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Abstract. Tt is proved that while 4 preserves the Hanf-numbers of most logics, it fails, in
a suitable Boolean extension, to preserve the Hanf-number of the logic with the Hirtig-quantifier.
The preservation of some general Lowenheim-Skolem propcrtles under 4 and varlants of 4 is
discussed.

§ 1. Introduection. This paper is concerned with implicit definability in extensions
of elementary logic. Our main interest is in the preservation of Léwenheim-Skolem
type propertics under various extension operations based -on projective classes.

The logic LI with the Hértig-quantifier

IxyA(x)B(y) <« card(4) = card(B)

turns out to be of particular interest. LI is one of the very few well known logics
the Hanf-number of which is not (provably) preserved under the A4-operation.
A proof of this is the main contribution of this paper and ocoupies Chapter 4.
Chapter 2 introduces the relevant notions of projective definability. Chapter 3 is
concerned with the provable cases of the various possible preservation results.

We use the following notation: Many-sorted similarity types (or just fypes)
consist of sort symbols, predicate symbols, function symbols and constant symbols.
If L is a type, a model 2 of type L consists of a domain ||, which is the union of
the domains of the different sorts of L, and interpretations of the symbols-of L in [U].
The class of all models of type L is denoted Str(L). The reduct U} L of a model U
of type L' to a type L' is defined as usual. Card(2l) is the cardinality of the
domain of 1. The notion of an abstract logic is used frequently but the exact defi-
nition is not essential. The reader may consult [7] or think of an abstract logic L*
as a family of model classes with certain simple closure properties. If ¢ & L* is
such a class of models of type L and WeStr(L), we write Wk ¢ for Uep. If
KeStr(l) is a model class, then K is Str(L)—K. If ¢ € L*, Mod(¢p) denotes the
class of all models of ¢ (and is equal to ¢ if the above definition is used). Second
order logic I quantifies over n-ary relations for any n<w. o, f,y, 6 and e refer
to ordinals; %, A, i refer to cardinals. R(a) is the set of all sets of rank <o. exp(x)
is the cardinality of the power set of x.

The author was financially supported by the Osk. Huttunen Foundation.

§ 2. Projective classes. PrOJecuve classes bave been considered in the literature
for some time already. The new aspect we pursue in this paper is the cardinality
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of the domains along which the projection is taken. It turns out that a reasonable
restriction on this cardinality leads to a smoother theory than no restriction at all.
In this chapter we introduce the relevant notions of projective definability, in
particular the new notion of bounded projective definability, and discuss some
examples of the use of these notions.

Suppose K is a class of models of type L. If L'<L and U is a model of type L/,
we write

EQU,K) = {Bek: BIL = U}.

Note that if L has sorts others than those of L', then E(2, K) may contain arbitrary
large models. On the other hand, if L and L’ have the same sorts, then every model
in E(Y, K) has the same domain as 2.

The projection of K along L—L' is defined as usval:

Proj(K) = {We Str(L): E(U, K) # D} (M.

If L* is an abstract logic and ¢ € L*, we write Proj,(¢) for Proj,(Mod(e)). K is
a projective class of L* if X = Proj,(¢) for some ¢ e L*. The family of projective
classes of L* is denoted Z(L*) and it can be viewed as an abstract logic itself. If K
and K are in X% (L*) then K is said to be A-definable in L*. The family of model
classes which are 4-definable in L* is denoted A (L*). This sublogic of X(L*) has
been extensively studied in [7] where also other references are given.

The model class K is a simple projective class of L*, in symbols Ke ZHL*),
if K = Proj,.(p) for some ¢ e L* such that L and L' have the same sorts. 4}(L*)
denotes the family of model classes K such that X and K are in Z}(L*). Clearly
A} (LM SA(LY). Note that Zi(LY) = LU and therefore ALY = LN, but LI
£ AW,

One of the many applications of 4 is the following: Many logics are defined
by adding a new quantifier to L,,, like LQ, and LI for example. However, the
expressive power of such logics may be quite unbalanced. For example, LQ, is
not able to say that an equivalence-relation has x; many classes (see [6]). This defect
can be removed by using the 43- and A- -operations.

The 4}- operation seems to be sufficient to make the logic LQ, a reasonably
closed logic, but A(LI) still suffers from the disadvantage that it is not able to
define the notion of well-ordering, because in countable domains 4L(LI) can be
translated into L,,,. As the notion of well-ordering is definable in 4 (LI) (see
below), we conclude that 4(LI) represents the strength of LI better than 4}(LI).
The next examples emphasize further the difference between 4} and 4.

