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Generalized manifolds (ANR’s and AR’s) and
null decompositions of manifolds

by

S. Singh (Altoona, Penn.)

Abstract. We prove the following theorem: TreorEM, For each topological n-manifold M"Y
n =3, there exists an uncountabls family " of -~dimensional absolute nbd. retracts such that
each X in L satisfies (1) X has the (proper) homotopy type of M™", and (2) X does not contain
any strongly movable proper subset of dimension > 2; furthermore, if M" is a manifold without
boundary, then each X in A" is a generalized n-manifold satisfying Xx E* is homeomorphic
to M"x E* in addition to (1) and (2). Moreover, each X in J” contains movable subsets of di-
mension > 2 and the space X is obtained from M™ as a decomposition space associatéd with a null
decomposition of M" into arcs and singletons., Some other related matters are discussed; for
instance, it is shown that a strongly movable continuum has UV for small loops (actually more
is shown, see the statement at the end of the proof of Proposition (6.9.2)).

1. Introduction, notation and terminology

(L.1) Introduction. Suppose G is a cell-like upper semicontinuous decompo-
sition of a compact and connected n-manifold M* without boundary such that
the decomposition space M"/G is finite dimensional. It is well-known that M"/G
is a generalized n-manifold which is not, in general, an n-manifold. Recently,
J. W. Cannon [13] has used a disjoint disk property (DDP) in his remarkable so-
lution to the double suspension problem and later R. D. Edwards has proved the
following far reaching extension of [13] and [36]: If n=5 and M™/G has DDP,
then the projection p: M"— M"/G can be approximated (arbitrarily close) by
a homeomorphism. Thus, DDP appears to be the definitive (and minimal) condition
whose presence guarantees that the generalized n-manifold M"/G is an n-manifold.
On the other hand, the failure of DDP can be successfully used to produce
generalized n-manifolds with rather exotic topological structure; the results of
this note may be interpreted in this context. A recent deep theorem of F. Quinn [33]
states that, in fact, every generalized n-manifold is a cell-like image of a topological
n-manifold; therefore, the failure of DDP is the only obstacle for any generalized
n-manifold to be an n-manifold, see Lacher [27] and J. W. Cannon [12] for
historical and other details. The failure of DDP can cause enough damage that
the generalized »n-manifold, 733, does not contain any proper compact subset
of dimension >2 which looks like a polyhedron (or ANR). More specifically, we
prove the following theorem:
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THEOREM. For each topological n-manifold M", nz3, there exists a family "
of topologically distinct n-dimensional absolute nbd. retracts such that each X in A*
satisfies (1) X has the homotopy type of M", and (2) X does not contain any strongly
movable proper subset of dimension =2; furthermore, if M" is a manifold without
boundary, then each X in A" is a generalized n-manifold satisfying X x E* is homeo-
morphic to M"x E* in addition to (1) and (2).

Each space X in the theorem is constructed as a decomposition space associated
with a certain upper semicontinuous decomposition G of the manifold M” such
that the set of all the nondegenerate elements of G form a (countable) null collection
of arcs; therefore, the decomposition G is the minimal in the sense that it is a null
~collection and G is the simplest since cach of its nondegenerate clements is an arc
which is the simplest cell-like continuum. Furthermore, it is shown that if G is an
arbitrary decomposition of an. n-manifold M" whose nondegencrate clements
form a null collection of arcs, then the associated decomposition space X contains
movable proper subsets of dimension 2. Therefore, the results of this note are
the best possible.

‘We have relied heavily on [37] for many technical details on linking, and we
have also depended on Wright [46] whenever possible. We have tried to preserve
the geometric flavor of its predecessors [5, 38, 39, 40, 41] and most notably the
work of Bing and Borsuk [5]. The main ingredient is a Cantor set construction of
Daverman and Edwards (we often refer to Daverman and Edwards by DE) which
plays a crucial role in our construction, see Daverman [16] for an exposition,
Amnother ingredient is the existence of certain wild arcs in S” whose complements
have certain specific fundamental groups, see M. Brown [11] and Roslaniec [34].
We also use several results and techniques from the shape theory, K. Borsuk [8],
the theory of retracts, X. Borsuk [7], and the theory of cell-like decompositions,
Lacher [27].

Acknowledgments. We are grateful to R. J. Daverman and John Walsh for
many penetrating remarks concerning these matters. We also owe a great deal
to S. Armentrout for his interest, encouragement, and other help.

(1.2) Netation and terminology. We denote by B* the closed ball of unit radius
in the n-dimensional Euclidean space E" and we denote by $""* the boundary
sphere of B". A set X is uncountable if X has the cardinality of the set of the rea!
numbers. Any Cantor set constructed in E, 8", or B" by the Daverman and Edwards
construction [16, 17] will be called a DE Cantor set (or a DE embedding of the Cantor
set). We refer to Daverman and Edwards by DE whenever convenient. A gener-
alized n-manifold X is an ENR (Buclidean neighborhood retract) such that
H(X, X—{x}; Z)m H(E", E"—{0}; Z) for any x € X, One may consult J, W, Can-
non [14] for an interesting discussion of generalized n-manifolds where many
other references may also be found. By a proper subset 4 of a space X we mean
A # Xand 4 # @. We shall use the terminology ANR, AR, FANR, and strongly
movable only for compact metric space (cf. [7, 8]). We refer to Porsuk [7, 8), Cen
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non [12], Daverman [16], and Lacher [27] for specific results and also for references
to the work of many others. A collection of subsets of a metric space X is called
a null collection if for £>0 all L ut finitely many sets in the collection have diam-
eter >¢ (in X). All spaces arc assumed to be metrizable. Two isomorphic groups
are sometimes considered to be equal.

