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]_I ET, cest-

¥-dire que, pour touite famille (x) € E', il existe un unigue . tel que (x;) € B,
2 savoir M = {I'el: I' # O et (x));cr majoré). Si E, F sont ordonnés complets,
une application sup-continue propre f: E — F détermine tne transformation na-
turelle f¢): BV FO) définie par. fM(x) = (f(x;)). Réciproquement une
multialgdbre F: M — Ens détermine un ensemble ordonné complet E = F1 dont
Pordre est défini de la fagon suivante: on considére le cardinal 2 = {0, 1}, 7 ensemble
Mo = {{0}, {1}, {0,.1}} de parties de 2, Pobjet (2, #o) de M et le morphisme
o ={0,1}: 2, Moy > 1. On définit alors x<y par: (x,y)eFQ2, #y) ¢t
F(a(x, y)) = y. En outre, une transformation naturelle ¢ F — G entre deux mul-
tialgébres définit une application®sup-continue propre #;: F1 = Gl.

foncteur-E® ? 'soit .une’ multialgébre s’exprime par la relation E'=
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Classical hierarchies from a modern standpoint

Part 1. C-sets
by

John P. Burgess* (Princeton, N. I.)

Abstract. The C-sets form the smallest family of sets of reals containing the open sets and
stable under complementation and operation &f. The theory of C-sets is surveyed, and a new
selection result proved: A Gj-valued, C-measurable multifunction whose graphisa C-set admits
a C-measurable selector.

Chapter A. Introduction

§ 1. Motivation. Scattered through the literature of measure theory, general
topology, logic, and probability are several definitions of families of sets of reals-
properly including the Borel sets and provably included in the Lebesgue measurable
sets. Their interest derives from two circumstances: On the one hand, in certain
situations in everyday mathematical practice, particularly in connection with selec-
tion problems of the sort surveyed in-[20], non-Borel sets arise naturally. On the
other hand, for ordinary mathematical purposes nonmeasurable sets are worthless,
and many working mathematicians would even rather avoid sets whose measurability
can only be established using, say, Martin’s Axiom or large cardinals.

As we go beyond the Borel, the first natural stopping place is Selivanovski’s [15]
family of ensembles criblés or C-sets, the smallest family containing the open sets
and stable under complementation and what is called Suslin’s operation or oper-
ation of. The most basic properties of C-sets can be derived from theorems in the
classical text [9]: The C-sets form a o-field containing the analytic sets (continuous
images of Borel sets) and stable under inverse image by C-measurable functions
and containing only Lebesgue measurable sets. Together with a celebrated theorem
on the uniformization of analytic sets due to Yankov/von Neumann (v. § 8 below),
these properties suffice for many applications, ¢.g. the following (cf. [20 § 9] for
finer results of Brown & Purves et al.):

Letf: R* - [0, 1] be a Bore] function, and suppose that for each x the function
S(x,+) achieves its infimum, which we denote J¥(x). For many purposes it would

* Research partially supported by U. S. National Science Foundation grant MCS-77-03590.


GUEST


82 J. P. Burgess

be desirable to have a Lebesgue measurable function g satisfying f (x, g(x)) = f*(x),
but a Borel g need not exist. Now the basic properties cited above imply that f* is
C-measurable, since the inverse images of enough open sets are analytic:
(70, r)] — projection (graphf n (R*x {0, ))). Now the celebrated theorem
cited above implies the existence of a C-measurable function & defined on all pairs
(x, ¥) for which there exists a point z with f (x, z) = y, and assigning each such pair
one such point. We then get a suitable C-measurable g by setting g(x) = h(x, f *(x)).

Modern game-theoretic methods lead to many refinements and extensions of
basic classical results about C-sets, among them the selection theorem announced
in the Abstract. The present paper provides a survey of the theory of C-sets from
the modern game-theoretic viewpoint, including much “folklore” and culminating in
the proof of our selection result, which uses much machinery developed in connection
with other theorems.

The author’s chief debt is to Professors R. L. Vaught and D. E. Miller for
cooperation and intellectual stimulation over many years. The influence of ideas
of Y.N. Moschovakis and A.S. Kechris will be evident on every page. Helpful
communications have been received from C. Dellachérie and from R. D. Mauldin.

§ 2. Notation & terminology. We collect some conventions used throughout this
paper, to be glanced over and referred back to as needed.

(a) Set theory. An ordinal is its set of predecessors: 0 =@, 2= {0, 1},
o =1{0,1,2,..}, 2 = {a: «acountable ordinal}. A sequence is simply a function &
whose domain is some ordinal «, called the length of €. The value £(f) at f<a is
called the Bth term of £. The restriction £|f to arguments <p is called an initial
segment of £; n<| ¢ denotes that # is an initial segment of . €@ denotes & with i
adjoined at the end, the sequence of length a+1 whose fth term for f<u is ()
and whose ath term is i i@¢ is simillarly defined.

