26

A. Suszycki

- [9] G. Kozlowski, Images of ANR's (preprint).
- [10] and J. Segal, Local behavior and the Vietoris and Whitehead theorems in shape theory, Fund. Math. 99 (1978), pp. 213-225.
- [11] K. Kuperberg, Two Vietoris-type isomorphism theorems in Borsuk theory of shape, concerning the Vietoris-Čech homology and Borsuk's fundamental groups, Studies in Topology, 1974, pp. 285-313.
- [12] C. Lacher, Cell-like mappings I, Pacific J. Math. 30 (1969), pp. 719-731.
- [13] R. B. Sher, Realizing cell-like maps in Euclidean space, Gen. Top. and Appl. 2 (1972), pp. 75-89.
- [14] A. Suszycki, On the extensions of multi-valued maps, Bull. Acad. Polon. Sci. (to appear).
- [15] Elementary extensions of multi-valued maps (to appear).
- [16] J. L. Taylor, A counterexample in shape theory, Bull. Amer. Math. Soc. 81 (1975), pp. 629-632.
- [17] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds (preprint).

INSTITUTE OF MATHEMATICS
POLISH ACADEMIE OF SCIENCES

Accepté par la Rédaction le 15. 1. 1980

On elementary cuts in models of arithmetic

by

Henryk Kotlarski (Warszawa)

Abstract. Let M
otin P (= Peano arithmetic). We put $Y := \{N \subset M : N \prec M\}$. This family, as each family of initial segments of M, is simply ordered by inclusion. The order type of Y heavily depends on M; we shall compute this order type in the following cases: (a) M is countable and recursively saturated and (b) M is saturated. In both cases the proofs give fairly complete description of the situation.

We assume that the reader is familiar with saturated models (see Chang, Keisler [1]) and with recursively saturated models (see Schlipf [5]). We use standard model-theoretic terminology and notation.

§ 1. The recursively saturated case. Toward this section let $M \models P$ be recursively saturated. Our result is the following.

Theorem 1. If M is countable, then Y is of the order type of the Cantor set 2^{ω} with its lexicographical ordering:

$$b^1 < b^2 \equiv (\exists n \in \omega) (b_n^1 = 0 \land b_n^2 = 1 \land (\forall m < n) (b_m^1 = b_m^2)).$$

Before proving this we shall prove some lemmas. For $a \in M$ we shall denote by M(a) the closure under the initial segment of the Skolem closure of a; formally

 $M(a) := \{b \in M : \text{ there exists a parameter-free term } t(v) \text{ such that } M \models b < t(a) \}.$ By Gaifman [2, Theorem 4.1] $M(a) \prec M$.

LEMMA 2. M(a) is not recursively saturated.

is in () D.

Proof. M(a) omits the type $\{v>t(a): t \text{ is a term}\}$.

Let $Y_1 = \{N \in Y: N \text{ is not recursively saturated}\}$. Our first aim is to prove the converse of Lemma 2, it will be our Lemma 4.

LEMMA 3 (with W. Marek). If $D \subseteq Y$ has no greatest element, then $\bigcup D$ is recursively saturated.

Proof. Let p(v) be a recursive type in parameters $b_1, ..., b_k$. There exists an $N \in D$ such that $b_1, ..., b_k \in N$ (in fact, D is linearly ordered by inclusion), and so by the assumption there exists $N_1 \in D$ such that an $N < N_1$. Therefore pick $c \in N_1$ such that $\forall a \in N \ M \models a < c$. Now consider the type $p(v) \cup \{v < c\}$. This is still a recursive type and consistent, and so it is realized in M. But any of its realizations

LEMMA 4. Every $N \in Y_1$ is of the form M(a) for some $a \in M$.

Proof. Let $D = \{M(a): a \in N\}$. If the conclusion fails then D has no greatest element, and so, by Lemma 3. $N = \bigcup D \notin Y_1$.

