric and has the following property:
if Ay is calm and lim dep(dy, A) = 0, then Sh(dp) = Sh(4y) for almost all #. The relation be-

nerod
tween dep and other hyperspace metrics is explored for certain subsets of 2%,

§ 1. Introduetion. For a metric space X, let 2% denote the collection of nonempty
compact subscts of X. There have been several methods developed for imposing
a metric topology on 2%, The best-known is by use of the Hausdorf metric dy. The
Hausdorff metric has interesting properties, but is displeasing from the following
standpoint: for {ixed A & 2%, we may have limdy(4,, A) = 0 and yet for all n, A,

n—o

and 4 may be very different topologically. For example, every member of 2% is a limit
of finite sets in the topology of dy.

Metrics for 2% that induce stronger topologies than that induced by dy were
introduced by Borsuk in [B1] and [B2]. The fundamental metric dg defined in the
latter paper was showit in [Ce-So] to have the following property: if limdg(4,, 4) = 0

n=roo .

and A is a calm compactum (see § 3 for the definition of calm) then Sh(4,)>Sh(4)
for almost all n.

n this paper, we assume that X is a nonempty compactum. Our main results

include the introduction of the calm fundamental metric dep, which induces on 2%
a topology stronger {han that of dp and has the following property: if
limdgp(d,, 4) = 0 and 4 is calm, then Sh(4,) = Sh(4) for almost all n.
e After submitting the first draft of this paper, the author received a preprint
of [Ce2]. We show the netion of calmly regular convergence introduced there is
essentially equivalent to convergence in the topology of dey and we answer a question
raised in [Ce2].

We assume the reader is familiar with shape theory [B3] and the topology of
the Hilbert cube [Chl.
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