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On elementary cuts in models of arithmetic
by
Henryk Kotlarski (Warszawa)

Abstract. Let M | P (= Peano arithmetic). We put Y := {N < M: N < M}. This family,
end

as each family of initial segments of M, is simply ordered by inclusion. The order type of Y heavily
depends on M we shall compute this order type in the following cases: (a) M is countable and
recursively saturated and (b) M is saturated. In both cases the proofs give fairly complete description
of the situation.

We assume that the reader is familiar with saturated models (see Chang,

Keisler [1]) and with recursively saturated models (see Schlipf [5]). We use standard
model-theoretic terminology and notation.

§ 1. The recursively saturated case. Toward this section let M F P be recursively
saturated. Our result is the following.
TueoreM 1. If M is countable, then Y is of the order type of the Cantor set 2°
with its lexicographical ordering:
b<b? = @Anew)(by = 0Ab: = 1A m<n)(b), = b2)).

Before proving this we shall prove some lemmas. For 2e M we shall denote
by M(a) the closure under the initial segment of the Skolem closure of a; formally

M(a) = {be M: there exists a parameter-free term #(v) such that M k b< #(a)}.
By Gaifman [2, Theorem 4.1T M (a) < M.

end

LeMMA 2. M(a) is not recursively saturated.

Proof. M(a) omits the type {v>1(d): ¢ is a term}. H

Let Y; = {NeY: N is not recursively saturated}. Our first aim is to prove
the converse of Lemma 2, it will be our Lemma 4.

LemMMA 3 (with W. Marek). If DS Y has no grediest element, then \J D is
recursively saturated.

Proof. Let p(v) be a recursive type in parameters by, ..., b,. There exists
an Ne D such that by, ..., b, € N (in fact, D is linearly ordered by inclusion), and
so by the assumption there exists Ny € D such thatan N < N, . Therefore pick ce N,

end
such that Vae N Mk a<c. Now consider the type p(v) U {v<c}. This is still
a recursive type and consistent, and so it is realized in M. But any of its realizations
isin | D. B :
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LemMA 4. Every Ne Yy is of the form M(d) for some a€ M.

Proof. Let D = {M(d): a e N}. If the conclusion fails then D has no greatest
element, and so, by Lemma 3. N= D¢ Y;. & .

LEMMA 5. Yy has the smailest element and no greatest element, and is densely
ordered.

Proof. M(0) is the smallest element; if a certain M(a) were the greatest el-
ement, then M = M(a) and so it would not be recursively saturated by Lemma 2;
so we only need to verify density. Let M(d)<M(b). Consider the type

p(v) = {t{w)<e: tis a term} L {t(v)<b: ¢ is a term}.

This type is clearly consister? (any of its finite subsets can be realized by an element
of M(d)) and recursive; s let ¢ realize p. But then M @<M(c)<M(D). &
COROLLARY 6. Y7 ir of the order type 1+1, where 1 is the order type of rationals. B
Let E = {be€2”: InVm>nb,, = 0}.
The following fact is easily verified.
LEMMA 7. E is of the order type 1+4+n. B
Proof of Theorem 1. Let j be an isomorphism of E onto ¥;. We extend j
to f: 2°~ Y in the usual manner:

f®) = U {j®): b'<b,b' e E}.
One shows without difficulty that f is an isomorphism of 2° onto Y. We prove
only that b*<b* - f(B1)<f(b?) and leave the rest to the reader.
Case 1. b?, b* e E. Now f(bY)<f(b*) because f }Y; = j.

Case 2. FYeE, b ¢ E. Now j(b*) ¢ ¥, and so, for any aej(b®) such that

jY<a, j-H{M(a)) is between b* and b*; thus
Y = jeHY<M@<j®?) = Y.

Case 3. b* ¢ E, b e E. Obviously f(B*)<f(b*). The inequality must be strict,
since (b?) is not the union of the family {j(6"): &'<b?, b’ € E}, since this family
has no greatest element and so its union is recursively saturated.

Case 4. bt, b*> ¢ E. We leave this case to the reader.

COROLLARY 8. Y, and Y are symbiotic, i.e., for all a,be M

@Ne Y, a<N<b)= ANe Ya<N<b). B

COROLLARY 9. YN\Y, is of the order type of reals + 1. B

Our earlier (unpublished) argument leading to the above results was much
more tricky, namely we used some tricks involving non-standard satisfaction (¢f.
Krajewski [3] for this notion) to prove Corollary 8, and then we derived Cor-
ollary 9 and Theorem 1. We found the argument in question while working on the
saturated case.

icm
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§ 2. The saturated case. From now on iet M be saturated and let o be its
cardinality. Consider the set 2* with its lexicographical ordering:

b'<b® = Ju<pbl = 02 = 1AVB<a b} = b}.
THEOREM 10. Yis of the order type 2",

The proof of Theorem 10 is almost the same as that of § 1. We shall only in-
dicate the differences.

Let ¥y = {M(d): a e M}. Exactly as above, one verifies that Y, is a saturated
dense linear ordering with first and without least element.

Let E’ := {be2": there exists an o<y, o is not limit and by =1AYf>0b,
= 0}. One verifies that E’ is a saturated dense linear ordering without first and
last elements, so let Ebe E’ + the smallest element; E is isomorphic with Y, now
one extends this isomorphism to an isomorphism f: 2*— Y. B

We shall now give a classification of the elements of Y, For an ordinal & we
define

Y.={Ne Y: N can be written as the union of a strictly increasing sequence
M(ap) & M(a;) & ... of length ¢ and & is the smallest ordinal with this
property}.