Lemma 5. Y_1 has the smallest element and no greatest element, and is densely ordered.

Proof. M(0) is the smallest element; if a certain M(a) were the greatest element, then M=M(a) and so it would not be recursively saturated by Lemma 2; so we only need to verify density. Let M(a) < M(b). Consider the type

$$p(v) = \{t(a) < v : t \text{ is a term}\} \cup \{t(v) < b : t \text{ is a term}\}.$$

This type is clearly consistent (any of its finite subsets can be realized by an element of M(a)) and recursive; so let c realize p. But then M(a) < M(c) < M(b).

Corollary 6. Y_1 is of the order type $1+\eta$, where η is the order type of rationals.

Let
$$E = \{b \in 2^{\omega}: \exists n \forall m > n \ b_m = 0\}.$$

The following fact is easily verified.

LEMMA 7. E is of the order type $1+\eta$.

Proof of Theorem 1. Let j be an isomorphism of E onto Y_1 . We extend j to $f: 2^{\infty} \to Y$ in the usual manner:

$$f(b) = \bigcup \{ j(b') \colon b' \leqslant b, b' \in E \}.$$

One shows without difficulty that f is an isomorphism of 2^{ω} onto Y. We prove only that $b^1 < b^2 \to f(b^1) < f(b^2)$ and leave the rest to the reader.

Case 1. b^1 , $b^2 \in E$. Now $f(b^1) < f(b^2)$ because $f \mid Y_1 = j$.

Case 2. $I^1 \in E$, $b^2 \notin E$. Now $j(b^2) \notin Y_1$ and so, for any $a \in j(b^2)$ such that $j(b^1) < a$, $j^{-1}(M(a))$ is between b^1 and b^2 ; thus

$$f(b^1) = i(b^1) < M(a) \le i(b^2) = f(b^2)$$
.

Case 3. $b^1 \notin E$, $b^2 \in E$. Obviously $f(b^1) \le f(b^2)$. The inequality must be strict, since $f(b^2)$ is not the union of the family $\{j(b'): b' \le b^1, b' \in E\}$, since this family has no greatest element and so its union is recursively saturated.

Case 4. b^1 , $b^2 \notin E$. We leave this case to the reader.

COROLLARY 8. Y_1 and Y are symbiotic, i.e., for all $a, b \in M$

$$(\exists N \in Y_1 \ a < N < b) \equiv (\exists N \in Y \ a < N < b). \blacksquare$$

COROLLARY 9. $Y Y_1$ is of the order type of reals + 1.

Our earlier (unpublished) argument leading to the above results was much more tricky, namely we used some tricks involving non-standard satisfaction (cf. Krajewski [3] for this notion) to prove Corollary 8, and then we derived Corollary 9 and Theorem 1. We found the argument in question while working on the saturated case.

§ 2. The saturated case. From now on let M be saturated and let μ be its cardinality. Consider the set 2^{μ} with its lexicographical ordering:

$$b^1 < b^2 \equiv \exists \alpha < \mu \ b_{\alpha}^1 = 0 \land b_{\alpha}^2 = 1 \land \forall \beta < \alpha \ b_{\beta}^1 = b_{\beta}^2$$
.

THEOREM 10. Y is of the order type 2^{μ} .

The proof of Theorem 10 is almost the same as that of § 1. We shall only indicate the differences.

Let $Y_1 = \{M(a): a \in M\}$. Exactly as above, one verifies that Y_1 is a saturated dense linear ordering with first and without least element.

Let $E' := \{b \in 2^{\mu} : \text{ there exists an } \alpha < \mu, \alpha \text{ is not limit and } b_{\alpha} = 1 \land \forall \beta > \alpha b_{\beta} = 0\}$. One verifies that E' is a saturated dense linear ordering without first and last elements, so let E be E' + the smallest element; E is isomorphic with Y_1 , now one extends this isomorphism to an isomorphism $f: 2^{\mu} \to Y$.