Q(J) (resp. O*(I)) will denote the set of sequences from I of finite (resp. finite
even) length, including the empty one ( ). We fix an enumeration of Q(w) in a se-
quence of length w, in which the initial segments of any sequence precede the sequence
itself. The code number 45 of s € Q(w)is its place in this enumeration. I’ always
denotes the functions from J to 1. In case I, J are nonempty and countable, this
set is to be given the topology having as subbasis the sets {¢: &(j) = i} for jeJ and
ie 1. The characteristic function y, of a set A takes the value 1 on 4, O off 4. The
power set #(J) is to be given the topology making it ~2’ under the map associating
a set with its characteristic function. We define a bijection @ from w? to o by
n(i,f) = 22j+1)—1; then we define a bijection IT from wxw® to w® by
G, O()) = E(n(.))-

(b) Game theory. We wish to assign a meaning to formulas of type:

() dipelIVjelAelIVjiel...®(y, o, 11, 15 ) -

To this end we consider an infinite game for two persons, the 3-player PRO
and the V-player CON: PRO opens by choosing i, € I, CON responds by choosing
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Jo €I, then PRO chooses iy, then CON chooses ji , ... each player having at each
stage perfect information about the opposing player’s earlier moves. PRO wins the.
game if the sequence (4, jo, ...) € I” thus generated satisfies condition &. A strategy .
for a player is a rule telling that player how to move on each turn as a function of
the opposing player’s earlier moves. Formally, for the first player it is a function
Q) = I; for the second, a function Q(I)—{( )} — L If ¢ is a strategy for, say,
the first player, then 2 (finite or infinite) sequence (iy, jo,...) constitutes a (partial
or complete) play agreeing with ¢ if the i°s are what ¢ says they should be: i, = ¢(( )),
iy = o((jo))s f2 = @((o»J1)), ... A strategy is a winning one for a player iff that
player can be assured of winning the game by using the strategy. E.g. a strategy
for PRO is a winning one iff every complete play agreeing with it satisfies @. We
define (i) to mean that PRO has a winning strategy. Our game is called determined
if some player has a winning strategy. In that case, if (i) does not hold then the
following does:

() VipeIdj,elVijeITjel... 1Dy, o, i1s]1s )

Sometimes we consider modified games in which, when play so far has produced
a finite sequence s, the set of moves permitted to the next player is some I(s)<T
depending on 5. Games of this kind reduce to the original kind by modifying the
winning condition ¢ so that the first player (if any) to move outside the appropriate
I(s) forfeits the game. Later we will consider games where the sequence of moves.
has length > w.

~ (¢) Topology. By a standard space we mean an uncountable Polish space or
space admitting a countable basis and a complete metric. The usual reference for
such spaces is [9] and elementary results from that source will be used without
comment. Deeper results from [9] will be referred to as classical theorems
and cited by location in that text. E.g. [9, 33III] contains the result that the spaces I”
are standard; [9, 33 VI] that an uncountable G; subspace of a standard space is
standard; [9, 36 III] that all standard spaces are Borel-isomorphic. [9] contains ample
historical references and no attempt to duplicate them will be made here.

A function f from an arbitrary space & to another space % will be called
measurable w.r.t. a o-field # of subset of & if f~1[U]e # for all Borel (equiv-
alently: open) U=%. For ¥ = % the class of 2 -measurable functions need not
be stable under composition. It will be if # is stable under inverse image by ##-mea-
surable functions. For & standard, a o-field o satisfying this last condition and
containing the Borel sets will be called uniform. For such an 4 there is a “uniform”
way to extend the notion of # -set to arbitrary standard spaces %, since all Borel-
isomorphisms f: @ - & give rise to the same class {f~*[U]: Ue #}.

Let 7 be a denumerable set, 4’ an arbitrary space. An I-indexed system of sub-
sets of & is a function 4 = (A(7): ieT) from I to Z(%). Its indicator is the function
t4(x) = {i: x e (i)} from & to #(I), which is measurable w.r.t. any o-field con--
taining all the 4(i). Any B2 (I) gives rise to a set operation I' with truth table B,
defined on I-indexed systems by I'(4) = i;’[B]. The dual operation is co-I'(A4)
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= F-I'(Z~A@): ieD). If # is a uniform family of subsets of Z(I) and Be X,
T is called an 2 -operation. Note that this implies J# is stable under I', and since
B=T({ye2): iey}: ie D) -the converse implication also holds. One set
operation I' is reducible to another I', if there isa systematic method — we do not
stop to define this with perfect rigor — of rewriting any I’ (A) in the form I"(4")
where each A'(j) is a finite Boolean combination of the 4(i), i.e. belongs to the field
of sets they generate. Plainly reducibility is transitive, is preserved by dualxzatlon, etc.,
and such facts will be used tacitly below

Chapter B. The C-hierarchy

§ 3. Operation /. In this section we introduce the operation & which gives
rise to the family of C-sets. It is defined on Q(w)-indexed systems by:
Al = U 0 ACnH. )
éew® new

