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Homotopy properties of decomposition spaces*
by

Neelima Shrikhande (Mt. Pleasant, Mich.)

Abstract. Let X be a continuum (compact, connected set) in E". Then the homotopy type
of the decomposition space E"/.X depends only on the shape of X. We also show a necessary and
sufficient condition for E"/X to be locally simply connected. This is the “nearly-1-movable” property
of continua described by D. R. McMillan. Thus the local simple connectedness of decomposition
space also depends only on the shape of X.

Introduction. Let X be a continuum (compact, connected set) in Euclidean
n-space E". We investigate the homotopy properties of decomposition space E%/X
obtained by identifying X to a point and giving the resulting space the quotient
topology.

We first show that the homotopy type of E"/X depends only on the shape
of X. This generalizes previous results of D. Henderson [7], S. Mardesi¢ [9], and
R. Geoghegan and R. Summerhill [6]. There are continua X and Y which have
the same shape, but their decomposition spaces are not homeomorphic (for example,
two arcs in E3, oné cellular and one noncellular), On the other. hand, there are
homeomorphic decomposition spaces of two continua X, Y where X,Y do not
have the same shape.

D. R. McMillan [11] defined the concept of “nearly-1- movable” ‘We show
that the property of a continuum being nearly-1-movable is necessary and sufficient
for E"/X being locally simply connected. Thus by [12], this property is also equiv-
alent to .E"/X being simply connected. As a corollary we get the results that E3
modulo a solenoid.or E* modulo the ‘Case-Chamberlin continuum’ [4] are not
simply connected. The first result was announced by R: H. Bing in [1]. The second
result was shown by S. Armentrout. Both proofs are unpublished.

Throughout the paper we use the geome’mc approach to Shape theory as
defined by Borsuk [2].

§ 1. We show that if two continua X" and ¥ in E” have the same shape then
their decomposition spaces have the same homotopy type.

* The contcnts of tlns paper form a part of the Author s Ph. D. the51s written at Mad.lson,
Wisconsin under the direction ‘of- Professot D. R. ‘McMillanj Jr,
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-+ n
Let @ =T [~1, 1] denote the Hilbert cube. We identify E" =[] (=1, 1) in
1 1
the first n factors of @, and the unit ball

B =T](-4 d1=E"=0.
1

If X is a continuum in B", B"/X can be considered as a subset of E"/ X< Q/X.

We state a theorem of K. Borsuk [3] in this notation.

Treorem [K. Borsuk]. Let W be a strong deformation retract of W. Let X be
a continuym in W. Then W|X is a strong deformation retract of WX,

Thus ain particular, W/X and W/X have the same homotopy type.

COROLLARY. Since B” is a strong deformation retract of both 0 and E", there-
fore Q|X and E"|X have the same homotopy type.

TueoreM 1. Let X, Y< E® be continua such that Sh(X) = Sh(Y). Then E"/X
has the same homotopy itype as E"[Y.

Proof. Since we are considering E” as imbedded in the first » factors of Q,
X and Y are z-sets in Q. Thus by Chapman [5],

Q- X is homeomorphic to 90— Y.

Let h: Q—X — Q- Y be a homeomorphism.

Define ki: Q/X — QY to be h(x) = h(X), X ¢ X, F(X) = Y. Then Fk is continu-
ous since % is a proper map. Since 4 is a 1 to 1, continuous function between com-
pact spaces, it is a homeomorphism. Thus Q/X =~ Q/Y.

By corollary above E"/X has the same homotopy type as E"/Y.

QuesTiON. Let X, Y be continua in E”. Let ShX>Sh Y. Does E"/X homo-
topically dominate E*/Y?

Remark. We know by [12] that if X, ¥ are continua in E" (or 0), ShX>ShY
and E"/X is simply connected, then E"/Y is also simply connected.

§ 2. A compact set X< Q is said to be nearly-1-movable if for some (and hence
for every) embedding of X in Q, and each open set U in Q containing X, there is
an open set V' containing X such that ¥ nearly-1-moves towards X in U.

That is, given any loop

ISt vV,

and any open W containing X, there is a map
n
g: B>°— U D;»U
i=1

{D; closed 2-cell « IntB* i=1,2,..,n, D, D; =@, i # J) such that
Glopa=1 and g(UadD)c=w.
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In othér words, every loop in ¥ belongs to the normal closure in U of every neighbor-
hood W of X.

D.R. McMillan has shown [11] that 1-movability implies near-1-movability
and that this implication is irreversible. The solenoids as also the ‘Case-Chamberlin
continuum’ [4] are not nearly-1-movable.

We show first that near-1-movability is a shape property.

LemMaA 2.1. Let X, Y be continua in Q. If X is nearly-1-movable and Sh X>Sh Y
then Y is nearly-1-movable.

