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and it is easy to see why we cannot. For any sentence o, ¢ will be valid exactly when
o & & is semivalid. Thus determining semivalidity is at least as hard (and, in fact,
is exactly as hard) as determining validity.

Finally, it should be noted that the semivalid sentences based upon Ramsey
theory or being nonplanar or the like are going to be quite complicated if for no
other reason than the requirements of sufficiently large order. And because of the
inberent lack of decision procedures for semivalidity, this approach cannot be
expected to help in answering extremal questions such as the determination of
Ramsey numbers. '
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Compactness = JEP in any logic
by

Daniele Mundici (Florence)

Abstract. L-elementary embeddings are for logic L what elementary embeddings are for
first-order logic. If the Joint Embedding Property holds for L-elementary embeddings (for short:
L has JEP), then the latter become a fundamental model, as well as an arrow-theoretical feature
of L. Assuming Constructibility, 710%*, oreven T1L", we prove that in any small extension of first-
order logic JEP is equivalent to compactness. We further give a characterization of Craig’s inter-
polation along the same lines, by making use of a strong notion of amalgamation.

Preliminaries. The reader is referred to [MSS] for everything unexplained
here; following [Fe2], for = a (similarity) type, Str(z) is the class of all structures
of type ; if L is a (many-sorted) logic then Stc,(7) is the class of all sentences of
L of type T; given 9, M e Str(z) we let

thy M = {¢ e Stc, ()| ME ¢}

and we let M =, N mean that th;M = th, . For I'cStcy(r) we let mod, I
= {WeStr(z)]WE T} In logic L we allow relativization, e.g., relativization of
formula  to formula ¢(x, yy, ..., y,) where y;,...,», act as parameters, and we
write

l[’{xl(P(x)yls rery yg)}

to denote the formula obtained by this process. If B € Str(t) and B'< B (with B the
universe of B) where B’ is nonempty on each sort of 7, then B[B’ is the substructure
of B generated by B, see [Fl]. For the definition of (A, w)-compactness, see [MSS]
or [MS). (Full) compactness is (1, w)-compactness for all 1> w; an important related
notion is given by the following (see [MS]):

DeriNiTioN. Logic L is u-relatively compact (for short: p-r.c) with u>o,
iff for any classes of sentences Z, I' with |X| = p, if for each Z'=X with [¥'|<p,
%" U I' is consistent, then £ L I' is consistent.

For the definition of L having Craig’s interpolation property (or theorem),
see [Fel], [Ba], [MSS]. An important related notion is given by the following:

DerFNITION. We say that in L Robinson’s consistency theorem holds (or: L has
the Robinson property) iff given any types 7, 7, and 7, and classes of sentences
T, T, and T,, if T is complete in © and Ty, T, are consistent extensions of T in
type 7, and t, respectively, with © = 7, N 7, then T, U T, is consistent.
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The Liwenheim number of L is (when it exists) the least A such that any sentence
of L having a model has a model of cardinality <A

Let M e Str(t); the diagram type (often called: diagram language) of Mt is
the expansion 7, of ¢ formed by adding a new constant ¢, for each me M. The
diagram expansion of M is the structure 9, € Str(ty) in which each ¢, is inter-
preted by m; more generally, for Y= M, expansion ty and structure My are defined
in the natural way; if f maps Y into M, then 3y is the structure of type 7y in which
each ¢, (with y e ¥) is interpreted by f(»). Recall that the elementary diagram of
M is the complete theory thy, M, in type T, It is well known that given structures
M and Rand f: M — N, fis an elementary embedding of Minto N iff Ryppy k thy, Dy,
in symbols: f: M 7 9N (see [Ke], p. 53). Both these notions are naturally generalized
as follows: ‘

DermaTioN. Given logic L, the L-elementary diagram of structure M is the
complete theory th;9, in type Tu; function f: M — N is an L-elementary
embedding of M-into M iff Ny thyMy,; in symbols:

s
1M :»L‘Jt (or M —<>L91).
We let M — 9t mean that there exists an L-elementary embedding f of M into N
<