This notation coincides with the notion Y, defined before. Elements of Y, are
called cuts of cofinality &. Observe that the isomorphism f: 2*— Y given by The-

orem 10 carries elements of £ onto cuts of cofinality 1 and carries branches b & E,,
&>1, ¢ limit, onto cuts of cofinality &, where

E:={be2": Vn=£b, = 0AVa<tIPa<f<& A by =1}.

Let D be the set containing 1 and all infinite regular cardinals < .

THEOREM 11. (i) Y = ) Yy

&eD
(i) Yy# @ =¢teD;
(i) all families Y., e D are symbiotic, i.e.
Vé <&y, &,8,e D> Va, be MANe Y, a<N<b) = (ANeY, a<N<b);
@iv) for all ée D, if ¢<p then card Ye=p; s0 card Y, = 2%;
(v) for Ne Y, N is saturated iff N & Y,.

One can prove Theorem 11 directly or simply look. at the ordering 2. We
leave the details to the reader. ®

It follows that M has only u non-saturated elementary cuts and 2" saturated
ones (by (v) and (iv)).

Now we show that M has many resplendent elementary cuts even in a stronger
sense of the word “many”.

THEOREM 12. For N€ Y, N is resplendent iff N¢ Y.
Proof. — obvious, since if Ne Y, then it is even not recursively saturated.
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« Assume that Ne Yy, é>1. If & = pthen N is saturated, hence resplendent,
and so assume that é<p. Pick a sequence {g,: ¢<¢} such that N = QL<)€M (a,)

and M(dp)<M(a)< ... ‘
Let : sentence @ (R, b) be given; be N, R is a new predicate symbol. We may

assume that b<d,. Consider the language
Lu{b}u{a,; o<& v (X <&} U{R},
where X, are new unary predicate symbols. Let T be the following theory in this
language: } .
Th(N, b, dp)e<e U {¢(R, D)} U

VB @) = yre@): e<§, ¥ is Lo {R}-formula} v

U{VuveX, —»veX,: e;<@<é}u{deX; o<ty

U iVove X, > v<dyq: 0<L}.

Here Y denotes the relativisation of a formula ¥ to X. We claim that T is con-
sistent. In fact each finite subset of T is satisfiable.

Pick a saturated Ny ¥ so that ap<Np<a, (such an N, exists because
of Theorem 11 (iii) and (v)); this N, will be the interpretation of X,. As Ny, is satur-
ated, there is an R, so that (Ny, Ro) F ¢ (R, b). Now the set of formulas

{77(11: Z)I NE 7[(“17 Z): Ui ELa ZENO}
is consistent with Th(Ny, Ro); therefore pick a saturated model which realizes
it, such a model is isomorphic to some (N, , @, 4;) with some .R; and so on. That Ny
interprets X, and so on.

As the language of T'is of cardinality <&, T has a saturated model of power
u (this follows from the existence of M; namely if the Peano arithmetic has a sa-
turated model of power g, then g is regular and Ve<p2°<yu thus saturated
models exist in cardinal g, cf. Chang-Keisler [1]).

Let N be a saturated model of T of power p. So U is of the form:

U={<4,+,, <:R’b°aﬂ’Xl’>2<f'

Now the model {4, +,,<, b, @< is saturated, of power u and elementarily
equivalent to (M, b, a,p,<s and so these two models are isomorphic. But now
this isomorphism carries {x € 4: there is ¢<p such that x<a,} onto N. Morcover
the last model satisfies IR ¢ (R, b) because it is the union of L u {R}-elementary
chain of models which have R as needed. B

§ 3. Open problems.

1. Computations of order types of families of cuts carried out in this paper
heavily depend on.the order completeness of ¥, What happens with non-complete
families is not clear. That is why we pose the following problem. Let M E P be
countable and non-standard. Let Z = {NeM: NFP}.

e
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‘What is the order type of Z? Does it depend on M at all?

1. Another problem is the following. Does there exist a resplendent M F P
which has only card M elementary cuts? A positive answer would show not only
that the use of types was necessary in § 2, but also that results of the Chang-Makkai
type may fail for resplendent M (the existence of many elementary cuts can be
derived from theorems of the Chang-Makkai type, see Schlipf [5]).

3. Several investigators have tried. to describe possible lattices of elementary
submodels of Mk P, see Gaifman [2] and Mills [4] for information. The following
problem seems to be interesting. Let M k P be countable and recursively saturated.
What is the lattice of elementary submodels of M? Does it depend on M?

References

[1] C.C. Chang and H. J. Keisler, Model Theory, North Holland, Amsterdam 1973.

[2]1 H. Gaifman, Models and types of Peano arithmetic, Ann. Math. Logic 9 (1976), pp. 223-306.

[3] S.Krajewski, Non-standard satisfaction classes, in: Set theory and hierarchy theory, Springer
Lecture Notes 537 (1976), pp. 121-145,

[41 G. Mills, Substructure lattices of models of arithmetic, Ann. Math. Logic 16 (1979),.
pp. 145-180.

[51 J. Schlipf, Toward model theory through recursive saturation, J. Symb. Logic 43 (2) (1978),.
pp. 184-203.

INST. OF APPLIED MATH. AND STATISTICS,
AGRICULTURAL UNIVERSITY
Warszawa

Accepté par la Rédaction le 28. 1. 1980


GUEST