We shall now give a classification of the elements of \it{Y} . For an ordinal $\it{\xi}$ we define

 $Y_{\xi} = \{ N \in Y : N \text{ can be written as the union of a strictly increasing sequence } M(a_0) \subsetneq M(a_1) \subsetneq \dots \text{ of length } \xi \text{ and } \xi \text{ is the smallest ordinal with this property} \}.$

This notation coincides with the notion Y_1 defined before. Elements of Y_ξ are called *cuts of cofinality* ξ . Observe that the isomorphism $f\colon 2^\mu\to Y$ given by Theorem 10 carries elements of E onto cuts of cofinality 1 and carries branches $b\in E_\xi$, $\xi>1$, ξ limit, onto cuts of cofinality ξ , where

$$E_{\xi} = \{ b \in 2^{\mu} \colon \forall \eta \geqslant \xi \ b_{\eta} = 0 \land \forall \alpha < \xi \ \exists \beta \ \alpha < \beta < \xi \land b_{\beta} = 1 \}.$$

Let D be the set containing 1 and all infinite regular cardinals $\leq \mu$.

Theorem 11. (i)
$$Y = \bigcup_{\xi \in \mathcal{D}} Y_{\xi}$$
;

(ii) $Y_{\xi} \neq \emptyset \equiv \xi \in D$;

(iii) all families Y_{ξ} , $\zeta \in D$ are symbiotic, i.e.

$$\forall \xi_1 < \xi_2, \ \xi_1, \xi_2 \in D \rightarrow \forall a, \ b \in M(\exists N \in Y_{\xi_1} \ a < N < b) \equiv (\exists N \in Y_{\xi_2} \ a < N < b);$$

(iv) for all $\xi \in D$, if $\xi < \mu$ then card $Y_{\xi} = \mu$; so card $Y_{\mu} = 2^{\mu}$;

(v) for $N \in Y$, N is saturated iff $N \in Y_{\mu}$.

One can prove Theorem 11 directly or simply look at the ordering 2^{μ} . We leave the details to the reader.

It follows that M has only μ non-saturated elementary cuts and 2^{μ} saturated ones (by (v) and (iv)).

Now we show that M has many resplendent elementary cuts even in a stronger sense of the word "many".

Theorem 12. For $N \in Y$, N is resplendent iff $N \notin Y_1$.

Proof. \rightarrow obvious, since if $N \in Y_1$ then it is even not recursively saturated.

 \leftarrow Assume that $N \in Y_{\xi}, \, \xi > 1$. If $\xi = \mu$ then N is saturated, hence resplendent, and so assume that $\xi < \mu$. Pick a sequence $\{a_o: \varrho < \xi\}$ such that $N = \bigcup M(a_o)$ and $M(a_0) < M(a_1) < ...$

Let a sentence $\varphi(R, b)$ be given; $b \in N$, R is a new predicate symbol. We may assume that $b \leq a_0$. Consider the language

$$L \cup \{b\} \cup \{a_o: \varrho < \xi\} \cup \{X_\varrho: \varrho < \xi\} \cup \{R\},\$$

where X_{ϱ} are new unary predicate symbols. Let T be the following theory in this language:

$$\begin{split} \operatorname{Th}(N,b,a_{\varrho})_{\varrho<\xi} & \cup \left\{ \varphi(R,b) \right\} \cup \\ & \cup \left\{ \forall \, \overline{v} \, (\psi(\overline{v}) \equiv \psi^{X_{\varrho}}(\overline{v}) \colon \, \varrho < \xi, \, \psi \, \text{ is } \, L \cup \{R\}\text{-formula} \right\} \cup \\ & \cup \left\{ \forall v \, v \in X_{\varrho_1} \rightarrow v \in X_{\varrho_2} \colon \, \varrho_1 < \varrho_2 < \xi \right\} \cup \left\{ a_{\varrho} \in X_{\varrho} \colon \, \varrho < \xi \right\} \cup \\ & \cup \left\{ \forall v \, v \in X_{\varrho} \rightarrow v < a_{\varrho+1} \colon \, \varrho < \xi \right\}. \end{split}$$

Here ψ^X denotes the relativisation of a formula ψ to X. We claim that T is consistent. In fact each finite subset of T is satisfiable.

