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Proof. Use Theorem 3.4 and the observation that for any open expansion
{UMD)| Le £} of 2, the set {xe X| {Le £| xeU(L)} is finite} is an F,-set.

We close this paper with a question related to the results of Theorems 3.2
and 3.3 above.

QUESTION 3.6. Does there exist, in ZFC, a topological space that is not o-dis~
crete but whose every subset is a Gj-set?

Under MA+ 7ICH, such spaces do exist, and they can even be metrizable
(in fact, subspaces of R; see [15] or [14]). By a result in [13], no space giving an
affirmative answer to the above question could be normal and first countable.

Added in proof. Independently of the author, Z. Balogh has shown that, under PMEA,
a space of character less than ¢ is o-discrete, if every subset of the space is an Fy-set.
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Retracts and homotopies for multi-maps
by

A. Suszycki (Warszawa)

Abstract. By means of upper semi-continuous multi-functions defined on compacta and with:
values of trivial shape we introduce the notions of multi-retracts and multi-homotopies. We give
some characterizations of absolute multi-retracts and absolute neighborhood multi-retracts and
apply the notion of multi-homotopy to the construction of groups, called multi-homotopy groups.
In particular, we show that if y € ¥ € ANR, then the nth multi-homotopy group of the space (¥, y):
is isomorphic to the nth shape group of this space.

1. Introduction. Throughout this paper all spaces are compact and metric.
By a multi-function ¢ from a space X to a space ¥ (¢p: X — ¥) we mean one that
assigns to every point x € X a closed non-empty subset ¢ (x) of ¥. The upper semi-
continuity (shortly u.s.c.) of @: X — Y means that the graph & of ¢ defined as

P ={x1NeXxY yep}

is closed in X'x ¥. A map denotes, as usual, a continuous function. The notion of
shape is understood in the sense of Borsuk [3]. A w.s.c. multi-function ¢: X - Y
is called a multi-map of X into Y if ¢(x) is a set of trivial shape for every x e X.
By an extension of a u.s.c. multi-function ¢: X— ¥ onto M>X we mean a u.s.c.
multi-function ¢’: M — Y such that ¢'|X = ¢ and ¢’'(x) has the shape of a point
for every x € M\ X. We say that a map f of Y onto X is a cellular map (compare [12])
if £ 7(x) has trivial shape for every x e X. Let us note that, if f is a cellular map
of Y onto X, then the multi-function ¢: X — ¥, defined by the formula ¢ (x)
= f~(x)= Y is a multi-map. Let us call such a multi-function an inverse of the
map f. We say that X is countable-dimensional if it is the union of a countable family
of finite-dimensional subspaces.

In the sequel we will need the following theorems:

1.1. TreoreM (Kozlowski [9] thms 9 and 12). Let f be a cellular map of a space Y
onto X such that the set {x € X| f ~*(x) is a nondegenerate set} is contained in a com-
pdct and countable-dimensional subset of X. Then for every closed subset A of X the
map f1f~A): £ ~UA): £ ~HA) ~ A is a shape equivalence. Moreover, if Y € ANR,,
then X € ANR.

1.2. TreoreM ([14], [15]). Let ¢ be a nulti-map of a space X into Y e ANR,
where Xc M. If dim(MN\X)<oo or X is countable-dimensional, then there exists
a neighborhood U of X in M such that ¢ has an extension onto U. Moreover, if ¥ e AR,
then ¢ has an extension onto M.
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By a Z-set in a space ¥ (compare [1], p. 366) we mean a closed set X< ¥ such
that for every £>0 there exists a map g: ¥ — Y\X, e-near to the identity map idy.
We use X Y to indicate that X is homeomorphic to Y. O denotes the Hilbert
cube. Small Greek letters are reserved to denote multi-functions. Iis the unit interval
<0, 1> of reals.

2. Multi-retracts. Suppose that Y is a subset of X. Then a multi-map o: X - ¥
is said to be a multi-retraction of X to Yif y € o (y) for every y € ¥. We say that a sub-
set ¥ of a space N is a neighborhood multi-retract in the space N if there is a neighbor-
hood U of Yin N and a multi-retraction ¢: U — Y. If U = N, then we call ¥ a multi-
retract of the. space N.

Obviously every retract of a space is a multi-retract of that space, and a neigh-
borhood retract is a neighborhood multi-retract. Moreover, if N> Y'e FAR, then
Y is a multi-retract of N. Indeed, defining o: N — Y so that o(p) = Y for every
yeN we get a multi-retraction of N to Y. Hence we infer that not every multi-
retract of a space is a retract of that space.

Let ¢ be a multi-retraction of X to ¥. Denote by Z<=Xx Y the graph of o
and by p and g the projections of ¥ onto X and Y, respectively. Then p: ¥ — X is
a cellular map. Moreover, if X has finite dimension, then by ([13], p. 86) Sh(X)
= Sh(Z). But Sh(¥)<Sh(2), because Y is homeomorphic to the diagonal of the
set ¥'x ¥, which is a retract of . Hence we infer (compare [8], Theorem 1) that

2.1, If Y is a multi-retract of a finite-dimensional space X, then Sh(X)=Sh(Y),
and, by ([3], p. 151, (1.10))

2.2, A multi-retract of a finite-dimensional and movable space is movable.

Let us note that the analogous properties for infinite-dimensional compacta
fail (see Example 2.11).

A space Y will be called an absolute neighborhood multi-retract (¥ € m-ANR)
provided that, for every space No¥, Y is a neighborhood multi-retract of N.
If Y is a multi-retract of every space No Y, then we cally Y an absolute multi-
retract (¥ e m-AR).

We have the following properties

2.3. A space homeomorphic to an m-AR-space is an m-AR-space.

2.4. A space lzomeomarphic‘to an m-ANR-space is an m-ANR-space.

2.5. Yem-AR <> YcNe AR is a multi-retract of N.

2.6. Yem-ANR <> YcNe AR is a neighborhood multi-retract in N.

We show that

2.7. Yem-AR < for each closed subset X of a space M and for every mdp
St X~ Y there is a multi-map @: M — Y such that f(x) € p(x) for every x e X.