2. Segquences of groups

Throughout this section we shall be concerned with sequences of groups. By
{G,,}; we mean the sequence Gypr Gy oo

(2.1) DepmNiTioN. A group G has property («) if there exists a strictly increasing
sequence [}, of positive integers such that G,k G,,, whenever i # j, where G,
is the free product (ef. [29]) of m, copies of G for k = 1,2, ... The sequence of
groups {G, };, as above, will be called a *-sequence for G.

(2.2) Tug »-sur &. Let {G,,}; be a *-sequence for G. We observe that every
subsequence {G,,}; of {G,); is also a *-sequence for G. Two subsequences {G,,};
and {G}; arc defined to be distinet if and only if the sets {Guy: 1<i< 0} and
{Gy,: 1i<oo} are distinct, Tt is easy to see that the set & consisting of all the
distinct subsequences of the *-sequence {G,}; has the power of the continuum
(an uncountable set). The set % will be called the #-set for G corresponding to
the #-sequence {G,};.

(2.3) MAm ExampLE. Roslaniec [34] has shown that the group G having the

presentation
o

4]
|: {C): UG CiCriy = Cicz-ucf—lci}]
4 i=0 £i=0

has a #-sequence {G, }; for a suitable sequence {m}; of positive integers, see [34]
for more details. The «-set for G corresponding to the sequence {G,,}; will serve
as an important example for us. Recall that the group G is the fundamental group
of the complement of the celebrated Artin-Fox arc in the 3-sphere §° [21].

3. Ares in 8", n2z3

(3.1) Preliminary results on arcs. We shall use th’e following results concerning
arcs in S".

(3.1.1) TuroraM (M. Brown [11]). For every arc a.c=S”, there is an arc a* = S"™*
siteh that (5"« has the homotopy type of (S"*!—a*).

(3.1.2) TuroreM (Roslaniec [34]). There exists a null sequence {dj}; of disjoint
ares in 83 dand a group G with a x-sequence {G,}; such that for each j, 1<j<c0,
n( (S~ A Gy, where Gy is the free product of j-many copies of G.

(3.1.3) TueoreM (Brown-Rostaniec). For each n, n23, there exists a null se-
quence {A,}; of ares in 8™ and d group G with a %-sequence {G,,}; such that for each j,
Igj<o0, m(8"—d)=G,, where G; is the free product of j-many copies of G.

(3.1.4) Remark. Theorem (3.1.3) follows from Theorems (3.1.1) and (3.1.2).
Roslaniec [34] has given a specific group G, see (2.3), and a specific *-sequence
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{G,}; for G satisfying the conclusions of Theorems (3.1.2) and (3.1.3). For our
purposes, any group G with a *-sequence {G,,}; satisfying the conclusions of Theorem
(3.1.3) will suffice.

(3.2) A method of attaching an arc to a given arc. By {x;x, ... x;> we mean
an arc in E", n>3, such that the arc starts at x;, goes through x,, x5, ..., X,
in this order, and ends at x;. Suppose M" is a compact and connected P.L. n-mani-
fold in E” with boundary 0M". Suppose {ab) is an arc contained in (M"—dM™).
Choose a point ¢ in dM™. It is easy to see that there exists a P.L. arc (bc)cM”
such that {ab) n {bc) = {b} and <bc) N OM" = {c}. Let d be a point in (E"—~ M™)
such that d is in the component of (E"—M") whose closure contains ¢. Choose
two balls B, and B, centered at d such that B, B, and By n M" = @. It is casy
to see that there exists a P.L. arc {cd) such that {ed) n M" = {c} and {cd> meets
[B;—Int(B,)] in a subarc {¢'d"y of {cd). Given an arc {dey =B, with {abcd)> ~
n {dey = {e}. The arc {abede) is obtained by attaching {de> to {ab> by the P.L.
are {bedy. Put U = E"—(B, U {abcc'd’y) and V = Int(B,)—<{c'd'ded>. By the
Seifert and Van Kampen Theorem (cf. [29]), we have shown that ,(E"— {abede))
is the free product of m;(U)mr(E"~<c'd'ded)mn(E"—{de}) with (V)
& (E"—{abec'd' y) = m, (E"—{aby) since (U n V) is simply connected.

4, Preliminary results

(4.1) The DE embeddings of the Cantor set and arcs in E", n>3. A closed
(n—2)-manifold M in E", n23, has a (topological) tubular neighborhood M, in
E" if M, is homeomorphic to M x B* under a homeomorphism which carries M
onto M x {0}. For notational convenience, we shall identify M, with M x B? and
forget the homeomorphism. We shall also refer to M, as a twbe with center M and
normal disk B>. All manifolds considered in this note will be P.L. and orientable.
All the closed manifolds in E" will have (topological) tubular neighborhoods. We
begin with some results from [16;17].

(4.1.1) Tueorem (DE [16, 17]). Suppose, M, M, and E" as above in (4.1). Then
Jor each e>0, there exists a finite set {M,;: 1<i<n,} of disjoint n-manifolds such
that: (a) For each i, 1<i<n,, MycM,, the diameter of M, is less than e, and M,
is a tube with a center which is an (n—2)-manifold; and (b) 4 loop y in (E"—M,) is

Na
nullhomotopic in (E"— M) if and only if y is nullhomotopic in (E"— |) M.
tal

Theorem (4.1.1) may be considered as a generalization of the classic Antoine’s
construction [1]. Indeed, the goal is to produce a wild Cantor set, analogous to
the celebrated “Antoine’s necklace” [1, 6, 32], by iterating this construction for
each M,;, 1<i<n,.