Thus we have x e o (4) iff:
Figew i, ewiye ... Yalxe 4((o, iy, izs - )0)]

and in the terminology of the preceding section, the truth table of 4 amounts to:
{s_c_ Ow): AT=S[()eT& VseTiew (s@ieT)]}.
Countable intersection or meet, countable union or join, and double appli-
cation of & are all reducible to . Indeed:
N 4@ = U ﬂ B(¢ln)

iew

where B(s) = A (length s),

U 40() = U N B¢
ieo & n
where B(()) = % and B((, ...)) = 4(),
Unun4m, k) = U ﬂ B(Zln)
7 m § k
where B({|n) = A(H(O,é)lm,ﬂ(]-}-m,éﬂk) for the largest value of n(m, k) for
which these items can be computed from the data supplied by £|n. Now over any
space & we introduce a hierarchy -of subsets thus:
@0 = Borel sets,
.sz{,,“ = sets obtainable by & from indexed systems of elements of 33”,
%BH = complements of elements of &/j,y,
-@E-i—l = J”ﬁ—n n (g[}+1»
5334.1 = ¢g-field generated by &f,”i,
B} = o-field generated by U .%p at limits a<Q,
Cisets = U 4.

a<
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- Plainly all these classifications are stable under Borel-isomorphism. Since in-

verse image commutes with complementation, meet, join, and &, the C-sets are
stable under inverse image by C-measurable functions. The C-sets form the smallest
familly containing the open sets and stable under complementation and «, this
family automatically being a o-field by the reducibility of meet and join to .
Each d;n is stable under &/ by the reducibility of double application of &/ to
single, and each %}H 1 is stable under co-&/; hence these classes are stable under
meet and join, and @}H is a o-field.
" Further argument using the reducibilities above shows that &} consists of the
sets obtainable by &/ from open and closed sets. If & is metrizable (so that open sets
are F, and closed sets G;) we can improve this to “from closed sets” and equally to
“from open sets”. For standard %, by a classical theorem [9, 39 II], &} coincides
with the analytic sets or continuous images of Borel sets, The sets in ¥} are then
called co-analytic, and #}-measurable functions analytically measurable. Further
argument using the reducibilities shows that &/}, , consists of the sets obtainable
by & from fé,‘,ﬂ-sets, and at limits «, /L, of the sets obtainable by & from the
union of the ,93} for B<o. Such facts will be used tacitly below.

§ 4. Operation%. In this section we introduce a game-theoretic equivalent ¢ of <.
The material in this section has been extracted from a much more general setting
in [11]. Operation ¢ is defined on Q*(w)-indexed systems by letting x belong to
% (B) iff:

() Tijeo Vijew Jijew Vew ... Vulxe Ao, o, iy, 1, -N20)] .

Visibly, & is reducible to ¢. Conversely, ¥(B) = (4) where 4(( )) = B(( ))
and for other s, 4(s) is determined as follows: Let length s—1 = #(j,, ..., f,). Let
io = s(3 (), iy = s(% o)) iz = s(# (o, j1))s .. and £ = (i, fo, -..)- Set A(s) = B(z).
In this way to any & € @® corresponds a strategy ¢ (¢) = £(3k¢) which is a winning
strategy for the game (+) associated with membership in % (B) just in case x belongs
to all A(€|n) as required by membership in <7 (4). So & and ¥ are interreducible.

A major tool in classical studies of analytic and C-sets is an inductive analysis
of &, which has a modern parallel in an inductive analysis of %. Let 4 and B be
respectively O(w)- and Q*(w)-indexed systems. Define:

A= N AW, By= B,
ue Qo) ve Q¥(w)
juds vt
Ay = U Ason, B = U O Beeio)) )
iew ice jew

A% = N4, B(#) = () B%2) at limits a<Q.

" f<a B<a
Itis reidily verified that for <5 and <o we have 4%(s) < A%(u), and similarly for B.
For a<Q the A%(s) and B*(t) belong to the o-field generated by the A(s) or B(z).
Classically [9, 3 XIV] it was known that o/ (4) = 49(( )). As a modern parallel
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we have (b) below. Note that the classical result essentially follows from the modern
one by regarding o as a special case of 4.

(a) DETERMINATENESS THEOREM (Gale & Stewart). The game (¥) associated
with membership in 9(B) is determined.

(b) INDUCTIVE ANALYS'S THEOREM (Moschovakis). & (B) = B%(( )).

Proofs. For any x and s, let the x-rank of s be the least f with x ¢ B *1(s)
is such exists. Otherwise, let it be Q. To prove (a) and (b) it will suffice to show that
if x-rank(( )) = @ (resp. is <) then PRO (resp. CON) has a winning strategy
for (x). We begin by noting some immediate consequences of .the definitions:

(i) 0<x~rank(®)<Q — Vi 3j x-rank ¢ ®i@j) <x-rank(r),

(i) a<x-rank(t) - A7 Vja<x-rank (@iDJ).

In (i), let j(+@i) be the least suitable j; and if x-rank(z) = —1, let j(t@®i) = 0:
In (i), if x-rank(f) = @, then for every a<Q there exists some suitable i. But in
fact, some one i must work for uncountably many and hence all «, so that
x-rank (t@i®j) = Q for all j. Let i(¢) be the least such.

