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Spaces with a primitive base and perfect mappings
by

Dennis K. Burke (Oxford, Ohio)

Abstract. The class of topological spaces with a primitive base is shown to be invariant under
perfect images. A characterization of quasi-developable spaces is given (using a primitive base)
and this is used to finish the perfect mapping question for spaces with a quasi-development (or
0-base).

1. Introduction. The primitive base concept and other topological concepts,
defined by means of primitive sequences, have proved to be important topics in
general topology as well as providing uniform techniques and a uniform language
for the study of other base axioms and related topological structures. Readers not
familiar with the language of primitive structures, as studied by H. H. Wicke and
J. M. Worrell, Jr., may wish to consult papers such as [Wi], [WW,], or [WW,]
for a review of the current and historical importance of these notions.

It is known that developable spaces, spaces with a base of countable order,
and spaces with a 0-base (quasi-developable spaces) can all be defined using the
fundamental base structure known as a primitive base. In [Wo,] and [Wo,]
respectively, Worrell showed that developable spaces and spaces with a base of
countable order were preserved under a perfect mapping. The author has partial
results in [Bu] concerning the invariance, under a perfect map, of spaces with
a 0-base.

In this paper we show that the class of topological spaces with a primitive
base is invariant under perfect images. A characterization of spaces with a 0-base
is given (using a primitive base) and this is used to finish the perfect mapping question
for spaces with a 6-base. We finish this section with a few of the basic definitions
necessary throughout the paper. Other concepts will be reviewed as needed.

If #° is a well-ordered collection of sets the notation < will be used to denote
the order. This should cause no confusion even with more than one such well-
ordered collection. Whenever We #" the primitive part of W in % is given by

p(W, W)= W- U {W’: Wew, W'<W}.

For a set 4, F(4, %) denotes the first Win # such that A< W (if such a W exists),
Otherwise F(4, ) = @, Note that if We#', W # &, then W = F(x, #) if
and only if x e p(W, #).
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A space X is said to have a primitive base ((WW,], [Wi]) if there is a sequence
{#,}% of well-ordered open covers of X such that if x € X then {F(x, #,): ne N}
is a local base at x. In addition, it may be assumed that {o#,}¥ is an open primitive
sequence of X ([WW,], [Wi]). That is, for each ne N:

(a) For each Hes#,,p(H, #,) #* O.

() If k<n, He 3%, H €, with p(H, #;) np(H', #,) # & then H'<H
(ie., if x € X then F(x, #,)=F(x, #)) whenever k<n).

Recall that a perfect mapping f: X = Yisa closed continuous onto map with
f~%(y) compact in X for every ye Y.

2. Primitive bases and perfect mappings. Throughout this section X is assumed
to be a topological space and {#/,}T is an open primitive sequence of covers of X'
such that if x € X then {F(x, #,): ne N} is a local base at x. The main result
of this section is Theorem 2.5; we proceed with a series of lemmas.

2.1. Lemma. If C-is a nonempty compact subset of X and k€N, ‘then
(Wet: p(W, W) C+# @} has a largest element (with respect to the order
on W), :

Proof. Let # = {WeW: p(W,#)nC+# J} and for each He# let

V(H) = {Wes: W<H}.
If # does not have a largest element it follows that {V(H): He o'} is an open
cover of C with no finite subcover. This is impossible since C is compact.

Notation, For Ac X and ie N let L(4, i) denote the largest element of #7;
(if it existsy such that p(L(4,1), # ) 0 4 # &.

2.2. DepmTION. If Ac X and (ny, ..., n,) is 2 nondecreasing finite sequence
of natural numbers, then a collection 3# = (Wy, W,, ..., W,) is said ‘to be a ca-

nonical cover of A (with respect to the sequence (y, ..., %)) if:
1) A= Y#.
Q) WeW,fori=1,..,r ’

() W,=L(d— U Wy,n) for i =1, .., r.
j<i ‘

It may be useful to remark on a few of the elementary properties of the ca-
nonical cover 4 given in 2.2. First notice that such a cover is necessarily unique,
ie., if 4 is given and (7;, ..., »,) is given, there is at most one canonical cover of 4
with tespect to (714 ; ..., 1,): Also, if 1 <i<j<r there is Wje #,, such that W W}
and Wj<W,. Hence W, np(W;,#,) =@ and it follows that s is a special
type of minimal cover of A, :

" The notion of a tanonical cover and its use in Lemma 2.3 is the key to The-
orem 2.5. In the remainder of this section, {#/,}T is assumed to have consistent
orderings [Wi], i.e., whenever W, Ve # .1, WLV, then F( W, WISFEV, W ,).