(4.1.2) Treorem (DE [16, 17]). Suppose M and M, as in Theorem (4.1.1). Then
there exists a Cantor set C in Int(M,) such that any loop y in (E"=~M,) is nullhomo-
topic in (E"—C) if and only if y is nullhomotopic in (E"—M).
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(4.2) Definitions and terminology. A set {X;: 1<i<n} consisting of disjoint
subsets of a metric space X will be called a §-chain provided each X; has diameter
<4 and each of the sets (X; U X)), (X, L Xa), s (Xuoy U X)), and (X, U X,
has diameter less than 26. The finite set {M,,: 1<i<n,} given in Theorem 4.1.1)y
will be called an &-chain of n-manifolds substituting for M, at the first stage of DE
construction provided (1) this set is an e-chain, and (2) each loop in M,; is nuli-
homotopic in (E"—M,;,) and each loop in M,;, 1y is nullhomotopic in (E"— M, ;)
where 1<i<n, and choose i+1 =1 if i = n, (or consider i modulo n,). The con-
struction of an e-chain substituting for M, can be done, for instance, as an added
feature of DE construction; this follows from “the standard replacement technique™
of DE. The concept of an &-chain substituting for M, is simply a way of ordering
the manifolds and that there is very little geometry between the consecutive two
manifolds other than the assertion (2) in the definition. We omit details and we
refer the reader to Wright [46; p. 123-124] for a relevent discussion. Furthermore,
we require that in the first stage of DE construction we use only an &-chain sub-
stituting for the manifold M,, for a suitable &0, whenever we use DE construction;
while, the manifolds used at any successive stage will be called a chain and which
may or may not be an e-chain substituting for the manifolds under consideration.

(4.3) The parallel DE Cantor sets. Suppose the first stage of the DE construction
is finished, i.e., suppose an &-chain of n-manifolds {M,;: 1<i<n,} substituting
for M, is given. Since each M, is a tube we identify it with N,;x B2, see (4.1). Now,
choose two disjoint tubes T, = N, xB,; and Ty = N, x Bl; satisfying: (1) the
tubes miss the center of N,; x B2, (2) there exist b and b’ inside Int(B?) such that
N, % {b} and N,;x {b'} are the respective centers for T;; and T%;, (3) B,; and B.; are
two subdisks of B? with respective centers b and b’. We stipulate that the chain
inside each M,;, required in the second stage of the DE construction, is contained
in Tj;. This requirement will apply only to the second stage. Now, iterate the usual
DE construction to construct the third stage, ..., nth stage, ..., and a Cantor set C
inside M,. Clearly, C is the disjoint union of the Cantor sets {C,; = C n M,;}j, .
Note that for each i, C,; is contained in T,;. Observe that there exists an isotopy
of M,, taking T,; onto Ty, such that the disk B,; goes onto B, inside B* and the
boundary of M, remains fixed throughout the isotopy; we shall refer to the isotopy
of this type as a vertical isotopy. Therefore, the Cantor set C goes onto a Cantor
set C' where C” is the disjoint union of the Cantor sets {Cy,;}i2; and Cj, is the image
of Cy; at the end of the isotopy. We say C,; and C;; (C and C') are two parallel
Cantor sets in M, (in M,). Let A, be an arc inside T, containing C,; such that 4.,
is PL modulo C,;. The image arc 4y of A,;, under the end of the isotopy, certainly
contains Cy. We say 4,;, and AY, are parallel arcs in M,; and the set

{dyyu Ay 1<i<n,}
will be called the ¢-chain of parallel arcs substituting for M,.

(4.4) The dyadic arcs. For each two consecutive elements M,; and My 1) We
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choose a simple closed curve S such that (1) S lies in the complement of Myiiqy,
(2) S and the boundary ¥ of a normal disk of M.y bound an annulus does not
meet M, 41y away from 2, and (3) (S N M) equals to an arc J contained in M,,.
Let A,; = {(xy) and 4, = {x'y"> where x goes to x" and y goes to »’ under the ver-
tical isotopy which carries 4,; onto 4. Our notation {abc) means an oriented arc
running from « to b and then to c. By extending the arcs if necessary we assume
J = {yy’>. Choose z and 7' in S such that §' = {yzy’y U {y'z'y) where J = {yzy".
Let Ly = (g U 4%) U (¥'z'y>. The arc L,; will be called a dyadic arc substituting
for M,;. Observe that (L, u M,;) contains a loop which links Mo 1y, 0T Ly U
U {pzy"> contains a loop which links M,q4yy. It is clear that {L,;: 1<i<n,} is
an 2e-chain of arcs which will be called the 2¢~-chain of dyadic ares (or dyadic chain)
substituting for M,.

5. A family of decompositions

(5.1) A family of manifolds in E”, n3>3. Let #“~? denote the family of all
the PL (rn—2)-manifolds in E” with rational vertices and with tubular neighborhoods,
see (4.1). Tt follows from the results in [37] and from the connected sum construction
that for each continuum 4 cE" of dimension 22 and for each open set UcE"
with (U n A) = @, there exists M e #"~2) such that 4 h-links M, ie., each nbd.
of A in E" contains a simple closed curve which is linked with M (see [37] for more
details) and (M ~ U) is nonempty. Let M,, M,, M;, ... be an enumeration of
the family #®~2 such that each manifold in #”~? appears an infinite number
of times. It is clear that the above discussions remain valid when E7is replaced by S".

