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THEOREM 3.1. Let X be a continuum in E™ having the property that for any neigh-
borhood U of X the only loop that belongs to the normal closure in U of each neighbor-
hood W of X is the trivial loop. Then X is nearly-1-movable if and only if X is 1-UV.

Proof. Let X be nearly-1-movable. Let U be an open set containing X. Choose
¥ so that each loop in ¥ belongs to the normal closure in U of each-open W. X< W
< V. But only such loops are trivial loops. Thus X is 1-UV.

COROLLARY. If X is as above, then X has property 1-UV if and only if E"|X is
locally simply connected. : )

Proof. Clear.

As a corollary, we get the following theorem of D. R. McMillan [10].

THEOREM. If X is compact connected strongly 1-acyclic, then X is 1-UV if and
only if E"I X is locally simply connected. :
Proof. Strongly acyclic continua satisfy the property in Theorem 3.1.
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Yosida-Fukamiya’s theorem for f-rings
by

Joan Trias Pairé (Barcelona)

Abstract. We introduce the concept of super-infinitely small element and prove that in
a commutative f-ring with unity the J-radical coincides with the set of all super-infinitely small
elements.

Preliminaries. We follow the notation and terminology of [1] and [5]. A lattice-
ordered ring is an f-ring if axAy = xaAy = 0 whenever xA y =0 and a>0.
If we put x* = xv0, x~ = (—x)v0 and |x| = x*+x~, then a lattice-ordered
ring is a d-ring if |xp| = |x|*|y|, Vx, y. The term ideal must be understood in the
ring-theoretic sense. An ideal I is an [-ideal if |x|<|y], ye I = xe I. We denote
by (@) the [-ideal generated by a e A. Following [1], an element g € 4 such that
{a)y = A is called a formal unity. An I-ideal I is a band if, whenever a subset of I has
a supremum in A4, that supremum belongs to I. The J-radical J(A) of an f-ring A4 is
defined as the intersection of all maximal (two-sided) [-ideals; if there is any.
Otherwise, J(4) = 4 by definition. The ring 4 is J-semisimple if J(4) = 0. An
element x € A is infinitely small with respect to the element ye A whenever
n|x|<|y| holds forn = 1,2, ... If we put Iy(4) = L{‘ Io(»), where Io()) = {x € 4|

ye

x is‘infinitely small with respect to y}, then 4 is Archimedean if and only if 7,(4) = 0.
A lattice-ordered ring is Dedekind complete if every non-empty subset which is
bounded from above has a supremum.

Introduction. In vector lattices with a strong unit the Yosida~Fukamiya’s
theorem [7] asserts that the radical — intersection of all maximal I-vector sub-
spaces — is the set of all infinitely small elements. Here, for a commutative f-ring
with unity, we obtain a result that is parallel to that of Yosida-Fukamiya. But
in this context infinitely small elements are no more appropriate and it has been
necessary to introduce a notion of “smallness” related to the product of the ring:
that of super-infinitely small element. And the set of all super-infinitely small elements

- of 4 is proved to be J(4).

Super-infinitely small elements and pseudoarchimedean rings.

Accepté par la Rédaction le 16, 6. 1980 i i )
' DermuTion 1. The element x of the lattice-ordered ring A is called super-

J
‘ infinitely small element with respect to y & 4 whenever |a]-[x|<[)| and |x]-lal<|y|
hold for every ae 4.
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As we did with infinitely small elements, we write Io(4) = (J Ii(y), where
yeAd

Iy(y) = {x e 4| x is super-infinitely small element with respect to y}.
Analogously, we make the following natural definition:

DermviTioN 2. The lattice-ordered ring A4 is said to be Pseudoarchimedean
if and only if I5(4) = 0, that is, if and only if, given x, y & 4 such that |a| X<y
and |x|-|a|<|y| hold for every ae 4, we have x = 0.

Some elementary properties follow without proof:

THEOREM 1. In a lattice-ordered ring A the following holds.
(a) Ip(4) is an I-ideal.
" (b) If 4 has a (ring) unity, then Iy(A)cIy(4).

Note that the inclusion given in part (b) of Theorem 1 makes it reasonable,
for the unitary case, to call the elements of I5(4) super—inﬁnitely'sniall elements.

EXAMPLES

1. A Pseudoarchimedean ring that is not Archimedean. Consider the non-pseudo-
compact topological space X, X # @, and let C(X) be the f-ring af all real continu-
ous functions on X, under pointwise ordering and operations. Let M be a hyper-
real maximal ideal [3] in C(X) and let 4 = C(X)/M be the canonically ordered
quotient ring. Then we have J§{(4) < 0 and Iy(A4) # 0. This example shows also
that the inclusion I3(4) = I,(4) (in a ring whith unity) may be strict.