Indeed, if ¥e m-AR and f'is a map of X into Y=, then there exist a multi-
retraction v: ¢ — Y and a map f’: M — Q, such that f'(x) = f(x) for every x € X.

Then the composition vef’ is a multi-map of X into ¥ such that (vof")(x)
= y(f(x)) for every xe€ X.
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To prove the sufficiency let us put ¥ = Yo Q = M, f = idy. Then there is
a multi-map ¢: Q — ¥ such that ye ¢(y) for every y e Y. It follows that ¢ is
a multi-retraction of Q to ¥, and by 2.5 we infer that ¥ e m-AR.

In a similar way one can prove the following

2.8. Yem-ANR < for each closed subset X of @ space M and for every map
J: X =Y there exist a neighborhood U of X in M and a multi-map ¢: U - Y such
that f(x) € p(x) for every xe X.

Notice that it is not possible to replace the condition f(x) € ¢ (x) in 2.7 and 2.8
by the condition ¢|X = f. This results from the following known fact:

2.9. If idy has an extension ¢ onto a locally connected space X> Y, then Y is
also locally connected.

Proof. Assume that Y is not locally connected at a point p € Y. Then there
is a closed neighborhood U of p in ¥ and a sequence (p,)? of points of ¥ convergent
to p and such that if i # j, then p; and p; belong to different components of the
neighborhood U. Let O<eg<diamU. Since ¢ is u.s.c., there exists a number #,
O<n<e, such that if o(x, p)<n, x€ X, then ¢(x) is contained in the ball K< Y
with center p and radius ¢. It follows from the local connectedness of X that for
arbitrarily given 6>0 there exists a closed and connected neighborhood ¥ of p
in X with a diameter less than §. Let us take § = #. There is an index i such that
pi€ ¥V and p; # p. Then the image ¢ (V)<= U of a connected set is a connected set
containing the points p and p;, which is impossible. Hence it follows that ¥ must
be locally connected.

‘We now formulate several properties of m-AR (resp. m-ANR)-spaces which

give a partial answer to the following problem: Are m-AR (resp. m-ANR)-spaces
invariant under cellular maps?

2.10. Let ¢: X — Y be a multi-map and g: ¥ — X a map such that y € ¢ (g9(3))
Sfor every ye Y. Jf Xe ANR, then Yem-ANR. Moreover, if Xe AR, then
Yem-AR.

Proof. Let Y<M e AR. Since X' € ANR, there exists a neighborhood U of ¥
in M and a map g': U — X such that g’|Y = g. Then the composition ¢ ¢ g': U~ Y
is a multi-map satisfying the condition y & (¢ o g’)(¥) for every y € ¥; therefore
@ o g’ is a multi-retraction of U to Y. We infer by 2.6 that ¥ e m-ANR.

If X' e AR, then puiting U = M in the above proof we find that ¥ e m-AR.

In particular, if g is a cellular map of ¥ onto X e ANR (resp. AR), then by
2.10 Yem-ANR (resp.- m-AR).

2.11. ExampLE. Consider a cellular map of a non-movable compactum ¥*
onto the Hilbert cube @ (see [16]). Non-movability Y* implies that ¥* ¢ FANR.
However, by 2.10 Y*em-AR.

Consequently, we infer by the fact that every FAR-space is an m-AR-space
that the class of m-AR-spaces contains the class of FAR-spaces as its proper
subclass.
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2.12. Let f be a cellular map of a space X onto Y e m-ANR, Yo Ne AR. If
there exist a neighborhood V of Y in N and a multi-retraction o: V — Y such that
dimo(y)< o for each y € V, then X € m-ANR. Moreover, if Yem-AR and V = N,
then X e m-AR.

Proof. Let X< Q and let f': Q — N be a map such that f'(x) = f(x) for
x e X. It follows by Theorem 1.1 that the composition f " oo: ¥V — X (f~* being
the inverse of f) is a multi-map. Denote U = f'~}(¥). Then f " tooof’: U= X
is also a multi-map and in addition satisfies the following condition:

I (7] = e ()] =1 () 2>

Therefore 1 o ¢ o f* is a multi-retraction of U to X, and to finish the proof it
suffices to apply 2.6. If Yem-AR and V = N, then the proof of Theorem 2.12
is similar.

for every xe X.

Let us observe that if f is a cellular map of X onto ¥* (¥* being as in
Example 2.11), then by Theorem 2.12 X e m-AR. Indeed, the cellular Taylor map
of Y* onto Q has finite-dimensional sets as its point-inverses (see [16]), and we
infer by the proof of 2.10 that the point-inverses are the values of the multi-retraction
of M to Y*.

2.13. THEOREM. Let f be a cellular map of Y onto X and suppose that one of
the sets X, Y is an FAR -space. Then the cylinder M= YxI U X of the map f is
dan m-AR-space.

Proof. Let Y e FAR. Every point ze M, is of the form (y, ?), where ye ¥
and ze 1. Let us fix a point x, € X and let y, € ¥ be a point in £ ~*(x,). We show
that there is a multi-map ¢: M, — M, such that

1) zep(z) and xy,e0(2)

Let z=(y,t)eM;. Denote by F, the set {(',#)e M, f(») = f(3)}. Then
Y F,=f"'[f(3)]e FAR and F,e FAR as a cone with base ™[ f(3)]. Hence,
by (B], (7.5), p. 321), YU F,e FAR and (Y U F,) U F, e FAR. We define ¢:
My — Mf as follows:

for every ze M, .

o@ =¢(r.0)=YUF,UF, for zeM,.

Then ¢ satisfies condition (1) and, what is easy to check, ¢ is a multi-map. Now,
let M;c Q. We define the multi-map o: Q — M, by the following conditions:
6lM; = ¢, 6| Q\M, is a constant map into {x,}. By (1), ¢ is a mulu retraction.
Hence M;em-AR.

If XeFAR, then it suffices to repeat the procedure, dcﬁnmg o(z) = XU
U F, UF, for ze M;.