(5.2) Some choices. Fix an integer n3. Choose a group G with a *-sequence
{G,}: such that for each i, 1<i<co, there exists an arc 4,=S”" of diameter <1/i
satisfying 7,(S"—4;) = G,,, see Theorem (3.1.3). Let & denote the *-set for G cor-
responding to {G,.};, see (2.1.1). Choose an enumeration My, M,, M5, ... of the
family #¢~2) satisfying the assertions of (5.1) and fix this enumeration, The group G
and the #-sequence {G,,}; will remain fixed throughout; however, we do not make
fixed choices for the arcs 4;’s. For each element A e &, where & is the #-set given
above, we shall construct a decomposition space S5 of $* such that A % u implies
S, is not homeomorphic to S, (details will follow).

(5.3) The construction. Suppose A = {G,,}; in & is given. Choose a tube T
containing M such that Ty is contained inside N(My, 1) = {xeS": d(x,m)<l
for some m in M;}. Choose a 1-chain {My;: 1<i<n,} substituting for M, seo
(4.1.3). Let {L,;: 1<i<n} denote the 2-chain of dyadic arcs substituting for 7%,
see (4.4). Put Hy; = n,(S"~L, ;). There are two cases and we consider them sep~
arately.

Case I. For each i the group Hj; is not isomorphic to any group in the *-se-
quence {G,},.

Case II. There exists a group Hy; such that H,; = G,, for some 7.

Suppose Case I is true. We construct an arc A, =S such that 7,(S"—A4,,)
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= Gy, and 4, is disjoint from the arcs in {L,;: 1<i<ny}, and the diameter of
A, is <1. This finishes our construction for Case I.

Suppose Case Il is true, i.e., Hy; is isomorphic G, as above. Choose an index
m>n;. Now G, equals to the free product G, with Gme—ny Where G, _. equals
to the free product of (m;,—n;)-many copies of G. By (3.2) we modify our arc L, ,
to obtain a new arc E,-j sufficiently near to L;; such that 71 (S"— L) = Gy A;
a consequence, in either case we may assume without loss of generality tha.kt the
chain of {L;;: 1<i<n,} satisfies the property:

(P) For each i the group Hy, = ny(S"—Ly,) is either isomorphic to some Gy
or it is not isomorphic to any G,,-

In addition, we construct an arc 4,, =S" of diameter <1 such that T (S"—4,,)
= G, and 4, is disjoint from the arcs in {L,;: 1<i<n,}.

Suppose the construction has been performed inside the tubes T, T, ..., Ty,
We next describe this construction inside T; where 7 is a tube contained
in N(Mj, 1) = {xe 8" d(x,m)<1)j for some me M;}. Choose 1/j-chain
{My;: 1<i<nj} substituting for T; and let {L;;: 1<i<n;} denote the 2/j-chain
of dyadic arcs substituting for M; satisfying (1) these arcs are disjoint from the
finitely many arcs employed in the chains of arcs substituting for T7,..., and
Tij-1y> (2) we require that the chain {L;: 1<i<n;} satisfies the property (P);
furthermore, we construct an arc 4,,=S" of diameter <1/j disjoint from all the
arcs previously employed such that 7 (S"~4,,) = Gy,. The requirement (1) in
the previous sentence can be fulfilled by requiring the DE Cantor sets to be disjoint
which is a featurc of the DE construction and then general positioning the arcs
modulo the Cantor sets, see Wright [46] for a related discussion. This finishes our
inductive step in the construction. Let S} denote the decomposition of S™ such
that the set N, of all the nondegenerate elements of S} is the union of all the chains
of arcs, {L;;: 1<i<n;} where 1<igco, with the set of arcs {4,,,: 1<i< co}. Clearly,
for each ¢>0 all but finitely arcs in N, have diameters > g, i.e., the nondegenerate
elements of the decomposition S form a null collection. This finishes our con-
struction of the decomposition S3. In order to avoid proliferation of symbols we
denote the associated decomposition space again by S7.

6. Decompositions of S, n23

Suppose n3 is arbitrary but fixed for the following discussions. We assume
several results from the context of cell-like mappings and we refer the reader to
Lacher’s excellent survey article [27] for the discussion of these results and other
related matters, We start with the following well-known proposition (cf. [27]):

(6.1) PrOPOSITION, For each Ain & the decomposition space S} is d generalized
n=-manifold (definition later) such that the projection p,: S™ — S is a (simple[fine)
homotopy equivalence.

A finite dimensional ANR (ENR) X is a generalized n-manifold if
Hy (X, X—{x}; Z) is isomorphic to Hy(E", E"—={0}; Z) for each x in X where Z is
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the group of the integers (under addition). A generalized n-manifold is locally
orientable, i.e., the orientation sheaf (generated by the presheaf U — H (X, X—U; Z)
where the homology can be taken in the sense of Borel-Moore or Cech) is locally
constant, see Cannon [14] for an interesting discussion of these matters where the
reference to the work of Bredon and others may also be found. :

(6.2) TBE GRroups 7(S5—{x})’s. Suppose A = {G,}; is an (fixed) element
of &. We observe that the group my(S5—{x}) = 0, G,,, or H;;, respectively, when
P7(x) consists of exactly one point, p; '(¥) = 4,,, or p5*(®) = L. We reindex
and arrange the groups H;/s into a sequence which is denoted by {H[*};. Hence,
every nonzero group my(Si—{x}) appears in the sequence {H}"}; or in {G,};. Let
2 = ({H"}, {Gy}:) denote the (ordered) pair of these sequences. The pair 1 has
the following property:

(Py) Each group H' is either isomorphic to some group in the sequence {G,,};
or it is not isomorphic to any group in the sequence {G,},. This follows from the
property (P) of (5.3).