2. Totally ordered ring that is neither Archimedean nor Pseudoarchimedean,
Let R[x] be the ring of polynomials in an indeterminate x with real coefficients,
endowed with the usual operations and a total ordering defined as follows: if P(x)
= ax"+...+a,_1x"a,_, #0), then P>0 if and only if a,_,>0. Then A
= (R[x], +,-,<) is a totally ordered non-Archimedean ring, and it is not Pseudo-
archimedean since x e I{(1).

3. An Archimedean ring that is not Pseudoarchimedean. Consider 4 — RxR.
Addition and ordered are defined coordinatewise, and the rule for multiplication
is given by (a, b)(c,d) = (0, ac). Then we get a lattice-ordered ring such that
Ip(4) = 0 and I3(4) = {0, )| y e R}.

We derive now some sufficient conditions for Pseudoarchimedeanity :

THEOREM 2. Given the lattice-ordered ring with unity A, then the following im-
plications hold:

@ Ifdis Archimedean, it is also Pseudoarchimedean.

(®) If 4 is commutative and every x>0 is a Sormal unity, then A is Pseudo-
archimedean.

(©) If 4 is commutative and M is a maximal | -ideal, then the quotient ring A/M
is Pseudoarchimedean.

Proof, (a) It follows from Theorem 1 (b). (b) Evident. (c) Itis a consequence
of part (b).

Yosida-Fukamiya’s theorem for f-rings 127

THEOREM 3. Let A be a Dedekind complete J-ring containing an element d that
is not divisor of zero. Then A is Pseudoarchimedean.

Proof. Assume that x € Iy(4). Then the set {|a|-|x|| ae 4} is bounded from
above and, therefore, the least upper bound z = \/ |a|-|x| exists in 4 by hypo-
a4l

thesis. There exists also ¢ = \/ (la|+1d]) x| in 4 and 1<z Now, from z+|d|-|x|
acd
= <z we obtain dx = 0. Hence x = 0.

Let us now present one more example. Let H be a complex Hilbert space,
with inner product (x]y). The set of all bounded linear Hermitian operators in H
will be denoted by . Under the usual algebraic operations, # is a real vector
space. Moreaver, J# is an ordered vector space by defining that 43>0 holds whenever
(4x]|x)=0 holds for all xe H. Let 2 a subset of 5 such that all el.ements of 2
commute mutually and let 4”(9) be its second commutant [S]. With the same
ordering of 3, €'(9) is an f-ring.

THEOREM 4. (2) €"(D) is Pseudoarchimedean.

(b) If the set {HBAIII Be%'({A})} is bounded, then A = 0.

Proof. (a) ¥"(®) is Dedekind complete [5], hence Archimedean. It suffices

Theorem 2 (a).
o (::0) gﬁglp?,ose that ||BA(|])<k holds for every B'e @"({4}). Therefore, being the
norm of %"(@) compatible with the lattice structure, we have |||B]-|4]llI<k,
VBe%"({4}). On account of |B|:|4]>0 we have now that

11BI- 1411 = sup{((BI-|4Dxx)/lIx]|*| x # 0}

and so ((|B]-14])x|x)>((kD)x|x) holds for every x € H, that is, 4 e I;(8"({4D).
Hence 4 = 0, by part (a). )

Natural questions arise about the incidence of the Pseudctarchjmedean con-
dition on the structure of the ring. Some results related with this problem follow.

Lemma 1. If Ann(A) is the annihilator of the lattice-ordered ring A, then Ann(A4)
cIy(A).

Proof. Obvious.

THEOREM 5. Every commutative Pseudoarchimedean d-ring is an f-ring.

Proof. Suppése that xAy = 0 and a>0; we have 'to prove that axAy =1§).
Indeed, the element axAy is a left-annihilator of the ring [1] and, ther?fore, z
the cox,nmutativity assumption, ax Ay € Ann(4). By Lemma 1, ax Ay € Ip(4) an
consequently axAy = 0, as it had to be shown. -

Remark. Dropping the Pseudoarchimedean hypothesis and substituting 1;
by Archimedeanity, Theorem 5 is no more valid., as may b§ shown by m;aai];snzt
Example 3. Also, if we do not assume that the 'rmg isa ‘d—rmgf 'I'heoren:.cmS mot
true: by way of example, take 4 = RxR, with ’coordmatewme .operzx ;nf’rin
order it by: (x, ») 20 if and only if x>y 0. Then Io(4) = 0, but 4 is no g
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THEOREM 6. If A'is an Archimedean, Pseudoarchimedean f-ring, then it has no
non-zero nilpotent elements. Hence A is a subdirect product of totally ordered rings
without non-zero- divisors of zero.