2.14. COROLLARY. Let f be a cellular map of Q onto X such that the set
B={f"'(0)| xe X and f~*(x) is a nondegenerate set}
is a Z-set in Q. Then X e m-AR.
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. Proof. We may assume that Q = Q, xJ, where @, = Q, and that B< 0, x {1}.
Define a map f;: 0, — f(Q,) by the formula f,(») = f(») for ye Q,, where we
identify @, with Q; x {1}. Then X is the cylinder of the cellular map f;; therefore
we may apply Theorem 2.13.
We say that non-empty sets Fy, ..., Fy, k € N, constitute a simple decompo-
sition of a space X if their union is X and the intersection of any number of the
sets is the empty set or an FAR-set.
2.15. TBEOREM. If X has a simple decomposition F,, ..., Fy, then there exist
closed neighborhoods U; of F;, i =1,..,k, in M>X and a multi-retraction
k

v: U= U U; - X such that, if xe U and U, = U;, U ... U U, is the union of all
i=1

1<i<k, that contain the point x, then

vx)=F,u..0F .

Proof. We show that there exist closed neighborhoods U; of the sets Fj,
i=1,2,..,k in M>X such that for every subsequence (i})j-; of the sequence
1,2,.., k) the following implication is satisfied

NU,#0 = F, n..

sets Uy,

m U, NF,#9.

To this end suppose the contrary. Let us take decreasing sequences (Ups2;
o0
k such that () U} = F, for

=1
., k. Then there exist a subsequence ({)j=1 of the sequence

of closed neighborhoods of the sets F;, i = 1,2, ...,
every i =1,2,..
(1,2,..., k) and a sequence (p,);=, of points of U = U U; convergent to a point

i=1
pe X such that

@ P € ﬂ u;

j=1

for every ne N,

® NF,=0

Jj=1
m

It follows by (2) thatpe
j=1

U7, for every n e N. Therefore p € ﬂ F;,, which contra-
i=

dicts (3). This proves the existence of neighborhoods U, satisfying (1). Now, let v be
k

a multi-function from U = |J U, to X, defined as in the theorem. Notice that
i=1

if x & X then the union of all sets of the sequence (F,, F,, ..., F) containing the
point x is an FAR-set. Hence (1) implies that all values of v have a trivial shape.
Moreover, since the sets U;, i = 1, 2, ..., k constitute a closed covering of U, we see
that v is u.s.c. Thus v is a multi-retraction of U to X.

2.16. COROLLARY. A set having a simple decomposition is an m-ANR -set.

2.17. Remark. The set Y* in Taylor’s example (see 2.11) is an m-AR -space,
but does not have a simple decomposition. Indeed, if ¥* had a simple decompo-
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sition, then by the theorem on the union of two FANR -spaces (see [6]), Y* would
be an FANR-space, which is impossible, because Y* is non-movable.

There is an example ([4], (4.18), p. 156) of a 2-dimensional set X € ANR
which is not decomposable into a finite number of AR-sets. It follows that there
exist points of the set X no neighborhood of which is an AR-set. If the set X had
a simple decomposition, then for each x € X the union F, of all sets of the decompo-
sition containing the point x would be a neighborhood of x in X and an FAR-
set. Using the fact that FAR-sets are contractible in each of their neighborhoods
(in an ANR-space) and applying the argument as in ([4], (4.17), p. 155) (in partic-
ular using [4], (4.1), p. 153), one derives a contradiction of the fact that F, e FAR.
Hence we obtain the following fact:

2.18. There exist ANR-spaces having no simple decompositions.

Since every Y e FAR has a simple decomposition, we have

2.19. Every FAR-set is an m-AR-set.

For finite-dimensional multi-retracts we have the following properties:

2.20. If Y has finite dimension, then

Yem-AR < YeFAR.

Indeed, let ¥ be a multi-retract of a finite-dimensional space N e AR. It fol-
lows by 2.1 that Sh(Y¥)<Sh(¥). Hence Y & FAR. The converse follows from 2.19.

2.21. Every finite-dimensional ¥ e m-ANR is an FANR -space.

To prove 2.21 assume that ¥ is a subset of a finite-dimensional cube I". Then
there exist a neighborhood U of ¥ in I" and a multi-retraction o: U — ¥. Moreover,
we may assume U e ANR. Then by 2.1 Sh(¥)<Sh(U), and we infer by ([3], (1.2),
p. 254) that Ye FANR.

If Yem-AR has infinite dimension, then it need not be an FANR-space
(see 2.11).

Let us remark that the fundamental dimension Fd(Y) for ¥ em-AR can be
infinite. To prove this it suffices to observe that if Fd(¥*) (for Y* see 2.11) were
finite, then, by the movability of Q and the result of Bogatyi ([2], p. 261) on the
shape equivalence of compacta under cellular maps, we would have Sh(Y*)
= Sh(Q). But it is known that Sh(Y*) # Sh(l).

2.22. Remark. By Theorem 1.1 properties 2.20 and 2.21 remain true for
countable-dimensional spaces.

Let us denote by H,(X) the nth Vietoris homology group of X with an abelian
coefficient group %. If f'is a cellular map of ¥ onto X, then by ([11], (2.3) and (4.7))
JSinduces an isomorphism between the fundamental groups (¥, ¥) and (X, f(3))
for every y € ¥ and f induces an isomorphism of the homology groups H,(X) and
H(Y), neN.

Let o: X — ¥ be a multi-retraction and T Xx ¥ the graph of ¢. Fix a point
(x,y)e X and denote by p and g the projections of X onto X and Y, respectively.
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Since p is a cellular map of £ onto X, by the theorems mentioned above p induces.
the isomorphisms

Pel H() > H(X), n=0,1,2,..
and

Pst (X, (x, ) > 1,(X, %), neN.

Let p; ! and p;l denote the isomorphisms inverse to p, and p ¢, Tespectively, and gy,
and ¢, the homomorphisms of homology and fundamental groups induced by the
projection g. Then we say that the compositions o = gsopits H(X) — H,(Y)
and o; = g0 p}lz (X, X) = (¥, ») are the homomorphisms induced by o.

223. If 01 X =Y is a multi-retraction, then the homomorphisms (@] Y)y and
(0] Y); induced by 6|Y: Y- Y are the identity homomorphisms.