Suppose 1 = ({H",, {Gy,}) and g = ({H}},, {G)},) are given where A = {G )
and p = {G,}, are two distinct elements of the -set &, sec Section 2. Since 1 # p,
we let without loss of generality G,, be a group which is not isomorphic to any
group in the sequence {Gy},. In this setting, we have proved the following
Lemma (6.3). ‘

(6.3) LEMMA. The distinct pairs 1 and ., given above, have the property that the
group G, does not dppear in either of the component sequences {H{}, or {G\}, of fu

(6.4) LemMA. If A and p are two distinct elements of &, then the decomposition
spdces S and S, are topologically distinct.

Proof. Let 1, pu, 1, and 2 be given as above satisfying the assertions of
Lemma (6.3). We do not lose any generality by making this assumption. This
means that the group G,,, = n;(55—{x,}), for some x, in S}, is not isomorphic
to my(Sy—{x}) for any x in Sj. This finishes the proof of Lemma (6.4).

For each n23 and a x-set & we denote by & the set {S}: Le &} containing
the decomposition spaces. The following theorem summarizes our results thus far:

(6.5) THEOREM. For each n3, the set 9 consists of uncountably many topo-
Iogically distinct generalized n-manifolds such that each S in " has the (simpleffine)
homotopy type of S™ and this (simple[fine) homotopy equivalence is induced by the
projection p,: S" — 4.

Since the nondegenerate elements for our decomposition is a null collection
of arcs, the following proposition is a consequence of some resuls of Meyer [30]:

(6.6) ProrosITION. For each n23, any space 84 in & is an (n-+1)-manifold
Jactor. More precisely, S;xS*(S}x EY) is homeomorphic to $"x §* (S" x E1).

(6.7) Remark. It is well-known that every generalized n-manifold is an n-mani-
fold when n<2; moreover, every (compact) generalized n-manifold with the
homotopy type of S” is homeomorphic to S” where n = 1 or 2 (cf. [45]). This may
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be contrasted with Theorem (6.5) and some other results of this note. The following.
observation may also be useful in the sequel: An open subset of generalized n-mani--
Jold is itself a generalized n-manifold.

(6.8) The subsets of S7 and “The backing-up technique”. We fix a decompo--
sition space S} throughout the following discussion. We illustrate the backing-up-
technique in the following simpler but important setting.

(6.8.1) SETTING. Given a closed proper subset 4 of S} satisfying (1) A has UV*,
(2) A has dimension =2, and (3) 4 contains a simple closed curve C such that ¢
= p;yUC) is a simple closed curve in A’ = D7 Y(4) where Py 8" 8% is the pro-
jection.

(6.8.2) GoAL. Our immediate goal is to use “the backing-up argument” to reach
a contradiction and thereby prove that S} does not contain any proper closed sub--
set of dimension 22 with UV?,

It follows from a theorem of Sher [35] that 4’ and 4 have the same shape..
Since UV* is a shape invariant (cf. [8]), it follows that 4’ has UV®. Let W, be an
open subset of (S"~4’) such that the complement (S”— W,) is a nbd. of 4’. Now-
apply UV* of 4’ to find a nest ¥, >V, ... of open saturated nbds. of 4’ in §™

such that (1) ¥y does not intersect W (choose ¥y inside (S"— W), (2) 4' = () ¥,
i=1

and (3) each loop inside V.. is nullhomotopic inside ¥;. There exists a manifold M
belonging to the family #®~® such that C’ links M and M intersects W,. This.
means that there exists a tube Tj = M x D? with center M; = M such that a normal
disk {m}x D* is contained in W;, see Sections 4 and 5. We put M, = T} so that.
we may use the notation of Section 4. Let {M,;: 1<i<n,} and {L,: 1<i<n,}
denote, respectively, ey-chain of manifolds and 2¢,-chain of dyadic arcs sub-
stituting for M, (where g, = 1/j), sce Section 4. The simple closed curve C’ bounds.
a PL singular disk f: D* - ¥, since C’ is contained in V,_,,. Since C" and the:
center M of M, are linked, it follows from [16] that there exists a punctured disk
PcD? and a map f': (P, OP) — (M, 8M,,;) for some i, 1<i<n,, such that f* is
I-essential in the sense of [16], and f'(P)< ¥, It follows from [16] that each arc 4,;
and A, intersects f''(P); furthermore, it follows that the dyadic arc L,; is contained
in V,, since ¥, is saturated, We have set this up so that we may use the notation
and terminology of (4.3) and (4.4). In this selting, we state and prove the:
following:

(6.8.3) “Tue BACKING-UP LEMMA™. The hypothesis Ly, contdined in V,,, as
above, implies Lyqaqy Is contained in Vi,