Now if x-rank(( )) = £, we define the canonical strategy ¢ for PRO as follows:
If play so far has produced #, as next move choose i(z). In this way PRO ensures

that each partial play ¢ produced has x-rank = Q> —1, so that x € B(¢). Thus ¢ is .

a winning strategy for PRO.

If by contrast x-rank(( ))<®Q, we define the canonical strategy \ for CON as
follows: If play so far has produced ¢ and PRO as next move chooses i, choose as
next move j(1@i). In this way CON ensures that the x-ranks of the partial plays
produced decrease until a 7 is reached with x-rank —1, so x ¢ B(v) for some v < t.
Thus ¥ is a winning strategy for CON. H

(c) CompariSON LeEMMA (Moschovakis). If the B(t) are C-sets, then so is
{x: x-rank(t)<x-rank(v)} for each v and t.

(d) CANONICAL STRATEGY THEOREM (Moschovakis). If the B(f) are C-sets,
then the function associating to each x the canonical strategy ¢ or Y for PRO or CON
as the case may be is C-measurable.

Proofs. In (d) note that the space of strategies is standard, being the disjoint
union of 0% (the strategies for PRO) and w” for J = Q(w) = {( )} (the strategies
for CON). (d) is immediate from (c), since the definition of the canonical strategy
only involved comparison of ranks.

As for (c), we begin by noting a consequence of (i) and (ii) above, viz. the
equivalence of O0<x-rank(f)<x-rank(v) with:

(iii) 3i Vj Vm In[x-rank (t@i@)) <min (x-rank(t), x-rank (0 @m@n))] .

It follows that x-rank(f)<x-rank(v) iff:

(iv) iy Yjo Vmg Any 3iy Vig Ymy Any ..

where { =

Ak [x € BO(v+7|2k)~ BO(t 4 £|2k)]
(mg, ng, -.) and 51 = (ip, jg, ...).

Now (iv) shows how to obtain the set mentioned in () by co-¥, or equivalently
by co-/, from sets in the field generated by the B(u). H
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§ 5. Universal sets, A famous classical theorem [9, 39 III] tells us that for
standard spaces Borel = analytic N co-analytic, or in our notation 4§ = 93
In the present section we show that with this one exception all the classifications
introduced in § 3 are distinct. (a) below is essentially to be found in [9, 38 VI];
(b) comes from [8]. Throughout this section let 2 be a standard space.

(a) FIRST HIERARCHY THEOREM. of%,, # &L, for all a<Q.

Proof. It suffices to construct an .o/~ , subset 4 of & x w® which is universal
for the class of &/}, subsets of &, i.e. such that each such set has the form of a cross-
section {x: (x,&) e A} of 4 at some £ e »®. For then given a Borel-isomorphism
f1 & -+ Ixo® the set f~1[4] belongs to >, , but cannot belong to %1, ,, else
glven a Borel-isomorphism g: & — 0%, {x: (x, g(x)) ¢ A} would have to be an
&%, set and hence a cross-section of A, a manifest absurdity.

It suffices to take as A, o (A) where A4 (s) is the set of (x, &) with (x, I (#s, e,
and C is as follows:

Case (i). « = 0. Let (W(i): i€ ») enumerate a basis for & and let
C={(x,9: i((() =0& x e WD)},
an open set universal for the open sets.

Case (ii). « = f+1. Assume a suitable set has been constructed for f+1 and
let C be its complement, a %’},H set universal for the ‘K;H sets.

Case (iii). « a limit. Let (8(/): i € ®) enumerate the ordinals <a, and assume
that for each i a suitable set 4; has been constructed for B(i)+ 1. Let C be the union
of the {(x, i®&): (x,&) e 4}, a B set universal for the union of the 93}; for
<o B

(b) SECOND HIERARCHY THEOREM (Kunugui). & # 91, for 0<a<Q.

Proof. It suffices to construct for some standard % a P!, subset of Zx 2
universal for the % subsets of Z. This we do for o = B+ 1. The limit case is similar.
At 0 we only get a co-analytic set universal for Borel sets.

As a preliminary, define an I-tree to be a T'< Q*(J) such that s®i®j e T always
imply seT and s@®i'®j’ €T for all i’ and j'. Call s terminal for T iff se T but
s@i®j¢ T for some/any i and j. The w-trees form a closed, hence standard, sub-
space 7 of P(0*(w)). Te T is wellfounded iff Ve w”dne w é2n¢ 7. The well-
founded trees form a co-analytic set W = 7 —oZ(A) where A(s) = {T: seT}.

As to the actual construction, let Z be an o/}, subset of % x »® universal for
the s}, ; subsets of &. Let ¥ consist of the (x, 0®&) for (x, &) ¢ Z and the (x, 1)
for (x, &) € Z, so its cross-sections give .91,1,“ U %,’,H. Let D be the ‘f}ﬂ subset of
Z x@w®x J which is the complement of %(B), where B(s) is the 3’5‘;“ set of those
triples (x, &, T') such that the proper initial segment ¢ of s (if any) which is terminal
for T satisfies (x, H(4t,8)¢ Y. (So seT implies (x, &, T) e B(s) trivially.)