Indeed, let Xyc ¥x ¥ denotes the graph of o|Y and let p and ¢ denote the
projections of Xy onto the first and the second factor, respectively. Then 2.23 follows.
by the commutativity of the diagram

diag ¥
p| diugym X[‘diag Y
Y Y
N
P \ / q
Zy

where diagY means the diagonal of the set ¥'x Y.

Since the multi-retract ¥ of X is homeomorphic to the diagY which is a re-
tract of X' ana since py and p; are isomorphisms, it follows by ([3], (5.3) and (5.4),
p. 191) that

2.24. If Y is a multi-retract of X, then for every n =0, 1, ... the group H(Y)
is a direct divisor of the group H,(X) and for n>1 the group (Y, y) is a direct divisor
of m,(X, x).

By 2.24 we have

2.25. If Ye m-AR, then for n # 0 and every y € Y the groups H,(Y) and (¥, )
are trivial. B

2.26. If Y e m-ANR, then almost all groups H,(Y) are trivial; moreover, ifu is
finitely generated, then all groups H\Y) are finitely generated.

It follows from 2.26 and the example of a locally contractible compactum
with a positive nth Betti number for every n = 0,1, ... ([4], (11.1), p. 124) that
there exist locally contractible compacta that are not m-ANR -spaces.

2.27. ExaMPLE. Let L be a curve lying in the plane E? and defined in polar

coordinates (r, a) as follows:
r=1/a+1 for ae{l,x).

Denote by Y the closure (in E2) of L. Then ¥ € FANR. We show that Y ¢ m-ANR.
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To this end assume the converse. Then there is a compact neighborhood U
of Yin E* and a multi-retraction o: U — Y. Let y be a point of the circle S = Y\L.
Then o(y) is contained in S, and moreover it is an arc. Let " be a point of the set
S\o(3). We take a closed neighborhood ¥ of ¢(y) in ¥ such that y’ ¢ V. Then ¥V'is
the set with countable many components. We infer by the upper semi-continuity
of & that there exists a closed neighborhood U, of y in U such that ¢(Ug)= V. Let
B, U, be a closed ball in U with center y. Denote by yo a point of BoN\S. Then
(o) and ¢(») lie in different components of ¥, which is impossible by the fact
that the image of any connected set (in our case By) under any multi-map is con-
nected. Thus must be Y ¢ m-ANR.

2.28. ExaMmpLE. Denote by X, the subset of the plane E? which is the closure
of the graph L, of the function f(x) = sin(n/x) for 0<x<1. Let ¢, = (0, —1),
by = (0,1). Write X; = Xox{i}, (dg,0) = ;€ X;, (bo, 1) =b;eX;, i=1,2,3.
Assume now that X< E? is the set formed from the sum X; U X, U X5 by the
identification of the poiuts @;,; with b, for i = 1,2 and b; with @;. Then X has
a simple decomposition, hence X e m-ANR. Since X is not locally connected, it
is not the image of an ANR-set under any map. We show that

(a) There exists no cellular map of X onto any ANR-set.

To prove (a) suppose, conversely, that there exists a cellular map g of X onto
an ANR-set Y. Then there are a compact neighborhood U of X in E* and a map
g': U= Y such that g’|X = g. Therefore the composition ¢ = g~* o 4’, where g~*
is the inverse of g, is a multi-retraction of U to X such that, for x € X, o(x) is a point-
inverse under g. Let us take a point xe 4 = X\(Lyx {i}), i = 1,2, 3. Then we
must have o(x)>4 (otherwise there would be a point x' € A\o(x) and a closed
neighbothood V of ¢(x) in X such that x'¢ ¥, which, by a similar argument as
in Example 2.27, is impossible). However, the condition 4 < ¢ (x) fails, because o (x)
is a point-inverse under the cellular map g and hence has the shape of a point. The
contradiction proves condition (a).

Let us formulate some problems concerning multi-retracts.

2.29. PROBLEM. Is it true that every plane m-ANR-set has a simple decompo-
sition?

2.30. ProBLEM. Is it true that every retract (deformation retract) of an m-AR-
space (resp. m-ANR-space) is an m-AR-space (resp. m-ANR-space)?

In particular,

2.31. ProeLEM. Is the image of Q under any cellular map an m-AR-space?

2.32. ProBLEM. Is it true that finite-dimensional m-ANR-spaces have the
shape of a compact polyhedron?

3. Multi, homotopies. Let (X, x,) and (¥, y,) be spaces with any given basic
points X, and yo. We write @: (X, xo) = (¥, yo) if ¢ is a multi-map of X into ¥
such that y, € @ (xo). If fand g are maps of X into ¥ such that f(xo) = g(xo) = ¥q,
then by a homotopy of the maps f and g we understand a map h: Xx I — Y satis-
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fying the conditions /| X' x {0} = £, X% {1} = g and h(x,, t) = ¥, for every te L.
We call a homotopy & an isotopy if k| X x {t} is 2 homeomorphism onto A(X x{t})
for each ze L.

Let ¢, 021 (X, x5) = (¥,y,) be multi-maps. We say that a multi-map
A XxI— Y is a multi-homotopy connecting ¢, with ¢, if x(x, 0) = @4 (x), x(x, 1)
= @,(x) and y, € x(x,, t) for every x € X and z e I. In this case the multi-maps ¢,
and ¢, are said to be multi-homotopic (notation: ¢, = 0.

3.1. The relation' of multi-homotopy is an equivalence relation; hence the
collection of all multi-maps (X, x) = (¥, y,) decomposes into disjoint classes
of multi-maps multi-homotopic to one another, called multi-homotopy classes.

Let us note that, if £, f5: (X, xg) — (¥, y,) are homotopic maps, then they
are multi-homotopic. The converse is not true.

3.2. ExaMPLE. Let X' be a non-contractible FAR-set. Let us select a point
Xp € X. Assume that f; = idy and f,: X — X is the constant map of X into xg.