(read: M is L-elementarily embedded into M). Following [Ke, p. 60] we say that
the amalgamation property holds for L-elementary embeddings iff given f: MM g LU

and g: M 2 LB there is some structure D and a diagram:

L
B

Equivalently, we say that L has AP. We say that the Joint Embedding Property
holds for L-elementary embeddings (for short, L has JEP) iff, given U, B & Str(z)
with W =, B there is a structure M such that U e’ M and B oL M; in other

words, any two elementarily equivalent (w.r.t. logic L) structures can be L-ele~
mentarily embedded in a third one; we have the following diagram:
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If Stcy(7) is a set whenever < is a set, and L i$ compact, then L has JEP ([CK 3.1.4]
works as well for L); further, L has JEP iff =} can be expressed in terms of — via
the following equivalence: <

ViU, B8, U=,8 iff IDst U—>;D and B>, D.
< <

Thus, if L has JEP, then e becomes a more fundamental notion than = itself. Our
main theorem is the following:

THEOREM (Assuming Constructibility, —10%, or —1L*). Let in lpgic L, Stcy(7)
be a set whenever t is a set, or even, let the Lowenheim number of L exist. Then

L is fully compact iff L has JEP.
For the proof we argue as follows:

CrAM 1. Under the hypotheses of the theorem, if L is not ({, ©)-compact for
some { = w, then there exists  such that L is not p-r.c. for all regular 4 such that p=x.

Proof. Then, by [MS 6.6 (i)], L is not %-r.c. for some x>w; by [MS 6.6 (iv)],
L is not p-r.c. for all u such that cf(u)=x (here Constructibility, =10% or —1L*
are used, see [DJK], p. 91); now take u to be regular.

CLAM 2. Let {S,}m<o be a set of symbols over a finite number of sorts {So, -5 5¢};
under the hypotheses of the theorem, there exists 0 such that, up to logical equivalence,
there are at most 0 many theories (i.e. classes of sentences) in L of type {Sy}m<w-

Proof. It suffices to prove that there is 8 such that, up to logical equivalence,
there are at most 8’ many sentences in L of type {S,}m<s; as a matter of fact, if
Stc,(7) is a set for any 7 a set, then we have nothing to prove; on the other hand,
assuming that Lowenheim number of L = 1, then for any two logically inequivalent
sentences o and B of type {S,}m<o there must be some isomorphism class I of
structures of this type and of cardinality <4 such that for any Uel, UFa and
not-2 E B or vice versa; now, for some cardinal ", the number of such classes T'is
less than 0. Hence, the number of sentences of type {S,}m<e is, Up to logical
equivalence, less than 0’ with 6" = 2%,

CLAIM 3. Assume that L is not p-r.c.; then there is a counterexample X, I' to
u-relative compactness in L such that the type of Z v I' is ‘two-sorted, has no n-ary
function symbol ( for all n>1) and has only countably many relation symbols.

Proof. Let &', I be a counterexample to p-relative compactness in L; it is
no loss of generality to assume that the type " of 2’ L I'" has no n-ary function
symbols (for all n31); further, by mapping each sort s of ¢ into a new unary
relation symbol U, and by relativizing to U, all variables of sort s in each formula of
3" U I (with the U, all over one common sort) we can transform X', I" into a pair
of theories X", I'"" whose type ©’* is single-sorted, in such a way that =", I is still
a counterexample to u-relative compactness in L (for this sort-reducing relativization
process in L, see, e.g. [Mo], p. 484). Now, from X", I'"" of type 7’ over sort s
we. construct the required Z, I' as follows: let {Ri'};e; display all the relation
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symbols of t'’; let s° be anew sort, and {c;};cy be new constant symbols over sort s°;
finally let {R°}{<s<o be new relation symbols, where R” is a-ary.

