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Classical hierarchies from a modern vstandpoint
Part II. R-sets

by

John P. Burgess * (Princeton, N 1)

Abstract. The Borel sets and the C-sets form but the bottom two levels of the hierarchy
of R-sets. It is shown how the properties established for these bottom levels in Part I can be lifted
to all levels of the hierarchy. It is further shown that the Borel sets, C-sets, and R-sets coincide
with the bottom three levels.of Vaught’s hierarchy of Borel-game sets.

Chapter D. Survey of R-sets

§ 9. Basics

(a) Introductory. From time to time analysts, topologists, logicians, and prob-
abilists have found it convenient or illuminating to introduce certain families of
Lebesgue measurable sets of reals properly including the Borel sets. In Part I of this
series we surveyed the useful properties of one such family, the C-sets. In the present
Part II we turn to a larger family, the R-sets of Kolmogorov and the Russian
school [22], [23], [24], [25], [26], [27], showing how the game-theoretic methods
applied to C-sets in Part I lift with 2 minimum of fuss to the R-sets. Here and in
Part IIT to come we will offer two new characterizations of the R-sets, quite different
in appearance from the original definition; the existence of such diverse characteriz-
ations suggest that the R-sets form a very natural class.

Notation and terminology of Part I will be retained. The author remains indebted
to the persons thanked in Part I, especially Professor Vaught.

(b) R-transform, R-operations, R-hierarchy. We begin with a quick review of
material mostly to be found in the works cited above. First some generalities about
set operations in the sense of § 2 (c). The composition I' » I of two operations I and
I'" with index sets I and I’ is the operation

I(d) = I{(I" (4, i): i eI): iel)).
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The conjunction [\ T of a family (I';: k € K) of operations with index sets Z and
keK

truth tables B, is the operation I'* with index set I* and truth table B*, where:
I* =) {k}x1,,
kek
B = (| {JsI*: {iel: (k,i)eJ}€B,}.
keK . !

The operation I' with index set J and truth table B is nontrivial iff B is a nonempty
proper subset of 2(I), and positive iff Je€ B and JSK always imply K € B. (All the
specific operations we have considered or will be considering are nontrivial and
positive.) For nontrivial positive I' we define the R-fransform RI' of I’ as the oper-
ation with index set Q(I) (= finite sequences from I) and truth table:

(*) {SCQ(I) ATss|( )eT&VseT{z s@ieT}eBl}.

E.g. R(Jom) &, an example motivating the general concept.
RI" has a_ useful game analysis: We claim x € RI'(4) iff:

(+%) AJ,e BVigel, 3, e BViy € J; ... Valx € A(Go, iy, )] .

Indeed, let S = {se Q(I): x € A(s)}. If T<S is as required by () for x to belong
to RI'(A), then we get a winning strategy ¢ for the 3-player PRO in the game ()
by setting ¢@(s) = {i: s@ie T}. Conversely, if ¢ is a winning strategy, the set of
(igs .., i) for which there exists a partial play (Jy, iy, ..., Jy, 4,) agreeing with ¢ con-
stitutes a suitable 7.

RI" has a useful inductive analysis:

‘ A%() = ) A1),
s
A = U N 460 = I(4°6o0): ie)),
CA%s) = () 4%(s) at limits ¢<Q.
p<a

The inductive analysis of games in § 4 applies mutatis mutandis to (¥*) to show that
the game associated’ with (#+) is determined and that RI'(4) = A%(()).

R has some useful reduc1b111ty properties: It is a pleasant exercise to verify the
following (or they can be looked up in [23]):

(i) if I' is reducible to I, then RI is reducible to RI”,

(i) I' is- reducible to RI,

(iif) meet is reducible to RI,

(iv) RRI" is reducible to RTI,

(v} RT o RI" is reducible to RI.