Then f; and f, are not homotopic, but they are multi-homotopic under the multi-
homotopy yx: XxI— X defined by the conditions

2(Xx€0,8) = {x}, 2D =%, 2({(x}xE& ) ={x},

If ¢: (X, x0) = (X, x0) is a multi-map of X into itself with the property that
xe@(x) for every xe X, then we write ¢ = m-idy. If ¢: (X, x0) = (¥, o) is
a multi-map, then ¢ &~ 6§ will mean that ¢ is multi-homotopic to the map 6 of X
into Y such that 0(x) = y, for every xe X. A set (X, x,) is said to be multi-con-
tractible, if idy = 6.

xeX.

33. If @ = m-idy, then ¢ & idy.

Indeed, the conditions y({x}x<0, 1)) = {x}, x(x, 1) = ¢ (x) define the multi-
homotopy connecting ¢ with idy.

34, If o1 (X, x0) = (Y, yo) is a multi-map of X into Y such that ¢ (x) = ¢ (xg)
for every x€ X, then ¢ ~ 6.

3.5. If fis a map of (X, x,) info d multi-contractible space (Y, y,), then f & 0.

In fact, if y: ¥'x I ¥ realizes the relation idy ~ 0, then #: X xI — ¥ defined
by the formula F(x,t) = x(f(x), ) is a multjhomotopy realizing f & 4.

3.6. Let ¢: (X, xo) = (Y, 3o) be a multi-map of X into Y € FAR. Then ¢ = 4.

To show this, it suffices to define the multi-homotopy y: X'xI — Y by the

following conditions: x(x,7) = e(x) for 10,1, x(x, D=7 x(Xx&, 1)

= {»o}.

3.7. Let ¢: (5", x0) = (Y, yo) be @ multi-map of the n-dimensional sphere S"
into Y. Then the following conditions are equivalent

(a) @ has an extension onto the W+1.

® o= 0.

2 — Fundamenta Mathematicae CXV
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Proof. Let ¢’ be the extension of ¢ onto B""*, We define y: S"x1— Y by the

formula

2, 8) = @'[(1—)x+1x,].
Since x(x,0) = ¢'(x), x(x, 1) = @'(xg) = @(xo) and x(xy, ) = @(x) for every
teland xeS" then y is a multi-homotopy connecting ¢ with x[S”x{1}. So, it
suffices to apply 3.4. To prove the implication (b) = (a), we define the extension
@' of @ by setting ¢'(x) = {yo} for 0<[|xl|<} and ¢'(x) = x[x/|lx[l, 2—21Ix1]]
for < ||x||<1, where y realizes the relation ¢ 0.

3.8. Every m-AR-set is multi-contractible.

Proof. Let X< Q be an m-AR-set. Let us fix a point x, in X. Then there
exists a multi-retraction o: Q — X such that x e g(x) for evety x e X. We define
the multi-homotopy y: XxI — X connecting ¢|X = m-idy with the multi-map V,
which assigns to every xe& X a set o(xp):

2(x, 1) = a[(1—8)x+1x,].
By 3.3 and 3.4 we get
idy ® o]lX 2y ~0.
This implies the following

3.9. FAR-sets are multi-contractible.

There exist multi-contractible spaces not having the shape of a point. For
instance the non-movable compactum Y* (see 2.11) is an m-AR-set and, by 3.8,
is multi-contractible.

‘We now prove the following theorem on the extension of a multi-homotopy:

3.10. TeEOREM. Let y: XxI—Ye ANR be a multi-map, where X< M and
dim(M\X)<co or M is countable-dimensional. If x|Xx {0}: X — Y has an extension
Yo: M — Y, then there exists a multi-map §: M xI — Y, such that §|XxI = x and
F1M x {0} = Xo-

Proof. Put P = Mx{0} U Xx I By Theorems 1.1 and 1.2, there is a neigh-
borhood U of P in M x I such that the multi-map y: P - Y e ANR defined by the
formulae

Yix,0) = yo(x)  for

Yix,t) = x(x,t) for
has an extension ¥/’ onto U. There exists a map f: M x I — U which is the identity
onto P (see [4], (8.2), p. 94). Then it suffices to define §: M x I - ¥ as the compo-
sition

xeM,
xeX and tel

F=y'of.
For (x,t)e XxI we get

6,0 =9 (fx, 1) = ¥/ (x, )= x(x,2).
70, 0y = ¥/ (fx, 0)) = ¥'(x, 0) = yo().

Thus 7 is the required multi-map.

For xeM
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One can easily see that the classical homotopy extension theorem cannot be
directly transferred to the case of multi-maps into m-ANR-sets. Instead, the sup-
position ¥ e m-ANR leads to the following

3.11. THEOREM. Let h be a map of P = Mx{0} u XxI into ¥Yem-ANR,
where X is a subset of M. Then there exists a multi-map @: MxI - Y, such that
for every (x,t)eP, hix,1)ep(x,1).

Proof. Let Y be a subset of the Hilbert cube Q. Then there are a neighbor-
hood ¥V of Yin Q and a multi-retractiong: V' — Y. Let i': M x I~ Q be a map satis-
fying the condition #'(x, 1) = h(x, 1) for every (x, ¢) e P. Put U = #'~*(¥). There
exists (see [4], (8.2), p. 94) a map f: M xI — U which is the identity onto P. We
define @: M xI— Y as the composition ¢ = g o/’ of. For (x,1)eP we get

@(x, 1) = o(B{f(x, D)) = a(B(x, 1)) = o (h(x, ).

Since y e o(y) for every y € Y, we have h(x, t) e o (h(x, )). This completes the
proof.