Proof. There are fundamental sequences

f={fe X7}

such that fog =id Y.
Let U be any open set containing Y. Then there is
(i) U* containing Y and integer N;>0 such that

and g ={g, X,7}

Ji© Gilvr™firs © Graalpr=idylys in U for all k>N, .
(i) There is a U, containing X and N,>0 such that

Sibvy 2ferily, in U*

(iii) There is a ¥, containing X and N3;>0 such that X<V, cU and V;
nearly-1-moves towards X in U.
(iv) There is .V containing ¥ and N,>0 such that

for all k>N,.

for all k>N, .

Gelv=Graaly In ¥y

Then it is easy to see that ¥ nearly-1-moves towards Y in U.

Thus near-1-movability is a shape property. To prove the ‘if” part of our main
theorem we use the notion of local-1-connection, as defined by G. Kozlowski in [8].

DEerINITION. The projection p: E* — E"/X is said to be a local-1-connection
if for each open set U in E"/X containing X = p(X), there is an open V in E"/X,
X< VcU such that every loop in p~*(V) projects to a loop that is homotopic to
a constant in U.

THEOREM 2.2. Let X< E" be a continuum. Then X is nearly-1-movable if and
only if E*[X is locally simply connected.

Proof. First we show that.if X is nearly-l-movable then p: E"— E"/X is
a local-1-connection.

Let U be an open set containing p(X) = X. p~*(U) is an open set in E” and
contains X, Since X is nearly-1-movable, there is a sequence of open sets {Vi}io
with the following properties

() V= p~}U), XV, for i=0,1,2,..,

i) VeV,

(iii) every loop in V; nearly-l1-moves towards X in ¥j_;.
4 — Fundamenta Mathematicae CXVI/2
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We let ¥ = p(V), an open set. Let I: S* — ¥ be a loop. There is D;:

N .
B'— \J B{— U where each B} is a 2-cell,

i=1 .

BinBl =@, i#],
‘ U BicintB" and diam(B)<1,

such that '
Dilops =1 and Dy(J0B)cV,,

m(z, i)
!1 B} — ¥, such that diam B} <%

i=1,2,..,n.

Now Dyy is a loop in V; so there is D}: B —
J
and Djlsp = Dylpp, and

Dy U dBheVs.
We continue in this manner. Since the union of the ith stage is contained in some
2-cell Bi~" at the (i—1)-st stage, it is possible to get a map D of B' minus a zero
dimensional set S. (This is possible since the diameter of each B; is less than 1/j.)
We define a map from B to U as follows:

if yeB'-—S,
if yeS.

PoD(y),
p(X),

Since the image under D} of the union of 8B} at each stage is contained in
V41, and the image of the zero dimensional set under D is contained in p(X),
therefore D' is continuous. Thus D': B! — U extends pol: S* = P(V,) = V.
Hence every loop in ¥, projects to a loop which homotopes to a constant in U.
Thus p is a local-1-connection. To show that this implies that E"/X is locally simply
connected, we can apply lemma [1] of G. Kozlowski [8].

Conversely, assume E"/X is locally simply connected. Let X< E", X{0} cE"**.

We consider X as a subset of E"x {0} embedded in E”*! as shown above.
We work in E"** to find sufficient space to shrink loops.

Consider this diagram

Dy) = {

E"xE’1

AN
Paxid N\ Pass

Define F: E"™/X— E"|XxE' to be F(y,t) = (,t). Then FoP,,,
= P,xid. ‘

It is easy to show that F is well defined and continuous. Let -U be an open set
in E"*/X containing X = P, (X). ' ‘
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P, Y(U) is an open set in E"*! and contains X, Let U' = Py N N ET
which is open in E"; and X< U*.

Since £"/X is locally simply connected, there is an open set ¥* in E"x {0}
with X< V*'<U* such that every loop in P,(V*) shrinks in P,(UY).

There is anz>0 such that 7' x [, ] <P, 4., {(U). Let V = P, ,, (V! x (=€, 8);
which is contained in U. We want to show that each loop in ¥ shrinks in U. It is
sufficient to show that P,., is a local 1-connection.

Let 1 §* — V*x(—¢, ¢). Then !is freely homotopic in ¥ x (¢, &) to a loop I
in ¥1x{0}. Now '

PI(SY) <P,V x {0) < E"/ X% {0}.
Hence P,ol: S' =P (V*'x{0}) extends to g: B>—PU%Y, so Floglym
= Pyy1°l]op2.

Thus P,,, o I(S') shrinks in P(U)cE"*Y/X. Therefore E"*1/X is locally
simply connected.

Now we show that X is nearly-1-movable as a subset of E***, Let U be open
in E"*! containing X. Choose V'<P(U) by local simple connectedness. Let ¥
=P7Y¥"Y). Let I: S* — ¥V be a loop and let W, X W<V, W open, be given.
We have to show that / belongs to the normal closure in U of W.