Pick a saturated $N_0 \in Y$ so that $a_0 < N_0 < a_1$ (such an N_0 exists because of Theorem 11 (iii) and (v)); this N_0 will be the interpretation of X_0 . As N_0 is saturated, there is an R_0 so that $(N_0, R_0) \models \varphi(R, b)$. Now the set of formulas

$$\{\eta(v,z): N \models \eta(a_1,z): \eta \in L, z \in N_0\}$$

is consistent with $Th(N_0, R_0)$; therefore pick a saturated model which realizes it, such a model is isomorphic to some (N_1, a_0, a_1) with some R_1 and so on. That N_1 interprets X_1 and so on.

As the language of T is of cardinality $\langle \xi, T \rangle$ has a saturated model of power μ (this follows from the existence of M; namely if the Peano arithmetic has a saturated model of power μ , then μ is regular and $\forall \varrho < \mu \ 2^{\varrho} \leqslant \mu$ thus saturated models exist in cardinal u, cf. Chang-Keisler [1]).

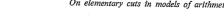
Let $\mathfrak U$ be a saturated model of T of power μ . So $\mathfrak U$ is of the form:

$$\mathfrak{U} = \langle A, +, \cdot, <, R, b, a_{\varrho}, X_{\varrho} \rangle_{\varrho < \xi}.$$

Now the model $\langle A, +, \cdot, <, b, a_e \rangle_{e < \xi}$ is saturated, of power μ and elementarily equivalent to $\langle M, b, a_{\varrho} \rangle_{\varrho < \xi}$, and so these two models are isomorphic. But now this isomorphism carries $\{x \in A: \text{ there is } \varrho < \mu \text{ such that } x < a_{\varrho} \}$ onto N. Moreover the last model satisfies $\exists R \varphi(R, b)$ because it is the union of $L \cup \{R\}$ -elementary chain of models which have R as needed.

§ 3. Open problems.

1. Computations of order types of families of cuts carried out in this paper heavily depend on the order completeness of Y. What happens with non-complete families is not clear. That is why we pose the following problem. Let $M \models P$ be countable and non-standard. Let $Z = \{N \subset M : N \models P\}$.



What is the order type of Z? Does it depend on M at all?

- 1. Another problem is the following. Does there exist a resplendent $M \models P$ which has only card M elementary cuts? A positive answer would show not only that the use of types was necessary in § 2, but also that results of the Chang-Makkai type may fail for resplendent M (the existence of many elementary cuts can be derived from theorems of the Chang-Makkai type, see Schlipf [5]).
- 3. Several investigators have tried to describe possible lattices of elementary submodels of $M \models P$, see Gaifman [2] and Mills [4] for information. The following problem seems to be interesting. Let $M \models P$ be countable and recursively saturated. What is the lattice of elementary submodels of M? Does it depend on M?

References

- [1] C. C. Chang and H. J. Keisler, Model Theory, North Holland, Amsterdam 1973.
- H. Gaifman, Models and types of Peano arithmetic, Ann. Math. Logic 9 (1976), pp. 223-306.
- [3] S. Krajewski, Non-standard satisfaction classes, in: Set theory and hierarchy theory, Springer Lecture Notes 537 (1976), pp. 121-145.
- [4] G. Mills, Substructure lattices of models of arithmetic, Ann. Math. Logic 16 (1979). pp. 145-180.
- [5] J. Schlipf, Toward model theory through recursive saturation, J. Symb. Logic 43 (2) (1978). pp. 184-203.

INST. OF APPLIED MATH. AND STATISTICS. AGRICULTURAL UNIVERSITY Warszawa

Accepté par la Rédaction le 28, 1, 1980