3.12. Every multi-contractible ANR -space is an m-AR-space.

Proof. Let (X, x,) be a multi-contractible ANR-set contained in M € AR.
Let us denote by y: Xx 7 — X the multi-homotopy connecting idy with 'the map
71X x {0} of X into x,. Setting

@(x,0) = {xo} for xe M, o(x,1) = y(x,t) for xe X and e (0, 1>,
we get the multi-map ¢ of P = Mx{0} u XxI into X. Since P e ANR, there
exists a meighborhood U of P in M x1I and a retraction r: U — P. There exists
a map f: M xI - U which is the identity onto P (see [4], (8.2), p. 94). Therefore
W= g@orof|Mx{1}: Mx{l} > X is a multi-map such that ¥(x) = ¢ (r(f(x)))
=@ (r(x)) = () = x{x, 1) = {x} for every xe Xx{1}. Thus ¥ is a multi-re-
traction of M to X and we conclude that X'e m-AR. ~

From this it follows the following corollary

3.13. The sphere S™ is not multi-contractible.

4. Multi-homotopy groups. Let S* and S~ denote digjoint sets, homeomorphic
to the closed halfspheres in the n-dimensional sphere S", ne N. By S we denote
the set obtained from the disjoint union §* U S~ U (" 1xI) by identifying
§"71 3 {0} with the boundary $* = (S*\IntS*) of S* and S""*x {1} with the
boundary S~ = (S™\IntS™) of S~. Clearly S = S™ Let x, be-a selected point
of S belonging to S"~* x {4}. If Y is a space with the basic point y,, then the multi-
homotopy class (see 3.1) containing the multi-map ¢: (S, xo) = (Y, yo) we denote
by [p]. In the set of the multi-homotopy classes we introduce the group operation. .
To this end we first define the operation assigning to every two multi-maps
@, (S, x0) = (¥, yo) a multi-map @ V2 (S, x0) = (¥, yo).

It is known that one can define isotopies &;: (S\{xo} xI) = S\{xo}, i =1,2,
2%
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" such that Bi(S\{xo}) % {0} = idsop, I = 1,2, H((S\x )% {1}) = S*\$* and

I ((S\{xo) % {1}) = S™\S~. If we set
o(hit(x, 1)  for xeS™S$*,
o (xo) for xeS*
(@ V) =< {r} for xe;S.‘"‘lx(O, 1),
W (x) for xeS7,
Y7, 1)) for xeSTN\S7,

then we get the multi-map ¢ V: (S, xo) — (¥, o). In particular, (¢ V1) (xo)
= {yo}.

For classes [¢] and [if] we define their group operation as follows
@) ell] = o V.

Let us verify . that the multi-homotopy class [¢ V /] does not depend on the
choice of the multi-maps ¢, ¥, i.e. thatif ¢’, ¥': (S, xo) — (¥, y,) are multi-maps
and ¢ = ¢', ¥ ~ ¢, then
(i) [ Vil =1[¢" VyT.

Let 34, x2: S %I — Y denote multi-homotopies connecting ¢ with ¢’ and y with /',
respectively. Then y: SxI — Y defined by the formula

w (AT, 1, 1) for  xeSTNST,
x1(%0, 1) for xeS*,

20, 1) =< {70} for xeS"'x(0,1),
2a(X0, 1) for xeS7,
Bz e, D, 0 for xeSTN\S

for every te I, is a multi-homotopy connecting ¢ V i with ¢’ V i)', Therefore (ii)
is satisfied.

It is not hard to prove (cf. the definition of homotopy groups) that the set
of all multi-homotopy classes of multi-maps (S, xo) — (¥, o) with the operation
defined by (i) comstitutes a group, abelian for n>1. The neutral element of this
group is the multi-homotopy class containing a map 6: (S, xp) — (¥, yo) such
that 6(x) = y, for every x € S. Moreover, the group does not depend on the choice
of the point x, € S. Let us call that group n-th multi-homotopy group of Y with base
point y,. We shall denote this group by m-m,(Y, y,).

4.1. If Y has the property that for every two of its points there is a subset F e FAR
of Y containing these points (in particular, if Y is arcwise connected), then the group
m-m,( ¥, ¥o) is isomorphic to the group m-m,(¥, yo), where yg is another basic point of Y.

Indeed, it suffices to remark that if F e FAR contains y, and yj then for every
multi-map ¢: (S, xo) = (Y, o) there exists a multi-map : (S, x0) = (¥, »0),
multi-homotopic with ¢ (relative y,), namely

(pf.\‘"l(pVOglﬁ,
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where [0] is the neutral element of m-m,(¥, yo) and ¢ is defined as follows:
VISN\{xo} =0 V8, (xp) =

The isomorphism of the groups m-m,( Y, vo) and m-m,( Y, yo) is then established by
the assignment

[ole 1]

If 7 is a homeomorphism of spaces (1. yo) and (¥, ¢), then assigning to every
element [¢] € m-m,(Y, y,) the element /1o p]le m—mn, (¥, yy) we define a homo-
morphism of the multi-homotopy grovps of (¥, y,) and (¥, ys). Moreover, this
homomorphism is an isomorphism; h:nce

4.2. The groups m-n,(Y,yo) are topological invariants of the space (Y, yo)-

It follows from 3.6 that

4.3. All the multi-homotopy groups of an FAR-set are trivial.

We now define 2 homomorphism of the group m-m,(Y, y,) into the nth funda-
mental group =,(¥, y,) of a space (¥, yo) (see [3], p. 132 for the definition of funda-
mental groups).

Let ¢: (S, x0) = (¥, y;) be a multi-map. We may assume (taking, if necessary,
the multi-map 8 V ¢ instead of @) that ¢ (x;) = {¥,}. Assume that S is a Z-set
in 0, = Q and that Y= Q, & Q. Let us take the\upper semi-continuous de-
composition & of the space Q; % Q,, whose elements are the sets {x}x¢(x) for
x €S and the remaining ome-point sets. Denote by r the projection of O, x Q,
onto the decomposition space A4 = QX 0,/% and by & the graph of ¢. It follows
by Theorem 1.1 that .# € AR. Since r is a cellular map of Q onto an AR-set and
the set of non-degenerated point-images of r is a Z-set in @, by ([17], Theorem 3),
we get A4 = Q. From ([7], also [12], Lemma 2.3) we infer that r(®) is a Z-set in .#.
Let us denote by p and g the projections of Q; x O, onto the first and second factor,
respectively. Setting

h: xori(pl®)"(x)] for xeS,

we get a homeomorphism of S onto r(®). Denote by Q5 the space formed from
0, x [ by contracting {xo}xI to a point. Let r;: Q; xI— Q5 the projection.
Then Qs = Q and by ([1], Theorem 10.1) the homeomorphism A between Z-sets
S=Q and r(P)c. extends to a homeomorphism s: Q5 — 4.