2.1. ExAMPLES. A. This example is from [4]. Let L conmsist of two sorts M,
and M, the binary predicate < and the ternary predicate F. Let X be the LI-de-
finable class of L-models in which

() To preserve an analogy with second order logic, we assume that L—L’ is finite. This is
not essential for our results however.

icm
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1) < lincarly orders M,2M,, M, cofinal in M,.

2) card{x e M,| x<a}<card{xe M,| x<b} whenever a<b are in M,.

3) If aq is the <-smallest element of M, then the set {x e M, x<ap} is
countable.

4) If a s ay is in My, then every proper initial segment of {x e M,| x<d} is
mapped one-one into some {x'e M,| x<b}, a>be M,, by a mapping coded by F.
Let L' be the subtype of L consisting of M; and <. It is easily seen that the class
of well-ordered models is Proj,(K). If We Str(L’) has power x, then every model
in E(W, K) has power less than &,+.

B. Let L' consist of just one sort M, and let K be the class of models 2 of
type L=L’ such that card(M{)<x,, card(ll) = Nz, and [ has a linear ordering
every proper initial segment of which can be mapped one-one into MY. K is LO,-
definable. Let K = Proj..(K). K’ is the class of models (M, where card(M) = §.
By definition, K’ is X(LQ,)-definable. However, X' is not even Z}(L,,,0,)-de-
finable, because in models of power < the logic Zi(L,,,Q,) translates into
El(LW,,) and K'is not Ei(LW,) -definable. Note that K’ is 4(LQ, Q,)- but not

AHLQ, Q,)-definable.

C. Let us consider the following predicate of set theory: C(o) if and only if

there is an ordinal f such that .

(*) : exp (Rpsy s 1) ZRpuyas for yp<a.

Let K be the class of well-ordered structures the order type o of which satisfies C(c).
To see that K is X(LI)-definable, observe the following: By Example A, the class
of well-founded models of any finite part of ZFC is X(LI)-definable. We may
furthermore restrict ourselves to models which have just the real cardinals. Now,
there is a finite part 7" of ZFC such that C(x) holds if and only if there is a transitive
model M of T" with real cardinals such that « e M and M F C(4). Using this fact
it is easy to prove that K is X (LI)-definable. We shall later construct a model of
set theory in which K is neither 4- nor Xj-definable in LI The X(LI)-definition
of X differs from those in Examples A and B above in that there is no obvious way
of bounding the cardinality of the new sorts, that is, if C(«) then there may be
arbitrary large f such that ().

The above examples indicate that there is a notion of projective definability
which lies strictly between X} and X, For a rigorous definition, let K be a model
class of type L. K'is a bounded projective class of L*, in symbols K e Z(L¥), if there
is a @ e L* such that

K = {WeStr(L): EQ, ¢) # B}
and .
VU e Str(L) AxYB(B e E(U, ¢) — card (B) <) .

If X and K are X%-definable in L*, we write Ke AB(L*).
Trivially 4}(L*)<A%(L*)cA(L*). Examples A and B above show that
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4410y 0y) # AXLQ, Qz) and AYLI) # A(LI). Later we shall construct a model
of set theory in which 4(LI) % A*(LI).

Tt is a triviality that any logic L* with the property
(+) IfgeL* BEgand USH is infinite, then there is € F ¢ such that s C=B

and card(€) = card (1D,

also satisfies the property
(++) IHLY) = Z(LY)
provided that only infinite models are considered. Examples of logics satisfying (+)
are L,,, and LQ for any continuous (. The logic Ly, satisfies (- +) (without
the infiniteness provisio). For stronger results see [5] and [8].

LO, is an example of a logic which satisfies (+) but fails to satisfy (- -+) if
finite models are included.

More generally, the following interpolation-properties. of an abstract logic L*
can be considered in connection with the operations 31, 2% and X:

1 L¥ = Z{(L*),
(12) T = 2RI,
13) ZHLY) = Z(LY),
I L* = AYL¥),
1) AXL®) = A5(LY),
(I6) AP(L*) = AL®).

Trivially, (12) — (I5) and (I3) — (I6). Moreover, (I1) — @4). ZYLI) is a logic
which satisfies (I1) but not.(I5) whereas LQ, satisfies (12) and (I3) but not (14).
I satisfies (I3) and (I6) (see below) but not (I5). 41(LI) satisfies (I4) but not (I1).
AB(L™) satisfies (I5) but not (I12). Finally, L, satisfies (I3), (I4), (I5) and (16) but
fails to satisfy (I1).