Proof of (6.8.3)., Choose a point @ in [dy A f'(P)] and a point &' in
[Ay A F(P)]. Qur notation {xpzw) ete. denotes an arc or a simple closed curve-
starting at x and traversing through y, z and ending at w in the order these letters
appear in {xyzwd. Let {aa’> be an arc inside f'(P). We choose two subarcs {ay)-
and {a'y"> of arcs A,, and A, respectively. Since the loop (or the simple closed:
§ - Fundamenta Mathematicae CXV
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curve) (yzy'a’ayd (see (4.1.5)) is contained in M, it is nullhomotopic in
(E"—M,41)) by (4.1.3). Therefore, the arcs (yaa’y) and <yz)y") are homotopic
inside (E"— M, 1y) with endpoints fixed. Now the loop <aa’y'z'y'a) links My,
since S = {yzy'z’y) links M4 q); furthermore, since this loop {aa’y'z'ya)y is
-contained inside ¥, it is nullhomotopic in ¥y,..;). This means that we may apply
-our earlier arguments, see the argument following the statement (6.8.2), to conclude
that Ly;44y is contained in ¥, -4y This finishes our proof of (6.8.3).

e
By iteratively applying (6.8.3), we have that (J L,; is contained inside ¥,
i=1

‘Since W, contains a normal disk, see above, it follows from [16] that this normal

Mo

disk intersects ) L, i.c., W, intersects V. We reach a contradiction to our as-
i=1

sumption (¥, |J Wy) = @. This finishes our proof and our Goal (6.8.2) is reached.
We now start with the following setting and our Goal is the same as (6.8.2).

(6.8.4) SETTING. Given a closed proper subset 4 of S} such that 4 has di-
‘mension >2 and 4 have UV*.

‘We recall some facts from [37] concerning linking. It is shown in [37] that
there exists a manifold M belonging to the family #® 2 such that each nbd.
-of A contains a-simple closed curve which links M. This allows us to apply the
backing-up argument given above and we conclude that no subsets of S} satisfies
(6.8.4). The following theorem can be regarded as a preliminary version of our
‘main theorem which is stated here to summarize our discussions given above and
‘to make the transition to our main result easier:

(6.8.5) TrEOREM (Preliminary Version). For each integer n3 the family "
«consisting of uncountably many topologically distinct generalized n-manifolds satisfies
the following: Each S} belonging to " satigfies (1) S} x S* is homeomorphic to S"x S,
(2) S} has the homotopy type-of S", and (3) S} does not contain any closed proper
.subset A of dimension =2 such that A has UV™.

(6.8.6) Remark. We observe that the class of compacta with UV? contains
all compacta with trivial shape (FAR’s), and hence, all the compact metric absolute
retracts. This implies that S, as above in Theorem (6.8.5), does not contain any
cell-like set of dimension >2 and hence any cell of dimension 2. Furthermore,
-one may replace (3) in Theorem (6.8.5) by the following: (3') If 4 is any compactum
with UV such that A has dimension 22, then A cannot be embedded in S% as o proper
subset of 5.

(6.9 A property UV'(s/) and strong movability. We shall extend our results
«of (6.8.5); for instance, we shall show that S} does not contain any proper sub-
set A of dimension 2 which is an ANR. We begin with some preliminary notions.

(6.9.1) DEFINITION. A continuum 4 contained in an ANR X has the property
UV? for small loops (Abbreviate: UV(sl)) if there exists a positive number § satis-
fying: For each nbd. U of 4 in X there exists a nbd. Y= U of 4 such that each
6-loop (i.e., a loop of diameter <8) in ¥ is nullhomotopic in U.
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(6.9.2) PROPOSITION. Let A be'a continuum in an ANR X such that A is shape
dominated by « compdct polyhedron P, Then A4 has the property UVi(sl) in X.
“ Proof. Since P shape dominates A, we let Ji AP and g: P » A4 denote
two fundamental sequences in the sense of Borsuk [8] such that gft A~ A4 is
equivalent to the identity fundamental sequence i,: 4 — 4. Since P is an ANR,
the shape map fi 4~ P is represented by a map which we denote byf: 4 P;
and furthermore, our definition of f: 4 — P and g: P — A considers P embedded
in the ANR P itself rather than taking an embedding of P in some larger AR -space
which is usually done in defining fundamental ‘sequences, this does not affect any-
thing. We now choose a nest V; oV, ¥y> ... of nbds. of 4 in X such that o

o

A= () Vi, and (2) for each { the composite map g,f: ¥, = ¥; is homotopic
1ol

to the inclusion Viyq = Vi, where f2 ¥4y — P and g;: P =V, respectively, are
the maps in the definitions of f: 4 ~ P and g: P — 4. Let 5 be a positive number
such that each n-subset of £ (i.e., a subset of diameter <) is contractible to a point
in P. Choose a number >0 such that the image of each §-subset of ¥, is an n-sub-
set of P. It is now easy to sce that this suffices to prove the result and our proof
is finished. We observe that this proof also shows that each §-subset of A contracts
to a point inside each Vi, 1<i<co.

(6.9.3) Remark. A continuum 4 which is shape dominated by a compact
polyhedron is referred to as “FANR” or “strongly movable™ (cf. [8]). The class &
of continua cach of which is shape dominated by a compact polyhedron is strictly
larger than the class of continua whose members are shape equivalent to compact
polyhedra (ef. [8]). It follows that UV(sl) is enjoyed by members of %. This suffices
for our applications and we do not pursue whether UV*(sl) is a shape invariant.
Basy cxamples show that a movable continuum may not have UV'(sl); as an
example, it is easy to see that the Flawaiian ear ring in S (this is an infinite wedge
of circles whose diameters converge to zero) is movable but does not have UV(s)).