We define x*: SxI— @, xQ, by the formula

2200, 1) = r R (ry(x, 1)].

Then x* is a multi-map and x®(x,, 1) = {(xo, yo)} for every ¢ € I. Hence %® is a multi-
homotopy connecting x?|.Sx {1} with the multi-map x%|S % {0}. Moreover, x*(x, O}
= {x}x @ (x) for every xe S and y°|S x{¢} is a homeomorphism onto ¥%(S x {¢})
for each te(0, 1). Therefore, defining the sequence of maps

a® = {af: (S, x0) = (02, ¥o)}
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by the formula

af(x) = g(x°(x; 1/k))  for k=1,2,..,

we obtain an approximative map from (S, x,) towards (7, yo) (for the definition
of approximative maps see [3], p. 128).

4.4, THEOREM. Assigning to every element of the group m-m(Y, yo) with a rep-
resentative @: (S, %) = (Y, ¥o) the approximative class with

a¥ = {a;ﬁ: (S, x0) = (@2, J’o)}

as a representative, we get a homomorphism 5 of the multi-homotopy group m-m,( ¥, ¥o)
into the fundamental group (¥, yo). Moreover, if Y e ANR, then J is an isomorphism.

Proof. First we show that
(i) 3l WD = 7] = [ [e"],

where @, y: (S, x,) = (¥, yo) are multi-maps. With this aim we remark that a rep-
resentative of the class [a”]'[a"] is to be found in the approximative map b
= {b;: (S, x0) = (¥, o)}, defined by the formula

af(x) for xeS*,
b(x) =< Yo for xeS\EStuUST),
al(x) for xeS~.

Thus, to prove (iii) it suffices to show that the approximative map
{ﬂsz: (S+= S+) - (Y: yO)}Qz
is homotopic to the approximative map

{af, (S*,87) > (Y, y)le, and  {af%, (S7,87) = (Y. 70)}en

homotopic to the approximative map {ak, (™, $7) = (¥, ¥o)}o, (§* and $™ are
regarded here as points). We only show the former condition. The proof of the
latter is similar.

Let us observe that ¥® and ¥°¥, restricted to the set S+ x 7, are multi-homo-
topies such that y?(x, 0) = {x} x ¢ (x) = x""(x, 0) for xe S*. Let V', be a neigh-
borhood of Y in Q, and let Ue ANR, Ucr(Q x V,) be a neighborhood of r(®)
in . Since UNr(®) e ANR, there is an &>0 such that every two e-near maps
into UN\r(#) are homotopic in UNr(®). Choose ko e N so large that for every
kzky and xe S*

2 (ri{x}x @ L rx*¥ (v, YD)+ (r [{x} x 0 ()], r[x(v, 1)) <e..

Then for every kzk, the maps ro x*7¥|S* x {1/k} and ro x°|S* x{1/k} of the
set SV x {1/k} into UN\r(®) are homotopic in UNr(9). Let g, be a homotopy joining
these maps. Setting

gk(x’ t): (qu"lcgk)(x’]/k> t) for (x,z‘)le S+XI=
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we get a homotopy §,: S*xI— ¥, joining in ¥, the map af%/|S* with the
map af|S*. Thus (iii) is satisfied and hence S is a homomorphism. We now show
that, in the case of ¥ € ANR, S is an isomorphism.

By (3], 2.5), p. 129) if ¢ = {, (S, x0) = (¥, ¥o)}g, is an approximative
map and Y e ANR, then the class [c] is generated by a map c: (S, %) = (¥, Yo)-
But every map is a multi-map; therefore we may obtain the approximative map
0’ = {dg, (S, %p) > (¥, yo)}g, for the map c¢. Moreover, y° is then a map, and
for every neighborhood W of Y in Q, there is a ko€ N such that, for k>k,,
g x°1S%<0, 1/k> is a homotopy joining in W the maps 4f and c. Hence g° and ¢
are homotopic and J is an epimorphism. In order to prove that J is a monomor-
phism, let ¢: (S,x,) = (¥, ) be a multi-map and assume that an approxi-
mative map g” is null-homotopic. The assumption ¥ e ANR implies the existence
of a neighborhood V3 of Y in Q, and a retraction b: ¥V, — Y. Besides there is
a ky e N such that

2(S %<0, 1k D)= 0y x V3.

Since a® is null-homotopic, there exists a homotopy g: SxI— V; joining in V3
the map af, with the map g|S x {1}, which is the constant map of S into y,. Then

‘7%: SxI—Y defined by the formula

bl (7Cx, 1))} for xeS and te0, 1/k,>,
thy—1

Px, 1) =
b{g(x, = 1)} for xeS and telljk;, 1)
-

is a multi-homotopy connecting in ¥ the multi-map ¢ with the constant map of S
into y,. Hence J is a monomorphism and the proof of 4.4 is finished.

By Theorem 4.4 and ([3], (4.1), p. 133) we have the following corollary:

4.5. If yoe Ye ANR, then the group m-m (Y, yo) is isomorphic to the n-th
homotopy group (Y, ¥,).

Let us remark that if the group =,(Y, o) of a space (¥, y,) is isomorphic to
the group m,(Y, o), e.g., when Y is locall n-connected (see [11], also [10]), then
by an analogous argument as in the proof of 4.4 we infer that J is an epimorphism.

Notice that a certain kind of classes of multi-homotopy was investigated in [5],
namely multi-functions from finite-dimensional compacta to S" with values which
are cellular subsets of S”. Our Theorem 4.4 is a certain analogue of Theorems 2
and 3 in [5].

4.6. THEOREM. Let f: (Y, yo) = (Y, ¥o) be a cellular map of Y' onto Y € ANR.
Then, assigning

g1 [ e g]

10 every map g: (S", xo) = (¥, yo), we get a monomorphism of the group m,(Y, yo)
into the group m-m(Y’, po).
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Proof. We show that the function defined in the theorem is a homomorphism.
Let g4, go: (S, x0) = (¥, ¥o) be maps (S = S™). Then

(911921 = [9: V 951 [fte (g, Vg2l

But )

Fe@ V) = (Feg) V(T eg)
under the multi-homotopy %: SxI— ¥’ defined by the conditions

XSFXI=f" ogy, S xI=fTtog,
and, for xe S\(S*T U S7),

x(x,0) =f""po)oy0, x(,1)={yg} for £e(0,1>.