CLAM. D is a D}, set.
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To see this ‘consider the inductive analyses:

A%s) = A(s), B°G) = B(s),
APF(s) = H A@i®));
B = U N BU:0ia),
L )

A¥(s) = ﬂ A%s), Bs) = ﬂ B’(s) at limits,

W and D are respectively the complements of Aﬂ(( ) and BY()). Comparmg we
see that Te A%(s) implies (x, &, T)e B'(s). Hence (x,¢,T)e D implies Te W.
But for Te Wwe have Y& € ©®3!n € w &|2n is terminal for T. Hence for T'e W and
y< Q*(w) the following are equivalent:

() "3, Yo Fiy Vis ... Yult = (o, jo, ...)|2n terminal for T — 7 ¢y],

(i) Yip j, Vi, Ij; ... Vn[t as above terminal for 7' — te y].

But the game associated with (x, &, T) being a member of D has the form (i) for
y = {s: (x, I (s, e Y} So (i) shows how D can be obtained as the intersection
of a co-analytic set (2 x ©® x W) with a set obtainable by ¢ from the 2} p+1 sets B(s)-
Hence D is an .ﬂﬁ“ set.

" Crawm. D is universal for the 32,,“ sets.

To see this note that every such set is obtainable from cross-sections of ¥ by
iterated application of ﬂ U Now the cross-section of Y at # is the cross-section

of D at (T, ) where T = {( )} and IT(#( ), &) = n. And if each E;; is the cross-
section of D at some (&, Tyy), then () U E,; is the cross-section at (£, T) where T

ij
consists of () plus all i®j@s for seTy, and & satisfies H(#(i@j@j),é)
= II(s,¢;;). So the cross-sections of D do indeed include all .@}H sets. M

Chapter C. Regularity properties

§ 6. Measure. Game-theoretic analyses of category and measure go back a long
way (to the work of Mazur & Banach reconstructed in [13, chapter 6], and to [12]),
but the analyses to be presented in this section and the next derive from much more
recent work of Vaught [18], [19], of Kechris [5], [6], [7], and of their collaborators.
Classically it was known that s preserves measurability in quite general circum-
stances; here we consider only the most important special case.

Let 4 be a standard space, p a complete regular probability measurc on %.
So p is the completion of a Borel measure satisfying (%) = 1, and there exists
a countable field # of yu-measurable sets such that any u- -measurable set can be
approximated up to arbitrarily small measure by an element of %. Let 4 be
a Q(w)-indexed system of p-measurable sets. In showing &7(4) is p-measurable
we may without loss of generality assume A4 nested, so that A(s)sA(t) whenever
1<s.
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By a relevant triple we mean a w = (¢, U, s) consisting of a rational ¢ € [0, 1),
a Ue, and an s Q(w). By an extension of w we mean another relevant triple
(r, ¥, ¢) such that Ve U and ¢ is of form s@i. By a w-display we mean a finite set
of extensions of w such that (i) their ¥’s are disjoint, and (i) their »’s sum to more
than q.

(a) MEASURE FormMULA (Kechris). of (4) is p-measurable, and for any rational
pel0, 1) we have (st (d))>p iff for wo = (p, &, ()) we have:

(*) Two-display Wy Yw, e Wy dw, -
= u(V v A@)>r].

Proof. One half of the proof consists in showing that if PRO has a wining
strategy ¢ for the game (), then &/ (A4) has inner measure >p. To see this we define
displays W(u) for some ue Q(w): Let W(()) = ¢(()). If W() is defined, let
(w(u@i): i<card W(u)) enumerate it, and apply ¢ to the sequence of w(v), v an
initial segment of u@i, to obtain W(u@®i). Let S, be the set of u of length n for
which w(u) = (r(u), V), t(w) is defined. For n>0 let C, be the union of the
V(u) 0 A(t(u)) for ue S,; let C be the intersection of the C,. C is p-measurable,
and it will suffice to establish: ) -

Cram. C=(A) and u(C)>p.

Indeed, it follows from the disjointness condition (i) in the definition of display
that for each x e C there is a unique & e 0® with x € V(éln) () 4 (¢(¢[n)) for all n.
Since the #(£]n) are precisely the g|n for a certain # € @®, this shows x & () 4(y|n)

display Wy Ywye Wy .. Vnlw, = (r, V, 1) —

and C=«/(4). Moreover, it follows from the summation condition (ii) in the defi-
nition of display that if we let r, be the sum of the r (u) for u € S, then p<r; <r, <...
Since plainly p(C,)>r,, this shows u(C)>p, proving the claim.