This analysis still leaves open a few possible implications between (I1)-(I6)
but these cases are shown in Chapter 4 to be unprovable in ZFC.

Concerning (I3) we have the following result:

2.2. PROPOSITION. Suppose L* satisfies the following two conditions for some
cardinal x> w:

) If oeL*, BF @ and U<WB, then there is d CF ¢ such that NsCSB and
card (€) = max (card (1), %), .

(2) Thereis a 8 € L* such that 0 has a model of power x but does not have arbitrdry
large models.

Then L* satisfies (13), i.e. ZB(L*) = Z(L*).
Proof. Suppose ¢ e L* and

K = {WeStr(L): EU, )+ B}.

icm
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Suppése 0 ng‘ fvolr"some Ly such that Ly n L =&, and 0-has no models of power
>2. Let 1 be thé conjunction of ¢, § and a sentence saying that the union of the
domains of L' ULy has the same power as that of I U L' U Ly. Now

K= {WeStr(L): EQU, ) # @)
and ‘
Ve Str(L) VB e E(U, ) (card (B) < max (card (20), ).

Therefore K e Z¥(L*), B

This reslll‘t implies that the following logics satisfy (I3) and (I6): LO,, L.,
LY (the Magidor-Malitz-logics). Another category of logics satisfying (I3)
is the very strong logics, We have the following result:

2.3. PROPOSITION. Suppose I EB(I%), Then SH(L*) = I (L¥).

~ Proof. Suppose ¢ e L* and

K = {WeStr(L): EQL, ) # ).

There is an LM-sentence y which defines the class of models isomorphic to-
{R(%), &) for some o. For any W e K let % () be the least ordinal « such that there
is an W = Win R(x) such that E(W, ¢) N R(x) # &. Using ¢ and the IP(L#)-
definition of v one can write an L*-sentence @ such that

K= {WeStr(L): E(YU, 0 # S}
and . o
Vi e KVB e E(U, 6)(card(B) = )
This proves that K is in ZP(L*). B

Let H be the Henkin-quantifier ([3]). It follows from [3] that LM< RB(LH)..
Hence by 2.3, Z3(LH) = 5(LH) and also 4*(LH) = ALY, Let S be the simi-
larity-quantifier .

S = {(M, R,P): R,P=M? (M, R) = (M,P)}.
By [i1], LXcX5(LS) and therefore Z%(LS) = X(LS) and 4%(LS) = A(L™). Finally,
if V=1L, then INSIP(LI) (see e.g. [L0]) whence ZP(LI) = Z(LI) and - AP(LI)
= A%(LM).]

§ 3. Preservation results, We introduce a very general Ldwenheim-Skolem
property and investigate its preservation under the various operations of § 2.
Particular attention is given to Hanf-numbers.

Let 4 and B be classes of cardinals. An abstract logic L* has the property

LS,(4,B) ‘
if every set T" of L*-sentences of cardinality <u which has a model of power % € 4
has a model of power A& B. We use the following obvious notation:
[, 2] = {p: p is a cardinal and »¥<p<4a},
[%, o[ = {u: p is a cardinal and »<p}.
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For example, L, satisfies LS,(4, B) whenever gz and BE [, oof, and L@,
satisfies LSy(d4, {8,}) if A=[s;, oof. For logics like LT and L it is very difficult
to find interesting classes A and B such that even LS,(4, By would hold.

icm®

The following obvious proposition is part of the folklore of the subject, but :

the fact that it should be formulated for >! rather than ¥ has not been emphasized
in the literature, rather the contrary (see €.g. [6]).

3.1. ProposiTioN. The following are equivalent for any L*:

(i) L* satisfies LS4, B),

(i) ZL(L*) satisfies LS, (A, B).