It is amusing to give a “soft” proof of the reducibility of % to & using these
facts: First note that ¥ .= R(join o meet). Now join and meet are reducible to o
by (ii) and (iii). Hence their composition is reducible to & o & and so to o by ).
Hence & is reducible to Re by (i), and so to & by (iv).
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We now define the R-operations @, for a4<Q:
®y = meet,
Dpiq = R(co-Py),
@, = A\ &, at limits .
B<a

E.g. ¢, = /. The game analysis of @, boils down to the statement that x e d,(4) iff:

Vo € 0” 3np e 0 V&, 3n, ... Ylx e d((Eolno, &1y, . )IK)] -
Then by determinateness, x € co-®,(A4) iff:
3o Vo 3E; Yny ... Ak[x € 4((&lno, E4lny, . E)] -
And then x e $;(4) iff:
A&y0 Vg Aoy .. ko Iy Vnyo 3éyy Vg o3k o 3,
vr [x ed (((fooh‘uo: Eo1lnoy, ko, Erolnios Exalnags ik, )[")]

where for the first time we are considering a game with a sequence of moves of length
>w. And so on for all the @;, i <w. The game associated with &, begins with CON
choosing an i<, after which the players go through a game of the sort associated
with &;. The games for o> are more easily imagined than described. Inductively,
@ is reducible to @, whenever f<oa.

We finally introduce the hierarchy of R-sets:

VnOl e

2° = Borel sets,
B =

5+ 1
i1

S+1 _ +1
%p+1 = complements of sefs in M,,.H R

s+1 s+1 S+ 1
Dpei1 = Lpri N Cpi1,

sets obtainab]e‘by ®;..4 from sets in B5*!,

#5351 = smallest o-field containing «3%} and stable under &,
#5*! = smallest o-field containing all Z5*! for f<o, and stable under &;,
at limits a<@,
%6+1 — U ﬁﬁ-ﬁl
n< ¢ ’
Z? = smallest uniform family containing all 7% for S<y at limits y< @,
R-sets = {J #".
<N
E.g. #* = C-sets (and for superécript 1 the above definitions agree with those in § 3)l

The families o2, %2, 2% have no accepted names, but we will calI them ‘primitive,
co-primitive, and bi- -primitive R-sets.
Much, of course, was known about R-sets to the Russian authors c1ted above.
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Noteworthy are the fact that for standard spaces the %7 are all distinct, and the fact
that for arbitrary spaces the R-transform preserves the property of preserving the
property of almost openness (= Baire property); hence the R-operations preserve,
and the R-sets enjoy, this property. We would like to extend such modern results
as the Duality Theorems of §§ 6, 7 and the “Hard” Selection Theorem of § 8 to
R-sets.

§ 10. From C-sets to R-sets. Our proofs in Part I were chosen so as to generalize
as easily as possible from %' = C-sets to all %*. We indicate in this section the
generalization to %2, which is typical.

In addition to & = &, we make use of three auxiliary operations,

¥ = R((co-) e ), O =R(co-%9), E=R(co-9)-%).

‘These may be proved interreducible with @ using the reducibility properties (i)~(v)
of R enumerated in the preceding section. They act on systems indexed by 0*(Q(w)),
0(0*(w)), and O*(Q*(w)) respectively:
(i) xe ¥(4) iff:
Véoew®Ingew A, e w® Vmy e o VE, Any AL YVmy ..
Vik[xe A(('fo|"o, olmo, )|2k)] s

(i) x e O(A) iff:

VYago € 0 Abgp € @ Vg, Aby, ... Ang Vayo 3by Aagy Abyy ... Any ... Iny .
Yk[x e A{({aoo, boo, -2, (@50, byo )20y, .. )],
(ifl) x e Z(4) iff:
Yago Aboo Yoy Tboy ... 3ng Acoo Ydoo oy Yoy ... Vimg
Va,, 3by, Vay, Abyy .. Any Jeyo Ydyo ey Vdyy ... Yy .
Any ... Vmy ... Yk |x € 4{((doo, boo 210, (Coos oo --)2mp, ...)[2K)] -

It is a pleasant task to go through Part I carrying over all the results there from %*
to %#* with the aid of these auxiliaries. Let us sketch how this is to be done:

Hierarchy Theorems. The proof of § 5(a) (resp. § 5(b)) carries over virtually
unchanged with @ (resp. V) in place of & (resp. 9).