The other half of the proof consists in showing that if the outer measure u*(x’ ()
is greater than p, then PRO has a winning strategy. To see this, call a relevant triple
(r, V,1) acceptable if u(V o A@®)>r, and desirable if p*(V A B(t))>r where
B(t) = {x: e (1 & Ve wxeA(n)}. In this language, the hypothesis of
this half of the proof is that w, is desirable, and to win (*) PRO has to ensure that
each w, produced is acceptable. Since B(z) A (z), desirability implies acceptability,
and so'to show PRO has a winning strategy it will suffice to show that if w is desirable,
then there exists a w-display all whose elements are desirable. Since B(?) is the union
of the B(t@i) it will in fact suffice to establish:

Cramt. If p*( U C;)> g, then there exists a finite set of triples (r, V, (i)) satisfying

the disjointness and summation conditions of the deﬁnmon of display and such that
VA C)>r.

Indeed, we could cover each C, by an element B; the o-field generated by # with
the property that g(V n B;)) = p*(V' n C,) for every Ve%. So we may assume
the C,are p~-measurable, and then we may assume.them disjoint. There exist a finite N
and a positive e such that the measure of the union of the C; for i< N exceeds g by
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more then N?e. For i<N let U;e % be such that the symmetric difference U;AC;
is of measure <e, and disjointify them, setting V; = U;— |J U;. It is easily computed
Jj<i
that p( U (¥V; n C))>g. Hence we can find r; so that the finite set
i<N
{(rs» Vi, (0): i<N & u(V; n C)>0}

is as required to complete the proof. B

There is a natural way, described in [14], to make the set of all complete regular
probability measures on the standard space & into a standard space . (%Z). Call
ASX universally measurable if it is p-measurable for each ue 4 (%). For such 4
and for rational p e [0, 1), let A™? = {ue A (%): u(4)>p}. The topology of [14]
is such that this set is open in .4 (%) whenever 4 is open in . We always have:

(UA)>" U(UA)>”
(gz"-ArP_ (Jl(%") A7),

‘These formulas show that 4”7 is Borel whenever A4 is. Now the Measure Formula
expresses (&£ (4))”? as obtainable by ¢ from sets (V' n A(x))”". Hence it shows
that 477 is a C-set whenever A4 is. In [16], where this last result first appeared,
it was used to derive the following:

(b) MEASURE DUALITY THEOREM (Shreve). If f: [0, 1] —
then so is f*: ([0, 1]) - [0, 1] where f*(u) = | fdp.

§ 7. Category. In discussing category we use modern terminology: rare, meager,
nonmeager, comeager, almost open. (Rather than: nowhere dense, 1st category,
2nd category, residual, Baire property.) The work of Vaught and of Kechris has
Tecently culminated in a proof of a Category Formula (corresponding to 6 (a) above)
valid for arbitrary topological spaces and including the classical [9, 11 VII] result
that o/ preserves almost openness in arbitrary spaces. (And hence, by [13, chapter 22],
that &/ preserves measurability in much more general circumstances than were
considered in the preceding section.) We do not intend to reproduce this proof here
in complete generality; nor do we intend even in the special cases we do consider to
present in detail what can already be found in [18] and [7]. Our aim is merely to
outline the treatment of category, sketching the proofs, and presenting only those
technical details that will be needed in the next section.

So let # be a topological space satisfying the Baire Category Theorem and
admitting a countable n-basis %, i.e. a countable family of open sets containing &
and excluding @, such that every nonempty open set has some element of % as
a subset. Then A< % is almost open iff for every Ue %, either A n U is meager,
or for some Ve % with V=U, A n V is comeager in the relative topology on V.
We reserve the letters U, ¥V, W, X, Y for clements of %. Let 4 be a mested
Q(w)-indexed system of almost open sets.

(a) CATEGOR FORMULA (Vaught). o/ (4) is almost open, and for any We %,
() N W is nonmeager iff:

[0, 1] is C-measurable,
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(*) Tkoeow IU,SW VV,cU, Ik, e 0 U, SV, VYV, S

" Vnld((ko, ky, ..)In) O Vuy is nonmeager]

Proof. In view of the determinateness of the game (%), it will suffice to show
that if CON (resp. PRO) has a winning strategy, then o (4) is meager in W (resp.
comeager in some Uy < W). As the two cases are virtually symmetrical, we consider
the case where CON has a winning strategy . { remains a winning strategy if the 4 (s)
are replaced by open A'(s) with 4(s) AA4'(s) meager, so we may assume the A(s)
are already open. By the Baire Category Theorem, nonmeager and nonempty co-
incide for open sets, so ¥ amounts to a winning strategy for PRO in the game:
(#%) Vko VU, SW AV, U, Yy, VU, SV, AV S Uy ... Anld((ko. &y, )

AV,y =]

The first step in the proof is to trade v for a winning strategy ¢ for PRO in
the game:
(#xx) VX, W 3AY,c

X VX, SY, AV, SX, .. ) ¥, A (d) =

new

As we define ¢ we associate to each partial play agreeing with ¢ a partial play
agreeing with 1. Suppose that ¢ has been partially defined and thats = (Xp, ..., Y,-1) «
agrees with ¢ as defined so far, and that X< Y,_,, and finally that ¢ (X, ..., X,~1, X) '
has not yet been defined. Let the sequence with code number # be (kq, ..., ky—1, k).
(We assume m>0, the opposite case requiring slight verbal modifications.) Suppose
as induction hypothesis that the partial play ¢ agreeing with i that has been associated
to s|2n*, where n* is the code number of (ky, ..., k,,—y), has the form

(kO: UO: VOa s km—l: Um—] H Vm-—l) )
1. As 9 (Xp, ..., X,—15 X) choose
Y= ‘/’(ko: UO’ "'3km~1’ Um—-l:k: X) .