Let o map RY into R**! where a = arity of RY; let x map R into c;; notice
that y is one-one and the range of ¢ is countable. Given formula ¢" in 2" U I'”,
let 5(¢"") be obtained by replacing each occurrence of RY(xy, ..., %) in- " by
R*Y¢,, %y, ..r X,) where ¢; = x(R}) and R*! = o(R}). For each subset 4’ of
U T let 8(4”) = {6(p'")| 9" € 4”}. Then it is straightforward to verify that 4”
has a (single-sorted) model U iff §(4") has a (two-sorted) model . (This passage
from n-ary relations to (n-+1)-ary relations is analogous to the one described in
[CK] exercise 7.2.16; here we use a new sort for the indexes.) Now 8(Z'"), 6(I'")
are a counterexample to y-relative compactness in L satisfying all the requirements
of our claim.

Having proved Claim 3, we fix a set of two sorts {s1,5,} and a collection of
relation symbols {R%}, m<e such that Ry, is a-ary and R% # R for m # n. If we
assume that L is mot ({, w)-compact, then by Claims 1 and 3 we can consider
a counterexample 2',,, T, (of type 7,) to p-relative compactness in L for each regular
p>x, suchthat the relation symbols of r, are among the R}’s, there are no n-ary
function symbols (n>1) and the sorts of 7, are exactly sy, 5;-

We shall now construct a class {T),},reguar % Of complete consistent theories
which will provide the decisive step to show that, under the assumption that L is
not ({, w)-compact, L has not JEP.

Construction of T,. Starting from Z,, I, as described above, we let Z,
= {p4] B<p} and Z}, = {4 f<v} for all ‘ordinals v<u; we also let U, be a model
of Z, U T, (such a model existing by hypothesis); without loss of generality we
assume that U} and uﬁ have disjoint universes for o # B; we let type ¢} be obtained
from 7, by adding one more sort s3 and new symbols <, f, m, (< binary relation,
f unary function, m, constant symbols for each ordinal v< w; we let M, e Str(t})
be any structure having the following properties:

mp r{<’ mv}v<p = (#: <, V>y<“ (< ,m, on sort S3) s
domain of f = (disjoint) union of the universes of the W’s (i fixed, v<p),
range of f=p,
f7*(v) = universe of U} (v<p),
M, bl f ) = W, (v<p).

Roughly, M, is a “disjoint union” of the U’s together with a function f indexing
each universe. () Define T, = th; M, (in type 7}) and notice that the following
sentences-are in T}, (here we use symbol ¢ instead of x** for a variable of third sort;

(%) Strictly speaking,  should also be equipped with a binary function & (independent of u)
taking care of the different interpretations of the constants of 7, in the components of M,; how-
ever, this would only result in burdening the notation of the rest of our proof, so we prefer
to neglect k. :
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we also let x! and x* denote variables over 5; and s, respectively):
(Da<pen < is a linear ordering over s; and m,<mg,
) Ve@x'f(x") = & A 3x2f(x}) = &),
so that each inverse image f ~(¢) is nonempty on both sorts sy and s,
Bp<u
so that each f "!(e) is the universe of a model of Zy;
(4)‘05” Ve ‘l,("lf(x)“)’
so that f~*(e) is the universe of a model of I',.

CrawM 4. Given any model St of T, the my’s are unbounded, i.e.

(VB<p).
Proof. Otherwise, any counterexample {3, n) has the following properties:
(@) f~'(n) # @ on each sort of 7, by (2), '
(b) for any B<u, ¢z holds in N } z,|f~'(m) by (3),
(¢) I', holds in %t } | f ~t(n) by (4),
so that X, U I', has a model, a contradiction.

Ve(my<s —» /=9y

T13ne N such that MEmy<n

CLAIM 5. Given any model W of T, and any increasing chain ay<a; < ... <a@,<...
(o<v) of cardinality v<u, there exists some o<y such that m, is a bound for the
chain, i.e.