Regularity Properties. In § 7, to prove the Category Formula and Duality The-
orem we expressed the set there called (o (4))* in terms of & applied to simpler sets.
Similarly, one can express ((4))" in terms of @ applied to simpler sets. A version
of the resulting Category Formula has been written out in [21, § 2], and the proof
there gives a hint also how to proceed in the measure case.

Selection Theorems. The “soft” result of § 8 is valid as it stands for %%, For
the “hard” result we need a Canonical Strategy Theorem for the game comnected
with ©. To get this, consider the inductive analysis of RI" of the preceding section,
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apphed to I = co-9. Introduce an associated notion of rank:as in § 4. Unpack_mg
the deﬁnmons x-rank (0) = Q iff:

®  Va,b,Va,3b, ..

This is the sort of game considered in § 4, and the canonical strategy for it as there
defined will here be called the canonical ¢-subsirategy. Now in the game (if), if
x-1ank(( )) = @, PRO’s canonical strategy is defined thus: If play so far has produced
@ = (S0, .» Se—1) With x-rank(s) = Q, then choose by, by, by3, ... according to
the canonical o-substrategy, and as n, choose the least 7 with

x-rank(o@® (@, byo, ..)21) = Q.

PRO by playing thus keeps the ranks up and wins the game (ii). PRO’s canonical
strategy can be identified with, say, thé set of pairs (o, ¢) such that x-rank (o) =
and ¢ is the canonical ¢-substrategy, and hence with a point in a standard space.
Canonical strategies for CON are similarly defined. To show that the function
associating to x the canonical strategy for PRO (or CON as the case may be) is
R*-measurable, we need a Comparison Lemma. About this we will only say that
{x: x-rank(s)<x-rank(z)} can be obtained by E applied to sets in the field gen-
erated by the 4(c). Cf. in this connection [27].

This rough outline could hardly pretend to be a fully rigorous proof. To execute
in detail the project of extending each result in Part I to all levels of the R-hierarchy
would take dozens of pages. We hope we have said enough to equip our hardier
readers to carry out this task for themselves if they desire.

3n[x-rank(c®(a,, by, ...')|2n)>x-rank @1].

Chapter E. Borel-game characterization
'

§ 11. Preliminaries. In recent years Vaught and his students have developed a
general theory of operations defined by games of length w. (Cf. item [19] of the Bib-
liography of Part 1) These ideas lead to a new characterization of the R-sets.

The following format, though 'slightly artificial, proves convenient: Let Z be
any space, ¥ = {{ e 0®: Vn E(3n)<2}. For 4 a Q*(w)-indexed system of subsets
of &, define the characterizer y;: X 0® — ¥ by yxu(x, &) = { where {(3n) is 1
or 0 according as x € A(£|2n) or not, and {(Bn+i+1) = £Rn+i) for i =0 or 1.
For- B&¥ the game operation I with target B is defined by letting x e I' (4) iff:

Jepew YdyewTe,Vdy ... X (%, (co, dp, .-.)) €B.

Intuitively, membership in I'(4) corresponds to the existence of a winning strategy
for PRO in the game where the players alternately choose the terms of a sequence
& = (cg, dy, ...) and PRO wins iff a certain condition involving £ and {n: x € 4(¢]2n)}
is fulfilled. E.g. ¢ is the game operation with target {¢: Vn é(3n) = 1}.

If #isa class of subsets of ¥, the #-game operations are those with targets
in o, and the 5 -game subsets of Z those obtainable by 3 -game operations applied
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to indexed systems of open sets. (Vaught and Schilling have shown that Borel-game
operations preserve and Borel-game sets enjoy the.property of almost openness.)
In general, for & = %, passing from 2 to the J#-game sets produces a considerable
enlargement. The magnification process # — 4 -game applied to the lowest levels
of the Borel hierarchy produces some familiar classes.

Characterization Theorem.

(a) clopen-game = Borel, ‘

(b) closed-game = analytic, open-game = co-analytic,

©) (F, n G;)-game = C-sets,

(d) Gs-game = primitive R-sets, F,-game = co-primitive R-sets,

(e) (G35 0 Fp5)-game = R-sets. :

Proofs. (b): o is reducible to ¢ which is clearly a closed-game operation, so
analytic < closed-game. The proof that ¢ is reducible to &/ generalizes to handle
any closed-game operation, proving the opposite inclusion.