Proof. In an” Archimedean f-ring every nilpotent element is an annihilator
of the ring [1]. Hence N(4)c Ann(A4). Combining this with Lemma 1 and Pseudo-
archimedeanity we obtain N(A4) = 0. The other statement follows now from a well-
known characterization of f-rings without nilpotency [4].

COROLLARY 1. Let A be a Dedekind complete f-ring with some non-zerodivisor,
Then N(4) = 0.

Proof. It is sufficient to apply Theorems 3 and 6.

Remark. Theorem 6 does not necessarily hold for an Archimedean, Pseudo~
archimedean ring that is not an f-ring: consider the M,(R) of 2 x 2-matrices with
real coefficients, with the usual operations and the ordering defined pointwise. Then
old) = I,(4) = 0, but N(4) # 0.

A Lattice characterization of the J-radical.

TueoreM 7. If A is an f-ring with formal unit u, then J(4) = Iy(u).

Proof. Assume that x ¢ Io(u). Then there exist an g € 4 such that |g| ‘x| Eu
or |x|:|a| £u. Suppose that we are in the first case (if we were in the second one,
the argument would be similar). There are two possibilities:

() la}*|x|>u. Then x is also a formal unity and, therefore, x ¢ M for every
maximal [-ideal M. So x ¢ J(4) and the theorem is proved.

(D) la]*|x] £u and |a| |x| Zu. Equivalently, (|a|-]x|—u)* >0 and (|a|-|x| —u)” >0,
Consider now the nonzero ideal I = {(|a|-|x|—u)7D>; being 4 an f-ring, we have
Lal*1x]=w)*> n {(la]* |x]—u)™> = 0, hence I # A on account of (|a - |x| —u)™ % 0.
Hence there exist a maximal /-ideal M containing 1. Now, considering the canonical
mapping onto the guotiént ring A/M, x - X, we have 0= (|la|-[x]~u)~ =G —|a]-|%].
Hence x ¢ M. :

COROLLARY 2. Every Pseudoarchimedean f-ring with formal unity is J-semi-
simple.

It is an immediate consequence of Theorem 7.

Note that this corollary is a generalization of the following result of John-
son [4]: Every Archimedean f-ring with unity is J-semisimple.

A theorem of Birkhoff-Pierce [2] asserts that an Archimedean f-ring with
unity has no nonzero nilpotent elements. The preceding theorem allows us to
strengthen this result:

COROLLARY 3. If A is a commutative Pseudoarchimedean J-ring with unity,
then it contains no nonzero nilpotent elements.

Proof. It follows from the inclusions N(4)<J(d)=Ij(d).
The main theorem is the following one:
THEOREM 8. If A is a commutative f-ring with unity 1, then J (4) = Ip(4) = IKD).

icm
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Proof. Theorem 7 gives us the inclusion J(4)<Iy(1). For the proof that
I(A)=J(4) holds, assume that M is a maximal /-ideal. Then fo(4/M) =0 by
Theorem 2 (b). Hence we obtain Ig(4)=J(4) by noting that (/o(A))/M <= I5(A/M).

In view of this theorem it is now easy to see that there are sufficiently many
Pseudoarchimedean f-rings:

COROLLARY 4. For every commutative f-ring with unity, AJIy(A).is Pseudo-
archimedean.

Proof. By Theorem 8, Io(4/I5(4)) = J(A/J(4A)) = 0, on account of AlT(4)
being J-semisimple [4].

We also obtain as a consequence of Theorem 8 a result that is already known [1]
(part (c)): -

COROLLARY 5. For a commutative f-ring A with unity the following statements
are equivalent:

() 4 is J-semisimple.

(b) 4 is Pseudoarchimedean. ]

(c) For the arbitrary elements a, b € A there exist an x € 4 such that |a|- |x| £ |b].

Remark. Theorem 8 makes it easy to obtain an f-ring for which the J-radical
and the algebraic Jacobson radical do not coincide: consider again the ring of
Example 2; by Theorem 8 we have that J(4) = J§(4) =.J5(1) = (x), where (x) is
the ideal generated by x. But in this case, if R(4) is the Jacobson radical, R(A4)
= N(4) = 0. : - ’ .