NEa,<m, (Vo<v).

Proof. Otherwise, any counterexample (9, a,>,<, has the following prop-
erties: .

(i) Yadg such that NE m,<a,, by absurdum hyp.

(ii) Vo3« such that Rk a,<m,, by Claim 4.

Letting m(g) be the least among the my’s satisfying (ii) (such m(g) existing
by axiom (1) being in T,), we have exhibited a subset {m(0)},<, of cardinality v<p
which is cofinal in {mp}p<,, by (i), thus contradicting the assumed regularity of s.

Cram 6. For p' # p", Ty U Ty is inconsistent.

Proof. Otherwise, let e Str(z} U 7f) be a model of Tpu T,»; assume
p'<u”; N can be written as

' ’ .
N = (N, ., <, My, Mg Dacpr, pps

7”3

< is a linear ordering over sort s; and the m_’s as well as the mj}”s are well ordered
by axiom (1). First consider that R F T, and that {mg},<, is an increasing chain
of cardinality u' <’ so, by Claim 5, 38<y" such that mj bounds the chain; but
this contradicts Claim 4, if we now regard % as a model of T),.. :

After the proof of Claim 6, observe that for all regular p>x the type Ty of T,
has three sorts s, 5, and 55, has its relation symbols among set

{<}v {Ru}amca
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and has just one function symbol f; let =5 be the three-sorted type obtained from t}
by eliminating all the constant symbols of t}; given theory T),, let T3 be defined by

TS = T, n Stepty

so that T2 is obtained by taking those sentences of T, of type o 0 {<, [, Rudamen
T3 will be complete and consistent, as so is T, for each regular uzx; hence, by
Claim 2 and the pigeon hole principle, at least two theories T2 and T§ (x,
regular >x with « % f).are logically equivalent, i.e.

‘ mod,; T2 = mod T} .

v = 1p (both types over sorts 51, 52,5;) and

In particular
M, og =, My }1gs

notice that M, and M, 72 have the same (three-sorted) universe, since no sort
is lost in the reduction process from t¥ to 1¢; the same holds for M, and MM, } 3.
It is no loss of generality to assume that no two constant symbols of tj (resp. of 7})
have the same interpretation in 9, (resp. in M,). We also assume, without loss
of generality, that z¥ :nd %} have no common constant symbols.

Cram 7. There is no 3 such that
m, Mg—;,ﬂﬁ and My I‘rﬁjLﬂﬁ.

Proof. Let M, (resp. M) be the three-sorted universe of M, | 72 (resp. of
My 1 75); let 7, be an expansion of = formed by adding a new constant for each
me M, in such a way that thy(M, | Q) 2th,M, (=T,); such 7, exists since
the function and relation symbols of type ¥ are also in tg, and since M, is also
the universe of 9M,. Let ), similarly expand t} so that thy (M, I 13)p, has more
sentences than 7. Assume (absurdum hypothesis), that f and g jointly L-embed
M, } 79 and M, b 3 respectively into M, with M e Str(xF) (=179); by definition

Myag, Fthy(O, P 19)ar, and Mgy, F thy (W P 1Ry, -

Assuming, without loss of generality, that ’EM,‘ and 7, have no common constant
symbols, then
WMyarpoonty FTaV T s

a contradiction with Claim 6.

Claim 7 shows that L has not JEP under the hypothesis of Claim 1 that L is
not (¢, w)-compact for some ¢>w. This proves the harder direction of the theorem.
To prove the other direction, first notice that, under the hypotheses of the theorem,
for 7 a set there exists a cardinal » such that in L there are no more than » logically
inequivalent sentences of type z (if Stc,(z) is a set we have nothing to prove; if the
Loéwenheim number of L exists, then argue as in the proof of Claim 2). Now
argue as in [CK 3.1.4). H

Remark. If one weakens the assumptions about logic L in such a way that
the sort-reducing relativization used.in Claim 3 is not allowed in L, then the argu-
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‘ment -of the above proof is still true, provided the class of sorts where one has

counterexamples Z,, I'; to u-relative compactness can be assumed to be a fixed set:
but this is indeed the case for any logic L, as can be ascertained by inspecting the
proof of 6.4(ii) in [MS]. Then one constructs a countable fixed set of relation
symbols as in Claim 3, and applies the pigeon hole principle, via some suitable
variant of Claim 2, after constructing the T,’s just as in the above proof (see [Mu6]
for details).