(a): The inclusion clopen-game < Borel follows from (b). To get the opposite
inclusion it suffices to note that if each E;; is obtainable from open sets by the clopen-
game operation with target B;;, then |J () Ej;is obtainable by the clopen-game oper-

rJ
ation with target B = {i@®jk®¢: & e B;; & k<2}. There is in fact a correspondence
between the levels of the Borel hierarchy and the levels of Kalmar’s hierarchy on
clopen sets.

(c): Will be omitted.

(e) and (d): There is in fact a level-by-level correspondence between the
R-hierarchy and the classical difference hierarchy on (G, A G,5). (d) states the
correspondence at the bottom level; at the next we have:

(f) (difference of two Gy's)-game = %3.

We will offer a proof of (f), illustrating the general principles involved in (¢) while
avoiding notational nightmares. A proof of (d) can be obtained as a direct simpli-
fication.

Towards proving (f), note that the sets in %3 are obtainable from open sets by
application of co- (R (co-(R(co-9)))), and that the general form of the game associated
with this operation is:

(O] Va0003b000 ¥ 200138061 Y dg023bo03 -+ Fhego
Vag103b050V 01130011V a0123b055 ... ko ... Bkgy ... Vi
Va1003b100Y 10130101 Va5023by05 ... Tk

V“Jxoabﬁovaiuabulval123b112
Fi(oy, 04, ...)li € W where

Tkyy o Fhegg oo Yy oo Vg oo

6= (S105 Sy15--)|J; and 8y = (a0, bijo» ~N2k;;.

We have already observed that games associated with R are determined. In () we
refer to the (w”+1)-sequence of moves from CON’s choice of ; o to CON’s choice
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of j; as the i-subgame; we refer to the (w+1)-sequence from CON’s choice of aip
to PRO’s choice of k;; as the i, j-subsubgame.

Note also that a G; subset of ™ can be represented as {¢: Vj Ik &k e M(j, b}
where the M(j, k)S Q(w) are such that s e M(j, k) and s<{t and k<K’ imply
te M(j, k). Thus the game associated with a (difference of two Gy's) -game oper-
ation has the general form:

(#%)  JcoVdydc,Vd, ... for € = (cy, dy,...) We have:
Vidk &tk e M(j, k) & Vidj ¢l je NG, )

where the M(j, k) have the property just mentioned, and similarly for the N(,j).

To prove (f) we will show more generally that to the game G* given by (¥) we
can associate a game G’ of the same form as (+#), and to the game G** given by (s#)
a game G”' of the same form as (x), in such a way that whichever player has a winning
strategy in G* (resp. G'') has one in G’ (resp. G**). This incidentally proves the
determinateness of games of form (+#) (a result originally due to Morton Davis).

§ 12. The proof.

(a) Auxiliary games. The G promised at the end of the preceding section is
formally defined thus:

Feo00VdogoT 001 ¥ dgos - Fkoo

" Heo10Vdorodeo1:1 Vo o ko .. Tkgs ... Vo
Je100Ydi003¢101Vdioy - Fkyg
Jer10Vdiioder 11V dyayg o Fhyy o Fkyy o Vg o Vs

Hl[Vt'SiVj'SJu tiljl € M(jl, ki'j’) & T ¢ N(i,ji)] where
i = (Cij0s dijos oo Cijar diyy) for k = k;; and

Ty =()and t; = Ti-1D530@...@0s5;; and 1, = ¢t;; for j = j;.

Less formally, the 7, j-subsubgame of G' consists in the players alternately
choosing the terms of a sequence $ij = 1®(cij05 dijor ) Where t =1, ;. if j>0
and = 7;_, otherwise, and then PRO choosing a k; ;determining an initial segment ,;.
If #;;¢ M(j, ki) PRO in effect has lost the game at this point (unless CON lost at
some earlier point). The {-subgame consists in the players going through the 7, j-sub-
subgames producing all the #;;, whose union we call £;, and then CON choosing a Ji
determining an initial segment z;. If t, & N(i, ;) CON in effect has lost the game at
this point (unless PRO lost at some earlier point). If the players get through all the
subgames without either one winning, this counts in the end as a win for CON.