Proof. Suppose T = {p,: a<u} is a set of ZY(L*)-sentences such that T has
a model N, card (M) e A. For a<p let @, e L* give the simple projective definition
of @,. Let § = {®,: a<p}. We may assume that the types of the sentences @, are
so chosen that 1l expands to a model U of S, such that card (') € 4. By (1), S has
a model B of power A€ B. A reduct of B is a model of T of power Ae B, H

If £} is replaced by X above, the proof breaks down in two places: card (W)
‘may be greater than card() and the reduct of B may have power less than .
These difficulties disappear if 4 is a final segment and B an initial segment. There-
fore we have the tollowing result:

3.2. PROPOSITION. The following are equivalent for any L*:

(i) L* satigfies LS,((x, o[, [1, A,

(i) Z(L*) satisfies LS,(l, oo, [1, ).

By 2.1. B, the class X of models {4) where card(4) = &, is 4%(LQ, Q,)-de-
‘finable. Therefore AB(LQ, Q) does not satisfy LSy({s:}, {8%o}). But in models of
power <y; LQ,(Q, translates into LQ,, and therefore Proposition 3.1 is false
if $% is replaced by X® (or by one of 4%, 3, 4).

The Lowenheim-number 1(L*) of an abstract logic L* is usually defined as the
least % such that L* satisfies LSl(x, oof, [1, #]). By 3.2 X preserves Lowenheim-
-numbers. The Hanf-number h(L*) of L* is usually defined as the least x such that L*
satisfies LSy (%, oo[, [4, cof) for all A. Proposition 3.2 does not apply in-connection
-with Hanf-numbers, but Z® has the following more helpful preservation property:

3.3. PROPOSITION. The following are equivalent for any L*:

() L* satisfies LS,([%, o[, [4, oof) for all A2k,

(i) ZP(L*) satisfies LS, ([%, o[, [4, o) for all Az,

Proof. We proceed as in the proof of 3.1. By definition, for every model €
.of T there is a cardinal %(€) such that every extension of € to a model of S has
power less than x%(€). Suppose A2/, is given. Let

My = sup{x(€): €k T and |€A}.
As L* satisfies LS,([x, o[, [4o°A{, eo[), S has a model B of power > A, Let D be
2 reduct of B such that D& T, Let D' & D such that |D'|card(D). Let B’ = B

such that D’ is a reduct of B’. If card(D')<4, then card(B)<u(D)<4, which
contradicts card (B)=>A]. Therefore card(D)>A and we are through. B
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From the above result it follows that X% (and A®) preserve Hanf-numbers
This may be interesting as 4” seems to be at least as useful as A (they in fact coincidr;
in most cases). The above result also seems to capture the true content behind the
claim (e.g. in [7]) that 4 preserves Hanf-numbers. In the next chapter we show
that this claim is false in a suitable Boolean extension.

There is an artificial way of extending 3.1 to the X-operation (partly pursued
in [9): For any model I let card” () be the least of the powers of the sorts of 2
Define IS,[ (A4, B) as LS, (4, B) but using card™ instead of card. Then for any L*A
L* satisfies LS;',“(A, B) is and only if X(L*) satisfies LS7 (A, B). Let 2+ (L*) be th;.
least » such that L* satisfies LS} ([x, oo, [A, o) for ;11 A. Tt follows that X pre-
serves AT ([9)).

The following rather curious Hanf-number occurs in [7]: Let #~(L*) be the
least % such that L* satisfies LS;({xc}, [A, co]) for all A. Clearly A~ (L*)<h(L*)
<ht(L*). b~ is preserved by Zi but not by X% The following result shows that A~
and 4" may be of some interest as characteristic numbers of abstract logics:

3.4. PROPOSITION. Let L* be an abstract logic.

(i) hT(L*) = h(Z(L*)),

(i) R(L*) = h™(E%L").

Proof. (i) Trivially, h(X(L¥)<h¥(Z(L*) = A*(L*), so we only have to
prove AH(L*)<h(E(L*)). Suppose ¢ eL¥ ¢ has a model U such that card™(1l)
=h(2(L*)), and x is an arbitrary cardinal. Let i be the conjunction of ¢ and a sen-
tence which says that the sort M, can be mapped one-one into every other sort.
Let L = {M} and

K= {WeStr(L): E(U, V) +# T}

K is in Z(L*) and has a model of power >/ (Z(L*)). Therefore X has a model B
of power =%, Suppose € e E(B, ). € is a model of ¢ and card™(€) . This ends
the proof of (i).