Hence [f*o(g, Vgu)l = [f *egs] [f"*egs]l. We now prove that the homo-
morphism is a monomorphism. Let ¥'< Q. Since Y& ANR, there exist a neigh-
borhood Ue ANR of ¥’ in Q and a map f': U—Y such that f'|¥' = f. The
assumption f1og = § for a map g: (S, xo) = (¥, yo) implies the existence of
a multi-map yx: SxI— Y’ such that y]Sx {0} =f"*og and xSx{1} is the con-
stant map of S into y,. It follows from Theorem 4.4 that yx is multi-homotopic

in Uto a map g,: SxI—Y’, and moreover the multi-homotopy x; connecting
with g, is a map for 0<¢<1. Hence we infer that h: SxI— Y defined as

i, 00,200 for 0<i<4,
D=l 2=, 1) for  3<<1

is a homotopy joining the map g: (S, xo) = (¥, ¥o) with the constant map of §
into y,. This completes the proof.

4.7. COROLLARY. If f: (Y, ¥5) = (S", xo) is a cellular map of Y’ onto S*, then
the group m-n,(Y", yo) is isomorphic to m,(S"™).

4.8. ExaMPLE. Let Y be the same set as in Example 2.27. Put a = (2, 1),
b = (1,1). Then Sh(Y, ) = Sh(Y;b) (see [3], (15.1), p. 240). If xe .S = §" and
¢ is a multi-map of § into Y, then

(8} e(X)c\L or ¢(¥)cL
Furthermore,
(@) pS)YaY\L or ¢@(S)=L.

" Condition (1) is clear. We show that also condition (2) is satisfied. It follows from
the upper semi-continuity of ¢ and condition (1) that the inverse image of Y\L
under ¢ is closed in S. If (2) is not true, then there is a point x & S such that in each
of its neighborhoods in S there exists a point x" e § with the property that ¢ (x') =L.
Let s & (YNL\¢(x). Take a closed neighborhood G of ¢(x) in ¥, disjoint with
the point 5. Then there is a neighborhood V of x in S, such that ¢ (V) =G (we may
assume ¥ to be an arc).
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Let x" e ¥ be the point described above. Then the image ¢(V¥)<=G of the con~
nected set ¥ contains points lying in different components of the set G, which
contradicts the property .of preserving connectedness under multi-maps. Thus,.
condition (2) is proved.

From (2) we infer that m-m;(¥, 4) = 0 and that m-n,(¥, b) is a cyclic infinite
group. Hence we infer that multi-homotopy groups are not the invariants of shape
of pointed spaces.

4.9. ExampLE. Let S be the union of the circles S;
i=0,1,2,.. with centres 0 and radii r;, such that

lying in the plane,

ro=1, ri:i-}%l for i=1,2,..
In the set S x I we identify each circle S;x {1} with the circle S;,, x {0}, i=1,2,..,
the circle S, x [0] with Spx {1} and the circle S; with a point. Let @€ S,. Denote
by T the union of the resulting set and the disc whose boundary is the circle {a} x T
in T. Then T is approximatively 1-connected, hence it follows that.the group
7,(T, d) is trivial. However, m-n(T, &) # 0, because there is an embedding of the
sphere §* into T (for instance with values in S, x {0}) which is not multi-homotopic
to the constant map of S* into a (the proof of this fact is similar to that given in
Example 4.8). Moreover, one can prove that T'¢ m-ANR (cf. Example 2.27).

Example 4.9 and Theorems 4.4 and 4.6 suggest a positive answer to the follow-
ing problem:

4.10. PrROBLEM. Is it true that homomorphism
an isomorphism if ¥ e m-ANR?

3 defined in Theorem 4.4 is

4.11. ProBLEM. Is it true that the multi-homotopy groups are invariant under
cellular maps?

4.12. PrOBLEM. Are the multl-homotopy groups of m-ANR-sets finitely
generated ?
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On elementary cuts in models of arithmetic
by
Henryk Kotlarski (Warszawa)

Abstract. Let M | P (= Peano arithmetic). We put Y := {N < M: N < M}. This family,
end

as each family of initial segments of M, is simply ordered by inclusion. The order type of Y heavily
depends on M we shall compute this order type in the following cases: (a) M is countable and
recursively saturated and (b) M is saturated. In both cases the proofs give fairly complete description
of the situation.

We assume that the reader is familiar with saturated models (see Chang,

Keisler [1]) and with recursively saturated models (see Schlipf [5]). We use standard
model-theoretic terminology and notation.

§ 1. The recursively saturated case. Toward this section let M F P be recursively
saturated. Our result is the following.
TueoreM 1. If M is countable, then Y is of the order type of the Cantor set 2°
with its lexicographical ordering:
b<b? = @Anew)(by = 0Ab: = 1A m<n)(b), = b2)).

Before proving this we shall prove some lemmas. For 2e M we shall denote
by M(a) the closure under the initial segment of the Skolem closure of a; formally

M(a) = {be M: there exists a parameter-free term #(v) such that M k b< #(a)}.
By Gaifman [2, Theorem 4.1T M (a) < M.

end

LeMMA 2. M(a) is not recursively saturated.

Proof. M(a) omits the type {v>1(d): ¢ is a term}. H

Let Y; = {NeY: N is not recursively saturated}. Our first aim is to prove
the converse of Lemma 2, it will be our Lemma 4.

LemMMA 3 (with W. Marek). If DS Y has no grediest element, then \J D is
recursively saturated.

Proof. Let p(v) be a recursive type in parameters by, ..., b,. There exists
an Ne D such that by, ..., b, € N (in fact, D is linearly ordered by inclusion), and
so by the assumption there exists Ny € D such thatan N < N, . Therefore pick ce N,

end
such that Vae N Mk a<c. Now consider the type p(v) U {v<c}. This is still
a recursive type and consistent, and so it is realized in M. But any of its realizations
isin | D. B :
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