To the partial play s@X@ Y associate t@k@X® Y, which is of the form required
to keep the induction going. We suppress the details of the proof that ¢
is indeed a winning strategy. (Briefly, to each complete play o = (X, Yo, ...)
agreeing with ¢ and each” ¢ = (k,,..)€0” corresponds a complete play
t = (ko, Up, Vo, ...) agreeing with ¥ and having {’] Vy = ﬂ Y,. Viz. |3m is the

with V,,—; = Y,., so that X<V, _

partial play associated as in the above constructlon to 0[2#@[171) )

The second step is to use ¢ to build a set S of finite sequences. Fix an enumeration
(W(@): iew) of & Let Sy = {()}. Let sS@W({H)@ Y€ S, iff s, and (i) for
all j<i and s@W()DZe Syv1, XNZ =, and (i) s@W(H)O Y agrees with ¢.
Let S be the union of the S, for #3>0. We remark for future reference that the passage
from i to S was highly constructive, and could be effected by a Borel function from
the space of strategies to the power set of the relevant set of finite sequences.’

The third step is to introduce a G set C. Forn>0, let C, be the union of the ¥ for

, Y)e S,; let C be the intersection of the C,. We suppress the details of the
proof that C is tomeager in W and disjoint from o/ (A) as required to complete the

% — Fundamenta Mathematicae CXV
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proof. (Briefly, for comeagerness; it'is readily verified that for-each (X, .o es,
the complement of the union of the ¥’ for (X, ..., ¥, X/, ¥').€ S,4, i8 rare in Y.
As for the other. property, the disjointness condition (i) in the definition of Sy,
guarantees' that for each x e Cithere is a unigue sequence (Xg, Yo,....) such that for
each 7 x€ Y, and the initial segment-of this-sequence of length-2n belongs to. S,.
Then the agreement condltlon (ii) xmplws this sequence is a complete play agreeing
with ¢@.) . Y
. We make the set of nonempty closed subspaces of Z into a topolqucal space
(%) by taking as' a subbasis the sets A" = {K: 4 n K # @} for ASZ open.
Even when & is standard o (%) need not be, but it at Jeast has what is known as
a standard Borel structure, as is shown in [3], where several other topologies leading
to the same Borel structure are considered. & can be embedded in ¢ (%) by iden-
tifying x and {x}. Call Ac% strongly almost open iff 4 n K is almost open in the
relative topology on X for every Ke 4 (%). For such 4 and for Ue % define
A7 = {Ke # (%): (4~ U)yn K is nonmeager in’ the relative topology on K}.
For U = Z we simply write A*, and if 4 is open this agrees with the earlier defini-
tion of 4™ by the Baire Category Theorem. Much as in the preceding section it can
be argued that 4+ is Borel whenever 4 is. For applications see [l8] and [1]. We also
have:
(b) CATEGORY DUALITY THEOREM (Vaught) AtVisq C set in A (X) whenever
Ais a C-set in &.

§8. Selection theorems. In this section we turh at last to selection theory
and prove the result promised in the Abstract. Let Z and % be standard spaces.
Fix a basis (W(i): i€ ) for £ containing & and excluding &, and fix a bounded
complete metric v for Z. Let # be a o-field of subsets of &.

A multifinction from % to % is simply a function F from & to £(%). Let
DomF = {y: F(y) # @}. A selector for Fis a function f: DomF — % satisfying
fOeF(y) for all y. A section is a selector satisfying () = f(2) whenever
F(y) = F(z). Of course selectors and sections always exist by the Axiom of Choice;
but to obtain measurable ones, we need hypothesés on F.

Values: Sometimes we assume the values F(y) of F are compact or closed
or (F,n G,) of G;. Measurability: For open USZ let

F U] ={y: FO)n U+ B}

Call F s#-measurable it F~'[Ule o for all open U. Graphs: Sometimes we
impose conditions on GraphF = {(y, x): x € F(y)}. It always makes sense to ask
whether this set is Borel or analytic or a C-set. If 2# is a uniform class it also makes
sense to ask whether it is an ##-set. This is always the case when F is closed-valued
and ¥ -measurable, for then:

GraphF = () {I[F (W% 7] 0 [0 (£~ W)}
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We briefly review some known selection results that apply: to-C-sets. (a)'below
has already been alluded to. (b) admits of a somewhat’ sharper formulamon ‘tharn
that quoted here. (c) deserves to be better known. R ;

(a) ANALYTIC UNIFORMIZATION: THEOREM (Yankov/von-Netmann, ¢f[20, §5])
A multifunction G whose graph is analytic admits an.analytically measurable selector g,

(b) FUNDAMENTAL SELECTION. THEOREM (Kuratowski & Ryll-Nardzewski/Ca-
staing, cf. [20, § 41). 4 closed-valued 3¢ - measurable multifunction: admzts an H -measur-
able section. - :

(c) KEY SELECTION THEOREM (Dellachérie). There exzsts a Borel h: .%(.%’ ) > &
satisfying h(K) e K for all K.