(i) Trivially, A~ (ZUL*)<h(ZP(L*)) = h(L*), so we only have to prove 1(L*)
<h™(2%(L*)). Suppose ¢ € L* has a model of power =/~ (Z¥L¥)). If ¢ has arbi:
trary large models we are through. Suppose then ¢ has no models of power greater
than %. Let K be the class of models (4) such that {A) can be expanded by a model
of ¢ of power 2card(4). K is Z*(L*)-definable because the powers of models of ¢
are bounded by x. K has a model of power #™(Z%L*)) and therefore a model of
power greater than x. This model gives rise to a model of ¢ of power greater than »,
which contradicts the choice of ». B

§ 4. The main results. In this chapter we prove the following theorems:

4.1, THEOREM. Lot M be a countable model of GB-+GCH +Global Choice.

There is a countable extension N of M to a model of GB -+ Global Choice such that
M and N have the same ordinals, cardinals dnd cofinalities, and

NER(LD<h(4(LD).
In this model also h™(LI<h(LI) holds.

4 -~ Fundamenta Mathematicae CXV
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4. THEOREM. Let M be a countable model of GB+GCH+Global Choice.
There is a countable extension N of M to a model of GB-+Global Choice such that
M and N have the same ordinals, cardinals and cofinalities, and

NER(4(LD)<h(Z(LD).
In this model also h™(LI)<h(LI) holds.

By the main result of [2], the above theorems have the following corollary:

4.3, CoROLLARY. If Con(ZF), then Con(ZFC+h™(LI}<h(LI)<h(A(LI))) and
Con(ZFC+h™ (LI <h(LD)+h(A(LD)<h(E(LD). In particular Con (ZFC-+h™(LI)
<h(LTy<h*(LI)).

4.4. COROLLARY. Apart from the trivial (I1) — (14), (12) — (I5) and (I3) — (16)
no implication among (11)-(16) is provable in ZFC.

Proof. Recall that most of the possible implications were already shown to,
be provably false. If A(LI) <h(A(LI)), then Z3(LI) satisfies (I1) but not (I3) or (I6)
SB(LI) satisfies (12) but not (I3) or (I6), 45(LT) satisfies (I4) but not (I3) or (16)
and A®(LI) satisfies (I5) but not (13) or (I6). If h(4(LI))<h(Z(LD)), then A4(LI)
satisfies (I6) but not (I3). B

For the proofs of the above theorems we recall some facts from Easton-style
forcing with classes. Suppose & On and F is a function (class) defined on On-u
with values in On such that

(E1) VBy(e<h<y = F(BYSF®),

(€2) VB>a(sy<cl (F(B)).

By [1] there is a class P(F) of forcing conditions such that if GCH is assumed, then
P(F) it VB>o(f regular — exp(xg) = Npe)

and P(F) preserves cardinals, cofinalities and R(x). Here P(F) |- ¢ means that
‘every condition weakly forces ¢. Moreover, P(F) is homogeneous and therefore,
if @(xy, ..., x,) is a formula of set theory and 4y, ..., a, are hereditarily ordinal
definable, then k

P(F) I (f)(als'--aan) 91' P(F) i+ "](p(dlv'":an)'
Recall the definition of the predicate C(a) from 2.1.C. Let .

S() « a>1& C(@) & YB(C(P) ~ p<a),
D(o) < Bx>0(eXp (Ryat 1) > Retaid) »
P@) < D@ & VB(D(B) — = a),

H(e) «» S(o) & P(or) .

4.5. LemvA. Suppose H(0). Then a<h(d4(LI)).
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Proof. Let K be the class of well-ordered sets the order type of which is <a.
Note that f<a < C(B). Therefore X is X(LI)-definable (see 2.1.C). Note also
that

B>a — Fy<f o>y (exp(8,4y01)= Bytyta) -

Using this it is not difficult to prove that X is Z(LI)-definable. Therefore Ke 4 (L.
K has no models of power >card(x). Hence a<h(4(LI)). B

To prove Theorem 4.1 we define a function F such that
P(F) - H(a) & h(LD) <o
for some o. Suppose « and § are infinite ordinals. Define F4(y) for y> 8 by:

ﬁ+4 if Ax>aly = x+a),
Fogly+1) = {y+3  if Fu>a(e2<y<n-2+a),
11naX(Fmp('}J), y+2)  otherwise,
Fap(v) = v+1  for limit v.
Note that I, satisfies the conditions (B1) and (E2) and if f<p’ then
Vy> B (Fuplv) = Fup(y)) and therefore every P(F,p)-term (term of the P(F,p)-
forcing language) is also a P(F,j)-term.
4.6. LEMMA. Suppose GCH. For every o and B P(F,p) IF H(a).
Proof. The claim follows immediately from the definition of F,,. B
4.7. LemMA. There are o and f§ such that P(Fu) \F (LD <a.
Proof. Suppose the contrary, that is, for all @ and B P(F,,) Ik a<h(LI). Let
Mod (g, %) be the formula “¢ & LI, % is a cardinal and ¢ has a model of power>x”,

Let %y = h(LI) and P; = P(F,,,). Then P, |r xo<h(LI) and therefore there are
@y €Ll and %, such that

P, Mod (¢, %) & TTMod (¢, %y) .

If f<w; and %, has been defined for y<p, let % = sup{x,: y<p} and Py = P(F,,).
Then Py It 2y <h(LI), whence there are ¢ye Ll and %> such that

(*) Py I Mod (g, %o} & TMod (@, %p) .

This procedure defines a sequence {p,: f<w,} of Li-sentences. As LI is
countable there are f and y<w, such that f<y and ¢, = ¢,. Now we have

P, |- Mod(e,, %) .
Suppose U is a P,-term and p € P, such that
p I Uk g, & card (W) >, .

As P, and Py prescrve cardinals and f<y, there is a g in Py such that ¢ H¥UE @,
As Py I TiMod(py, %,), we have g I-* card (%) <. In fact we may assume that
aIr*Ae R(%z). As P, preserves R(xy), there is a model B such that g F*U = B,
4
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If B does not satisfy ¢,, then P, BF T¢,, a contradiction. Therefore B is
a model of ¢, of power >h(LI). Hence ¢, has arbitrary large models. Because Py
preserves cardinals,
P,k VAMod(p,, 4),

which contradicts () B

Proof of 4.1. Apart from the claim concerning /7 (L[) the claim of the the-
orem is easily proved using 4.5, 4.6 and 4.7: We let N be a P(F,,)-generic extension
of M, where x and f are determined by 4.7. To satisfy A~ (LI) </ (LI) in the extension
we have to choose the extension more carefully. Let /() be the predicate
eXp(8,) = Nera- If B =sup{a: J(0)} exists, then clearly f</A(LI). Supposc now
for a moment V = L and a = A™(LI). Let B be the usual Cohen-algebra which
gives the sentence (™) value | without introducing new subsets of o. Then in V®
there are no non-constructible models of power o (up to isomorphism) and there-
fore VBEA™(LI) = a<h(LI). To prove 4.1 we now combine this construction
with that of 4.7. So, let M be gives as in 4.1. Let » = h™(LI) in M and let N, be
a generic extension of M obtained by adding x,,.34+5 new subsets of N,.5.,.4 but no
new subsets of s,.5. Then Ny F A7 (LI)<h(LI). We cannot apply 4.6 directly inside
N, because Ny does not satisfy GCH. However, if f>5,.5.1, then P(F,p) - H (o)
in N;. So we only have to make sure that f>&,.3., in the proof of 4.7 and we
get « and f such that P(F,y) I H(«) & k(L)< in N;. Note that still P(F,;)
Ik RT(LI)<h(LI). Let G be P(F,;)-generic over Ny and N = N{[G]. For details
of the construction of G and N,[G] see [1]. B

The proof of Theorem 4.2 is somewhat similar to the above, The role of the
predicate H(a) is now played by D(ax). The following result has been essentially
proved already:

4.8. LemMa. If D(), then a<h(Z(LI)).

For any «, 8 and y>f we define Fy4(y) as follows:
, y+4 if Ja'<aIn>a'(x<yp<+al),
Felv+1) = {max (Fis(y),7+2)  otherwise,

Foy(v) = v+1 for limit v.

The functions F,,; have similar properties as the functions Fp but in addition,
F;ﬂ(V)SF;'ﬂ('Y) if aga’. :

4.9. LemMA. Suppose GCH. For every o and f P(Fo) - D(w).

Proof. The claim follows immediately from the definition of Foy. 8

4.10. LEMMA. There are o and B such that P(Fuy) I h(4(LD))<a.

Proof. Suppose the contrary, that is P(Fy) I a<h(4(LI)) for all « and f.
The logic 4(LI) has the disadvantage that its syntax depends heavily on the under-
lying model of set theory. For the sake of clarity, let us assume that 4 (L/f)-sen-
tences are triples (¢, ¥, L} such that Proj,(p) is the complement (in Str(L)) of
Projy(¥) and @,y eLl Let Mod(f, x) be now the formula “0 = {py . Ly,

|
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@,y €Ll » is a cardinal and there is a model of power > in Proji(¢)”. Let n(LI)
denote the family of model classes X such that K is in X(LD).