The proof of Claim 1 in [MS] is based upon a set-theoretical result due to [JKJ,
see [DJIK]; Claim 1 is the only step where ¥ = L, =10* or —1L* are needed.

COROLLARY. Under the hypotheses of the above theorem, in logic L Robinson’s
consistency theorem holds iff Craig’s interpolation theorem holds and L is fully compact.

Proof. It is well known that Robinson’s consistency theorem implies JEP,
and that in compact logics satisfying our hypotheses Craig’s interpolation is equiv-
alent to Robinson’s consistency. Now apply the above theorem. &

To give an algebraic characterization of Craig’s interpolation theorem or
Robinson’s consistency theorem, we need the following stronger notion of amalga-
mation: ' '

DeriniTION. We say that logic L has the strong amalgamation property (for
short: L has AP*) iff for any structures 9, U, B resp. of type 7, ¢ and 7, if
=1 Nt and M > u, M :}‘%, then ADeStr(z' Ut'’) such that U —:L&)

and B - D.
<L

Remark. Thus we have a diagram for M, W, B and D just as in the

‘definition of AP: however, the latter only takes care of the case © = 7'

= 1'". The strong amalgamation property was proved in [Mu4] to characterize
elementary equivalence on the class of countable structures of finite type. Further
properties are given by the following:

THEOREM. (A) Let L have AP'; then the following are equivalent:

(i) L has JEP;

(i1) (connectedness): for any W, B e Str(r) with W=, B there is a finite path:

U= Womiﬂﬁmwmn =B

where each M, is of type © and each .

(i) (parallel embedding): for any 1[ B e Str(v) with U =, B, if B* e Str(z*)
with ¥ 27 and B - B, then there exists W' € Str(v*) such that U* =, B* and
<

is either 2,00 = (depending on i);

u o A" in other words we have the following diagram:

u -1, 1[+
< .

Rl

L =L
+
%—?L?B

3 — Fundamenta Mathematicae CXVI/2
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(B) Robinson’s consistency theorem holds in L iff L has AP together with
either of (i), (i), (iii) above.

For the proof we shall proceed according to the following diagram:

AP* + parallel embeddingl = ’Robinson’s consistency

t A
4P+ + 1ee |
¢

“AP+ + connectedness \

We shall write — instead of e
<
Robinson’s consistency = AP* + JEP.
Proof. Immediate.
AP* + JEP = AP + parallel embedding.
Proof. Let U, BeStr(z), B eStr(z*), v+ 2 with
U=,B
¥
%-{-
By JEP we have, for some & e Str(z):
e
& b
By AP* we have, for some U* e Str(z¥):

] B*
N’

Now' U" =, BT and U - U* easily follows, which establishes the parallel em-
bedding property for L.

AP* + paralle] embedding = Robinson’s consistency.
Proof. We first prove the following:

(®) VI eStr(r), M’ eStr(x”), if M +7 N’ =, M’ } v A" then ID
eStr(v’ U ") with D b’ =, M and D } 1" =, W".
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As a matter of fact, under the hypotheses of (), by the assumed parallel embedding
property we can write, for some e Str(t"):

MWt nt’" =, M’ '’
A |
1N
b ¥
WA =, W
By AP* we have, for some D e Str(¢’ U 7"):

n =

NS

N

am’

Now notice that D } ¢/ =, M and D P’ =, U=, M" so that () is proved.
Now, to prove Robinson’s consistency, let T, 7; and T, and types 7, T, and 7,
be as in the definition of Robinson’s consistency; let Mk T; and Mk T3
then I}t =,M" }t, since T is complete in 7= 7, N 75. By (*) above 3D
€ Str(z, U 7,) such that ® } 7, =, MM and D } 7, =, M", so that D is a model
of T, U T,, which establishes Robinson’s theorem for L.