(6.10) Strongly movable subset of S%. Suppose 4 is a proper closed and con-
nected subset of 8% such that A is strongly movable and dimension of 4 is >2.
The subset A’ == py(A) of $" has the shape of 4 and furthermore 4’ is a proper
continuum contained in $" of dimension >2. Since strong movability is a shape
invariant (cf. [8]), it follows that A’ is strongly movable. Suppose W, is an open
subset of (§"=A"). By Proposition (6.9.2), we find a nest V;oV,2F3> ... of

o0
saturated open nbds. of 4 in 5" and a number §>0 such that (1) 4" = iml Vi

(2) Tor cach { each d-loop in V., is nullhomotopic inside ¥;, and (3) ¥ is con-
tained in (S"~W,), Choose a §d-subset B of A’ such that the dimension of B
is 22. The fact that B oxists is clementary (cf. [25)]. Our arguments given in [37]
can be applicd without change to find a manifold M in &~ such that B h-links M
in the sense of [37] and M intersects W, It follows that cach V; contains a simple
closed curve C; of diameter <& such that C; and M are linked. Choose a tube M,
a‘
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such that a normal disk of M, is contained in W, and the first stage chain
{M,;: 1<i<n,} is a $6-chain of n-manifolds substituting for M,. The “backing-up
technique” applies and we conclude that S3 does not contain any strongly movable
proper closed subset of dimension >2. The following theorem summarizes our
results:

(6.10.1) THEOREM. For each integer n =3 the Samily &* consisting of uncountably
many topologically distinct generalized n-manifolds satisfies the following: Each S
belonging to " satisfies (1) S3xS* is homeomorphic 1o S*x S, (2) S} has the
(simple/fine) homotopy type of S", and (3) S} does not contain any closed proper sub-
set of dimension 22 which is strongly movable (see the remark below concerning (3)).

(6.10.2) Remark, The class % defined in (6.9.3) is precisely the class of strongly
movable continua (cf. [8]). Every ANR-space (AR -space) belongs to %, and hence,
& contains all compact polyhedra; furthermore, % contains all cell-like sets (com-
pacta of trivial shape), and more generally, ¥ contains all continua of the shape
of a compact polyhedron. Theorem (6.8.5) follows immediately from Theorem
(6.10.1). The assertion (3) in Theorem (6.10.1) can be replaced by the following:
(3) if 4 is any strongly movable continuum (compactum) of dimension 22 then there
is no embedding @: A — S} such that ¢(A) is a proper subset of S (it is obvious
that we cannot rule out embeddings of 4 onto S3)).

7. Decompositions of B” and n-manifolds, n>3

Let S" ! denote the boundary of B". We consider S” as the one point com-
pactification of the interior B" of B". Suppose nz4. For each A, we consider the
decompositions % and 8271 (recall that we frequently identify decomposition and
the decomposition space) of " and S"7*, respectively. Let B! denote the decompo-
sition of B which is induced from the decomposition S5, We denote by B} the
decomposition of B" obtained from the union of decompositions B} and S5 .
It is clear that BY is a null collection, and hence, an upper semicontinuous de-
composition. The associated decomposition space which we again denote by B
contains an (n—1)-dimensional ANR S2~1, This is not desirable. This can be
easily corrected by a method of “attaching chords.”

(7.1) A method of attaching cherds. Throughout the following discussions
we let n=4. Let B, B", and $"~* as above. A chord in B" is a PL arc {pg)> in B"
such that the end points p and g belong to S"~*. Choose distinct points py, 41,
Da» 42> P35> qs» - Such that the sequence {d(p;, ¢)}; of distances converges to zero
and choose a sequence {{p;q;>}; of disjoint chords such that the sequence of di-
ameters of these chords converges to zero. We shall refer to the sequence {{p;q;>}
as a sequence of chords attached to §"~* (in B"). It is clear that onc can construct
a sequence of chords attached to S™ *. For B?, a rather specific sequence of chords
is desired which is discussed in several other places, see [5, 38]. We obscrve that
the fundamental group of the complement of a chord in B" is trivial (remember
nz4).
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(7.2) Modifying the decomposition 5L We construct 2 decomposition B of B"
such that the set of all the nondegencrate elements of B} is the union of thc;1 set of
all the nondegenerate elements of B} and a set consisting of sequence of chords
attached to S"1. There is no difficulty in choosing these chords so that all the
nondegencrate ares of By arc disjoint; for instance, this can be accomplished by
inductively constructing chords alongs with other arcs in the interior B" which
will yield chords and the induced decomposition of B" from S simultaneously.
Clearly, the decomposition B} is a null collection consisting of arcs and singletons

and hence B is an upper semicontinuous decomposition of B,

(7.3) Propertics of the decomposivion space B}, Let ¢,: B" - B} denote the
projection. We observe that the image ¢,(S""1) is not an. ANR. This can be easily
seen be observing that the fundamental group of 45" 1) is not finitely generated
since each of the sets {py, ¢i}, {p2, 42}, ... goes to a point under ¢;. This is el-
ementary and we omit details. Suppose 4 is a strongly movable proper subset of B!
where dimension of 4 is 2. The case when g7 *(4) is contained in S*~! or B" is
treated by applying the backing-up technique in "1 or B, respectively. The case
when g5 '(4) meets S™* and B needs some consideration. Since the dimension
of A4 is 22, it follows that'cither Ay = [¢7'(4) A $"* or 4, = [¢7'(4) A B"] has
dimension 2 [25]. Suppose 4, has dimension >2. Apply the backing-up technique
inside §""' as follows. Choose a manifold McS"* such that 4, h-links M.
Choose & nest V= Vy= ... of nbds. of ¢;*(4) inside B" satisfying the properties
given in (6,10) and WyeS""! where Wy n Vi =@, Wy M # & and W, is an
open subset of §""*, The backing-up technique applies and we are done. The case
when A, has dimension 22 is handled exactly the same way. We shall now state
the following:

(7.3.1) TuroruM, For each integer n23, there is an uncountable family &" of
topologically distinct n-dimensional AR’s such that each B in %" satisfies: (1) Byx [
is not homeonmorphic to B"x I, (2) B} xI* is homeomorphic to B" x I?, and (3) B} does
not contain any strongly movable proper subset of dimension >2.