Now we use induction on a<w, to construct cardinals Hys Ay and A (LI)-sen-
tences ¢, such that if « is a successor ordinal then for arbitrary large y

(%) P(F,,,) I Mod(g,, ) & “IMod (¢, ) .

Case 1. o = d+1. Let %, = 4. Let y be any infinite ordinal. Then P(F, )12,
<h(A (.Lf)) whence there are ¥, and p such that

(%) P(Fo) Iy e AL & Mod(,, x,) & TMod (¥, ) .

Let u, be the least u such that () holds. By the Replacement Axiom there is a ¥ such.
that i, = 1 for arbitrary large y. We let ¢, = Y. To define 1, we need the following
auxiliary argument: Let C be the class of y such that Y, = ¥ and let v = min(C).
Let y € C be arbitrary. We prove that Hy<p,. For this end, suppose ¥ is a P( Fro)-
term and p e P(F, ) such that

P (UE & Card(U)>p,) .

As v<y, Wis a P(F,,,)-term and there is a g P(F,,,) such that

g (UE & Card (W p,)

whence by homogeneity, P(F,,)IF Mod(,, 1), a contradiction with (*). There-
fore P(F,,) Ik “TMod (i, u,) and My ity by the minimality of p,. Now we let A,
= max(i,, ¥,).
Case 2. a is limit. Let %, = A, = sup{x;: <o} and ¢, = Ix(x = x).
This ends the construction.
Choose successor ordinals « and B such that ¢, = ¢ and a<f. Let y>6>1,
such that
P(F, ) IF TTMod{p,, 4,)
and
P(Fy,s) Ik Mod(,, %) -
Let U be a P(F,,)-term and p EP(‘F,’W) such that
PI* WE @, & Card(W)2x, & We R(Ay) .
As 32y, there is a B such that p I* (B = U & B k ¢,). Note that Fro(®) < Fyyo(e)
for all gy, Hence if ¢ € P(F,,,) and ¢ +* (B k 7p,) then there is an r e P(FL,)
such that » * (B k 71¢,), a contradiction with pi* (B E ¢,) (by homogeneity).
Therefore P(Fy,) I (B E @,), but as A,<x,, this contradicts (++), H
Proof of 4.2. If the claim concerning h™(L[) is again ignored, we can let AV be

a P(Fy)-generic extension of M, where « and § are determined by 4.10. A~ (LI)
is then taken care of using the same trick as in the proof of Theorem 4.1, B
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The only fact we used in the above Lemmata 4.7 and 4.10 about LI was that
satisfaction of LI-sentences is absolute with respect to cardinals preserving exten-
sions. Let us say that a generalized quantifier Q (defined without parameters) is
Easton-absolute, if for any F and G satisfying (El), (E2) and the condition
Vo (F(6) <G (), for any P(F)-term ¢ and for any p € P(F) p weakly forces Q(2)
in P(G) only if p weakly forces Q(z) in P(F). In rough terms, this means that the
predicate @ is preserved under forcing A la Easton. The quantifier I and the
quantifier

Rxyd(x,y) < {(a, b): A(a,b)} has the order type of a regular cardinal

are Easton-absolute. Theorems 4.1 and 4.2 have now the following more general
forms:

4.11. TueoReM. Let M be a countable model of GB+GCH+ Global Choice
and Q an Easton-absolute generalized quantifier in M. Then there is a countable ex-
tension N of M to a model of GB~+ Global Choice such that M and N have the same
ordinals, cardinals and cofinalities, and

NERLQ)<h(4(LD).
Another similar model N’ can be found such that
N'ER(ALQ)<h(ZLD).

Combining 4.11 and the compactness theorem yields:

4.12. CorOLLARY. If Con(ZF), then Con(ZFC+ for every provably Easton-
absolute Q, h(LQ)<h(d4 (LD))), and Con(ZFC -+ for every provably Easton-absolute Q,
h(4(LQ)) <h(E(LD))

4.13. OPEN PROBLEM. Is there a generalized quantifier Q such that ZFC

FR(LQ)<h(4(LQ))?
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