We can assume that p o /(S*) misses P(X). For ! is homotopic in ¥ to a loop
that misses X. Pol: ' — P(V) = V* extends to a map g: B> - P(U).

Consider g~'(P(X)) which is a compact set in the interior of B

Then g~ *(P(X))=g~'(P(W))= B

We can find a finite number of disjoint simple closed curves Ry, R,, ..., R,
with the following properties.

Let B; denote the component of B*—R; that misses 9B Then the B;’s are
disjoint and {J B; contains g~*(P(X)) and such that the images of these simple
closed curves R; lie in W. (Such a collection of simple closed curves can be obtained
by taking a brick decomposition of B* that has mesh smaller than

2o(dist(g™1(P(X), B>~ g~ (P(W)))))
and taking the relevant part of the boundary of the star of g~ *(P(X)).)
Now g(B*— |J .B)) can be lifted to U. Thus there is a map
i=1

plteog=g: BB~ UB~»U
i=1

such that
g@eB)=Ww,

So I belongs to the normal closure in U of W. Therefore X is nearly-1-movable.

Glopz = 1.

§ 3. Movability properties are related to the UV properties [10] as follows.
Property 1-UV for a compactum X clearly implies 1-movability.
Conversely,

rg


GUEST


124 N. Shrikhande

THEOREM 3.1. Let X be a continuum in E™ having the property that for any neigh-
borhood U of X the only loop that belongs to the normal closure in U of each neighbor-
hood W of X is the trivial loop. Then X is nearly-1-movable if and only if X is 1-UV.

Proof. Let X be nearly-1-movable. Let U be an open set containing X. Choose
¥ so that each loop in ¥ belongs to the normal closure in U of each-open W. X< W
< V. But only such loops are trivial loops. Thus X is 1-UV.

COROLLARY. If X is as above, then X has property 1-UV if and only if E"|X is
locally simply connected. : )

Proof. Clear.

As a corollary, we get the following theorem of D. R. McMillan [10].

THEOREM. If X is compact connected strongly 1-acyclic, then X is 1-UV if and
only if E"I X is locally simply connected. :
Proof. Strongly acyclic continua satisfy the property in Theorem 3.1.
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Yosida-Fukamiya’s theorem for f-rings
by

Joan Trias Pairé (Barcelona)

Abstract. We introduce the concept of super-infinitely small element and prove that in
a commutative f-ring with unity the J-radical coincides with the set of all super-infinitely small
elements.

Preliminaries. We follow the notation and terminology of [1] and [5]. A lattice-
ordered ring is an f-ring if axAy = xaAy = 0 whenever xA y =0 and a>0.
If we put x* = xv0, x~ = (—x)v0 and |x| = x*+x~, then a lattice-ordered
ring is a d-ring if |xp| = |x|*|y|, Vx, y. The term ideal must be understood in the
ring-theoretic sense. An ideal I is an [-ideal if |x|<|y], ye I = xe I. We denote
by (@) the [-ideal generated by a e A. Following [1], an element g € 4 such that
{a)y = A is called a formal unity. An I-ideal I is a band if, whenever a subset of I has
a supremum in A4, that supremum belongs to I. The J-radical J(A) of an f-ring A4 is
defined as the intersection of all maximal (two-sided) [-ideals; if there is any.
Otherwise, J(4) = 4 by definition. The ring 4 is J-semisimple if J(4) = 0. An
element x € A is infinitely small with respect to the element ye A whenever
n|x|<|y| holds forn = 1,2, ... If we put Iy(4) = L{‘ Io(»), where Io()) = {x € 4|

ye

x is‘infinitely small with respect to y}, then 4 is Archimedean if and only if 7,(4) = 0.
A lattice-ordered ring is Dedekind complete if every non-empty subset which is
bounded from above has a supremum.

Introduction. In vector lattices with a strong unit the Yosida~Fukamiya’s
theorem [7] asserts that the radical — intersection of all maximal I-vector sub-
spaces — is the set of all infinitely small elements. Here, for a commutative f-ring
with unity, we obtain a result that is parallel to that of Yosida-Fukamiya. But
in this context infinitely small elements are no more appropriate and it has been
necessary to introduce a notion of “smallness” related to the product of the ring:
that of super-infinitely small element. And the set of all super-infinitely small elements

- of 4 is proved to be J(4).

Super-infinitely small elements and pseudoarchimedean rings.

Accepté par la Rédaction le 16, 6. 1980 i i )
' DermuTion 1. The element x of the lattice-ordered ring A is called super-

J
‘ infinitely small element with respect to y & 4 whenever |a]-[x|<[)| and |x]-lal<|y|
hold for every ae 4.
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