We have limited our discussions to n3z4. The case n = 3 follows from discus-
sions in [38]. The techniques of [41] are different from this note and the families
of AR’s are also different. Our assertions (1) and (2) in Theorem (7.3.1) follows
from [19]. We now state some casy estensions of our results.

(7.4) Decompositions of manifolds, We may extend our results to obtain the
following:

(74.1) Turorem, For cach topological n-manifold M"™ with n23, there exists
an uncountable family 4" of topologically distinct n~dimensional ANR’s such that
each My in " does not contain any strongly movable proper subset of dimension z2
and M3 has the (proper/simple[fing) homotopy type of M. Furthermore, if M" is
a manifold without boundary, then each MYy in #" is a generalized n-manifold satis-
Sying Myx E'mM"x EY (MLx ST m M"x SY).
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A proof can be easily constructed based on our arguments for S" and B". We
shall indicate this in the following discussion. Choose a starfinite covering of the
manifold consisting of coordinate neighborhoods and apply the construction
inductively in these coordinate neighborhoods. The details are clementary but
lengthy and we omit them. These details can be carried out in several different
ways for a manifold with a triangulation or one may vse¢ a handle-body decompo-
sition (cf.[26]). ‘

(7.5) Rigid generalized n-manifolds. A topological space X is rigid if the only
homeomorphism of X onto itself is the identity homeomorphism. The following
results follows by combining arguments of this note with the technique of [34]
(see also [41]).

(7.5.1) THEOREM. The family &, F = ", B", or A", can be constructed such
that each element of & is rigid in addition to the properties stated in Theorems (6.10.1),
(7.3.1), or (1.4.1), respectively.

This shows that the group of homeomorphisms for a generalized »-manifold
can be very small. This may be contrasted with some well-known resulis concerning
the group of homeomorphisms for a manifold.

(7.6) UVY(sl) revisited. Suppose G is a cell-like upper semicontinuous de-
composition of a metric space X and suppose 4 is a closed subset of the de-
composition space X/G with UV*(s[) in X/G. The usual lifting arguments (cf. [27])
show that the sét p~*(4) has UV*(s]) in X where p: X — X/G is the projection map.
‘We observe that we have actually proved the following more general result:

(7.6.1) THEOREM. The family &, F =" B, or ", satisfies, in addition to
the properties stated in Theorems (6.10.1), (7.3.1), or (7.4.1), that each X belonging
to F does not contain any proper (closed) subset of dimension 22 with UV'(sl) in X.
The same dapplies to the family given in Theorem (1.5.1).

(7.7) A question of John Walsh (communicated to us by R. J. Davermzn).
Does there exist a cell-like map from a generalized n-manifold onto an n-manifold?

The answer to this question, in general, is negative. Consider any cell-like
map f: X — N” from a generalized n-manifold X belonging to the family &, .7
= " or ", onto an n-manifold N*. Let 4 be a strongly movable proper sub-
set N" such that dim(4)z2. It is easy to see that p~*(4) is strongly movable {in
fact, p~*(d) is shape equivalent to 4 [35]) and p~*(4) is a proper subset of X of
dimension >2. This is a contradiction. We have actually proved the following:

(7.7.1) THEOREM (Stability under cell-like mappings). Given X as above. If
[ X = Y is a surjective cell-like mapping, then Y does not contain any proper sub-
set A of dimension 22 with UV(sl) in Y.

(7.7) Movable subsets, The following theorem shows that our decomposition
spaces contain enough movable subsets:

Generalized manifolds ANR’s and AR’s and null decompositions of manifolds 7F

(7.8.1) THEOREM. If G is an upper semicontinuous decomposition of an n-mani~
Sold M" with n>2 such that the nondegenerate elements of G form a mul collection
of arcs, then the decomposition space M™G contains a movable proper subset of di-
mension k where 0<k<n.

Proof. Choose a closed k-cell D inside M* Let D = p~[p(D)] denote the
saturation of D where p: M" — M"/D denotes the projection. It is easy to see that D-
is a continuum of dimension k. It remains to show that D is movable. This can be
easily seen by shrinking DD and observing that DD is a 1-dimensional planar
continuum (cf. [8]). This suffices to prove the theorem.

(7.8.2) COROLLARY. Suppose X belongs to the family ,F = &", &, or M",

dnd suppose I is an integer satisfying 0<k<n. Then, X contains a movable proper
subset of dimension k.

(7.8.3) Concluding remark. Fach compactum A inside X, X as in Corol-
lary (7.8.2), can be approximated by a locally connected compactum in the following
rather strong sense: For each >0 there exists a map ¢: 4 — 4, onto a locally con-
nected subset 4, of X such that d[a, ¢ (a)]<e for each « in 4 [41]. Observe that 4,
is pointed 1-movable. Theorem (7.8.1) is also a consequence of our more general
results which arc too technical to discuss here.
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