AP* 4 JEP < AP+ connectedness.

Proof. (=) is trivial. To prove (=), assume 1, B e Str(r) with II
by hypothesis we can write

n=M 5 My m, =B

@ " m

as in the definition of connectedness, for some ne .
If n = 1 then clearly either I or B jointly embeds 1L and 8. Proceeding by
induction on n we can write, for some D e Str(1):

D
/N
u

Now, if poes is «, then D jointly embeds 2 and B. If — 1s —, then by AP (hence,

50’tn--i 93?,, = %

(n)

a fortiori, by AP*) we can write, for some e Str(r)

R
7N
SN
D B
so that 9 jointly embeds U and B in this case, and JEP holds in any case. B

3=
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Remark. The proof of the first theorem of this paper was found by the author
during Spring 1979. Announcements in Notiziario della Unione Matematica Ital-
iana, August-September 1979, N. 8-9, p. 19; and in Atti Accademia Nazionale dei
Lincei (Rome), Rendiconti Cl. Sc. Fis. Mat. Nat., Ser. VIII, 67.6 (1979), pp. 383-386.
We refer the reader to [MS1], as well as [MS] and [Mul-6], for further information
about Robinson’s theorem, amalgamation, JEP and other soft model theor-
etical properties.

The author wishes to express his gratitude to Jon Barwise and Solomon
Feferman. '
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A note on the isomorphic classification of
spaces of continuous functions defined on
intervals of ordinal numbers

by

M. Labbé (Saint-Jean, Quebec)

Abstract. Let o, denote the first uncountable number, and let I"(a) denote the interval of
ordinal numbers not exceeding a, endowed with the order topology. For each natural number z
an isomorphic classification of the space of continuous functions C(I‘(w,-n)) is given among the
spaces C(S) for which every point of S is either a P-point or a Gs-point. For n = 1, this classifi-
cation yields a characterization of I'(w,).

Introduction. For each ordinal number o, let I'(«) denote the topological
space of non-zero ordinal numbers not exceeding «, endowed with the interval
topology (cf. [5], p. 57). Let @ and , denote the smallest infinite ordinal number
and the smallest uncountable ordinal number respectively. As customary, for any
compact Hausdorff topological space S, C(S) denotes the supremum-normed
Banach space of continuous complex-valued functions defined on S. Two Banach
spaces are said to be isomorphic provided there is a one-one bounded linear operator
from one space onto the other space. A point p in a compact Hausdorfl space S is
called a P-point provided every G;-set containing p is a neighborhood of p (cf. 4],

. 63).
? In [10], Semadeni showed that the Banach spaces C(I'(w;'n)) for 1<n<w
were mutually non-isomorphic. In this paper, we obtain an extension of this result
by giving an isomorphic classification of these spaces among the spaces C(S) for
compact Hausdorff topological spaces § in which every point is either a G;-point
or a P-point. A characterization of I'(w,) in terms of isomorphisms of spaces
of continuous functions is also thereby obtained.

Before bstating our first result, we need to introduce a few more notions. A topo-
logical space is said to be dispersed (scattered) provided it contains no dense-in-
itself non-empty subset (cf. {I11], p. 147). Let S be a compact Hausdorff dispersed
space and let m(S) denote the Banach space of bounded complex-valued functions
on S equipped with the supremum norm. Then, according to a theorem of Rudin [9];
the conjugate space of C(S) is isometric to the Banach space 1(8) = {g: g e.m(S)
and ¥ |g(s)] < oo} equipped with the usual /;-norm so that the second conjugate
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