The game G’ promised at the end of the preceding section will only be described
informally. Though its total length is @ we think of it as consisting of a potentially
infinite sequence of subgames, each consisting of a potentially infinite sequence of
s'ubsubgémes, each consisting of a potentially inifinite sequence of rounds. If in any
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play of G' the i, j-subsubgame actually goes through infinitely many rounds, then
the (i,j+1)-subsubgame never gets started, nor-does the (i+1)-subgame; while
if the i-subgame acfually goes through infinitely many subsubgames, then the
(i+1)-subgame never gets started. This keeps the total length in bounds.

" The i, j-subsubgame opens by CON signalling (by a choice of a 0 or a 1) either
a challenge or a pase. In the former case, the whole i-subgame ends at-once and the
players proceed to the (i+1)-subgame; in this case we record as o; the sequence
of 55, for j'<j. In the latter case, the players proceed to the rounds of the i, j-sub-
subgame. The kth such round opens with PRO either challenging or passing. In the
former case, the whole i, j-subsubgame ends at once and the players proceed to
the (i-, Jj+1)-subgame; in this case we record as s;; the sequence of ¢y, dyy- for k' <k.
In the latter case, PRO proceeds to choose a ¢;;, € , then CON chooses a d;y, € o,
then the players proceed to the (k-1)st round. ' :
" Who wins is decide as follows: First, if some i, j-subsubgame goes on forever
because PRO fails to challenge on any round, PRO forfeits the game. Second, if
this first provision does not apply, but some i-subgame goes on forever because CON
fails to challenge at the beginning of any subsubgame, CON forfeits the game. Third,
if neither of the first two provisions applies, then a sequence (y, 04, ...) Will have
been generated. PRO wins iff some initial segment belongs to the set W of (x).

A little thought shows that the set of plays not constituting a forfeit for PRO

is a G, set M, while the set of plays not constituting a forfeit for either player is a Gy
subset M’ =M, and finally the set of plays in which neither player forfeits but PRO
wins constitutes a relatively open M < M'. Thus the winning set M—(M'—M")
for PRO is a difference of two Gy's, and G’ is of the required form.

(b) Who wins? We claim:

If PRO has a winning strategy for G*, then he has one for G'.

If CON has a winning strategy for G*, then she has one for G'.

If PRO has a winning strategy for G”', then he has one for G**.

If CON has a winning strategy for G, then she has one for G**.

As the proofs are much of a muchness, we consider only the first of these claims.
Let ¢ be a winning strategy for PRO in G*. He should play thus in G':

In the 0, 0-subsubgame of G, PRO pretends he is playing the 0, 0-subsubgame
of G* and produces his dgo, according to ¢ until a k is reached with the following
property: In addition to the bgg, for k'<k that CON has "actually played, PRO
can imagine bgop for k’2k such that, if CON had played (boow: k'€ w) in the
0, 0-subsubgame of G*, ¢ would have dictated that PRO choose k as his k5. When
such a k is reached, PRO challenges. (Play cannot go on forever without such a k being
reached, else an infinite sequence (byq,: & € w) would actually be produced by CON,
to which we could apply ¢!) Then in the 0, 1-subsubgame of G’, PRO pretends he is
playing the 0, 1-subsubgame of G*, and so on through all the 0, j-subsubgames
until (if this ever happens) CON challenges at some j. At such a point b, ,Lk will have
been played by CON or imagined by PRO for j'<j and k € w. PRO supplements
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these by imagining by, = 0 for j/j. Then in the 1, 0-subsubgame of G’, PRO
imagines that he is playing the 1, 0-subsubgame of G*, CON having played the b, 'k
for j* and k € w as her first w?-sequence of moves, and j as her Jo. Etc.

Playing thus, PRO does not forfeit G'. And if CON does not forfeit, then to
the actual play of G’ corresponds a complete imaginary play of G* agreeing with ¢.
Since ¢ was a winning strategy for G*, it follows that PRO wins the play of G".
Thus the strategy described is a winning one for PRO in G'. B
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