Proofs. () To each X associate the n € @® such that W(n(’O)) & and for
all n n(n+1) is the least i such that () W(i) A K # @, (i) closure’ WHsW(n ),
(i) v-diameter W(i)<}v-diameter W(n(n)). Define & by ﬂ W(n(n)) {RK)}.

(b) To any multifunction F associate the derived function 5F DomF — A (%)
sending y to closure F(y). F is # -measurable iff 0F is. If Fis, closed valued and
S -measurable, we obtain an - measurable section f by composing 8F and the h
of (c).

(2) Represent Graph G as o (A) with each A(s) closed. Apply () to
FO) = {{x,5)e T xw”: Ynew xec A(¥|n)}, # = o-field generated by ana]ytw
sets, obtaining a section f. Set g(») = x where f(p) = (x, ). B

The following is due to Kallman & Mauldin for the case # = Borel, of, [4]

(d) “SoFT” SELECTION THEOREM. Assume 3 is a uniform family. An (F, v Gy)-
valued S - measurable multifunction F whose graph is an S -set admits an H# -measur-
able section f.

Proof. Let F; be the multifunction from % to.the space W z) deﬁned by
Fi(y) = F( ¥) 0 W(i), and 0F;: DomF; = F™[W(@)] - o (W(i)) the derived func-
tion ‘as in (b). Let k;: o (W(i)) » W (i) be as in (c), f; the composition A 6Fi Let
E;={yeF~ 1[W(l)] f») e F(»)}, Dy = B~ UE;

Then D;e o since E; = (identity xf; )"I[GraphF] By elementary topology,
for any nonempty Z which is both F, and G,, there is an i such that Z n W(i) is
nonempty and relatively closed in W(i). It follows DomF = U D;. So set
() = f{y) for the i with ye D;,. B

(e) CATEGORY SELECTION THEOREM. For each C-set A< & there exists a C-measur-
able h: AT —» & satisfying h(K)e An K for all Ke A*.

Proof. Recall that the Category duality Theorem says that 4% =
4 n K is nonmeager in the relative topology on K} is a C-set.

We give the proof only in the case 4 co-analytic, the general case calling for
extensions of the machinery of §§ 4 and 7 above that, though conceptually straight-
forward, are notationally forbidding. So let 4 = %~/ (A) where 4 is a nested
indexed system of open sets. Reserve U, ¥, W to range over our chosen basis for Z.
.'

{Ke A (&):
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Let K'e A* be given. Then there is a W meeting K such that A n W n K is
comeager in W N K. By, the Category Formula we then have the following, where
the U’s and V’s are required to meet K:

(%) AW Yk, YU, =W AV, U, Yk, YU, SV, 3V, 2U; ...
AnlA((ko, kyp ) O Vaey = @]

By the Canonical strategy Theorem there is a C-measurable /1, such that 4,(K)
is a winning strategy W for PRO in (%).

In the proof of the Category Formula we used such a i to construct first another
strategy ¢, then a set S of finite sequences, then a G set C contained in K n 4;
and we remarked that there was a Borel function A, that would take us from ¥ to S.

An argument like the proof of (¢) above produces a Borel function ki, which

applied to S yields an element of C. Hence it suffices to set i = hyh ho. B

The following is due to S. M. Srivastava for the case of Borel sets. Neither his
proof [17] nor that of Miller [10] extends to C-sets. Our proof extends (clumsﬂy and
with- difficulty) to Borel sets.

(f) “HaRD” SELECTION THEOREM. 4 Gy valued C-measurable multifunction F
whose graph is @ C-set ddmits a C-measurable selector f.

Proof. Define a C-measurable F': ¥ — A (¥ x %) by F(¥) = {y}xclo-
sure F(y). Let 4 be as in (¢) for 4 = GraphF. By elementary topology, a Gy set is
comeager ‘in. its closure, hence g = hF’ is defined on all y, and it suffices to let
f(») = x where g(y) = (y,x). B

Counterexamples exist to show each of the three hypotheses of (f) is indis-
pensible. We do not know whether one could hope for a section in (f).

We close by citing a result from [2]. A section for an equivalence relation E
on & is a section f for the multifunction F(x) = equivalence class of x. The fixed
points -of f form a set containing exactly one fepresentative of each class. E is
countably #-generated if there is a countable #,< o such that two points are
equivalent just when they belong to all the same elements of #,. Srivastava and
Miller have each observed that an analytic equivalence whose classes are G, sets
is countably C-generated. We have:

(2) PARTITION SELECTION THEOREM. A countably C-generated equivalence
relation admits a C-megsurable section.

The proof requires special facts about C-sets. (g) is false for Borel sets.
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