COROLLARY 6. If @ # D # and 9 is a set of operators that commute mutually,
then €''(D) is J-semisimple. Hence C"(D) is a subdirect product of totally ordered
rings without nonzero divisors of zero and without nontrivial I-ideals.

Proof. It follows from Corollary 5 and Theorem-4(a).

We recall that an f-ring is said to satisfy the descending. chain condition for =
I-ideals if every properly descending chain I;>[,>I35 ... of [-ideals is finite.

- COROLLARY 7. If A is a commutative f-ring with unity that satisfies the descending
chain condition and contains no nonzero nilpotent elements, then A is Pseudoar-
chimedean.

Proof. Being 4 an f-ring with unity and satisfying the descending chain con-
dition we have [4]: J(4) = N(4). By Theorem 8, 13(A) = N(4) and so the con-
clusion follows.

As an application of Theorem 8 we shall investigate some conditions under

with J(4) is a band. o .
A commutative lattice-ordered ring A is called p-distributive [6] if the product

by positive elements preserves the suprema of subsets of A.
TueOREM 9. If A is a p-distributive, commutative f-ring with unity, then J(A)
is a band.
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Proof. By Theorem 8 it suffices to prove that Ij(4) is a band. To this end,
suppose that {x;ji} =I3(1) and x = \/ x; exists in 4; we must prove that x e Iy(1).

It follows easily by convexity that x~ e I}(1). On the other hand, [a|x* = \/ |a|x;"
i

holds for every a e A by p-distributivity. But |a|x;" <1, Vi, Va € 4, and, therefore,
x* e Ig(l).

Let us recall that an ordered ring with unity 1 is of bounded inversion if every
element greater than 1 is a unit. If 4 is a commutative f-ring with unity and S is
the set of non-zero-divisors, (S5 4, +, +, <) will denote the total ring of fractions,
ordered by the cone (S5'4)* = {a/s| as=0}. Then we have

COROLLARY 8. Given a commutative f-ring A with unity, each of the folloWing
conditions is sufficient for J(A) to be a band.

(a) The mapping A Sy '4, x v x/1 preserves all suprema of subsets of A.

(b) 4 is of bounded inversion.

(c) Every non-unit is a zerodivisor.

Proof. Each of these conditions implies p-distributivity [6].
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Intersections of separators and essential submanifolds of I
by

Darryl McCullough * and Leonard R. Rubin (Norman, Okla.)

Abstract. A compactum X in IN = I™ x I" is essential in the first m directions if and only if
the projection of X to I™ is a stable map. Similarly define ¥ to be essential in the last » directions.
We discuss conditions under which X and ¥ must have nonempty intersection. If me {1, 2} then
X Y # @, while for m, n> 2 examples of disjoint essential compacta are constructed. We give
applications, including an apparently new characterization of dimension in terms of mappings
into R", and a generalization of the Cantor manifold concept.

1. Introduction. The boundary S¥~! of IY can be written as the non-singular
join of two distinct canonical lower dimensional spheres Sm=1 and S""* for each
choice of m, n with m+n = N. These spheres bound convex balls D™ and D" whose
intersection is nonempty. The balls are examples of compacta which are essentially
embedded in the sense that DF does not retract' to S*™!, kem, n. Suppose we
replace D™ and D" by different essentially embedded compacta X and Y; then is
it possible that X n ¥ = @7 Indeed this is possible as we shall show in Section 4,
while in Section 3 we shall show it is impossible whenever m & {1, 2}. A final result
in Section 3 is an apparently new characterization of dimension in terms of map-
pings into R". In Section 5, we will generalize the Cantor manifold concept.

It is not known whether all infinite dimensional compacta have infinite co-
homological dimension. A solution to this longstanding problem would be equi-
valent to a solution of the CE-map dimension raising problem and related problems
[E1]. In 3.1 of [W] it was shown that any compactum which can be written as the
intersection of separators of co-infinitely many faces of the Hilbert cube has infinite
cobomological dimension. In Section 4 we shall show that, at least in finite di-
mensional cubes, there are essentially embedded manifolds which cannot be written
as intersections of separators in the non-essential djrections. This situation is related
to the one described above, concerning non-intersecting essentially embedded
compacta. It may shed light on the question of which compacta in the Hilbert
cube can be written as the intersection of co-infinitely many separators of faces
of the Hilbert cube. We note that quite recently Roman Pol [P] proved the existence
of a compact metric space X which is neither countable dimensional nor strongly

* Partially supported by a University of Oklahoma College of Arts and Sciences Summer
Fellowship.
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