2.3; LeMMa. If CaUc X, where-C is a nonempty compact set.and U is open
‘in X, there is a canonical cover H# of C (with respect to some sequence (ny, ..., n,))
such that ) # <U. . iR :
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Proo_f. Let C; = C and ny be the first element of N such that L(Cy,ny)cU:
(Such an integer exists since {p(L(Cy,7n), #,) n C}=, is a monotone decreasing
o

sequence of nonempty compact sets, closed in C, and if x e ) p(L(Cy, m¥,)nC
: n=1

then {L(Cy,n)}7 is a local base at x.) Continuing by induction, if C, and n, are
defined, let Cpyy = Cu—L(Ci,m) and (f Cyyy # D) let my,, be the smallest
integer =y such that L(Ck+1,”k+1)c U. If, at any stage, Ck+1 = @& then

{L(Ci, n) 1<i<h}
is the desired canonical cover of C. -
So assume C; # & for each ie N and note than m; — co (otherwise, there
would -exist me N with a strictly decreasing infinite sequence in ¥,). Now let
0
K=C-U L(C;,ny
i=1
and let
Ki = p(L(K’ i): Wx) n K:
for ie N; then {K,}7 is a decreasing sequence of nonempty compact sets (closed
=]
inK). If ze () K, then {L(X, i)}{%; is a local base at z so there exists m e N such
=1 .
that L(K, m)< U (we may assume m = n,, for some k € N). Now
 E=C-U{W: WeW,, WSL(K, m)}

is covered by {L(C;, n)}Y (by definition of K and L(K, m)) so there exists n,>mn,
= m such that ‘

Ec U L(Ci,m)..
i=1

We may assume n,, , >n, (otherwise choose appropriate n,) and 7, ; is the smallest
integer >n, such that L(C,,, f,.1)=U. Since ,4;>n, we know L(C,y 1, 1) ¢ UL
Since

Crh‘ iLsJ L(Cis‘ni) = Cr+1 (7é ﬁ)

we have .
C)‘+1C U {W WEWM’ WsL(K,m)}:
which implies ‘ :

p(L(Cr—H, nr): Wur) a} (U{W‘ We Wma WQL(K’ m)}) #* ﬁ‘

Pick y from this intersection and find ¥, € %, such that y e p(¥,,, #%). Then

2y W) 3 (U{: WeW,, WSLK, m))) # O
so V,<L(K, m). Now
y EP(V,,,, W,,,) hp(L(Cr+19nr)’ "/I‘nr) #ﬂ
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implies V,, = F(L(Cr41,1,), #n), and
PLEK,m), W) o p(LK, 1), W) # O

implies L(K, m) = F(L(K,n,), # ). Notice that V,, # L(K, m) for otherwise we
would have L(C..i,n)=V,=L(K,m)cU which is impossible. Hence V¥,
<L(K,m) and by using the consistency of the orders on {#"};" it follows that
L(Cpy1,1)<L(K,n).But KcC,, , implies L(X, n)<L(C,.q, n) and so L(Cyyq, 1,)
= L(K,n,). This is again a contradiction since L(K,n,)c=U and L(C,,1,1,)¢U.
That completes the proof of the lemma.

Now suppose f: X — Yis a perfect mapping. We are ready to construct a primi-
tive base for the space Y.

For each nondecreasing finite sequence (ny,...,7n,) of natural numbers let

%(ny, ..., n,) be the collection of all sequences # = (Hy,..., H,) where # is
canonical cover of f ~1(») (with respect to (ny, ..., #,)) for some y € Y. For each
Hebnyg, ..., n) let
U#) = Y=fX—U#)
and ;
Uy, ...,n) = {UH): K ey, ...,n) v {¥}.-

2.4, LemMA. If # = (Hy, ...,
of 4(ny, ..., n,) then U(H) = U(A).

Proof. Suppose # is less than ¢ relative to the lexwographlc order on
Wy X oo X Wy, and let n; be the first integer in (n,, ..., 7,) such that H; < K; (relative
to the order on #7,)). Now A €% (ny,...,n,) implies there is some ye ¥ such
that o is a canonical cover of f~!(»). Pick

Ky, %) 0 (F 700~ UK.

H) and A = (Ky, ..., K,) are distinct elements

zep(

Clearly z ¢ H; if 1<i<j and z¢ H; since H;<K; and zep(K;, #,). If j<i<r
it follows by the definition of # being a canonical cover of some set 4 that there
is some Hj e #,, with H;c H} and Hi<H;<K;. Again we have z¢ H,so z¢ | #
and y = f(z) ¢ U(A#). However ye U(A) so U(A") # U(H#) and the lemma is
proved.

The above lemma indicates there is a one-to-one correspondence between
%y, ...,n)—{Y} and a subset of #',, x#,, % ..x#,. Using the lexicographic
order on #",, % ... x ¥, induce a well-order of % (ny, ..., n,) in the obvious manner
(making Y the largest element).’

The family

{#(ny, ....,m): (g, ..., m) is a finite nondecreasing sequence from N}

is a countable collection of well-ordered open covers of Y, and to show Y has
a primitive base it suffices to show that if y e V< ¥, with ¥ open, there is a non-
decreasing sequence (ny, ..., n,) from N such that the first element of % (ny, ..., n,)
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containing y is a subset of V. To this end note that Lemma 2.3 says there is
a canonical cover # of f ~*(y) (with respect to some (n,, ..., n,)) such that |J 5#
cf "N V). Hence U(H#)eU(ny,...,n), ye UAH)=f(#)<=V, and the proof of
Lemma 2.4 shows that U(s#) is the first element of #(n,, ..., n,) containing y.
That concludes the proof of the main result of this section.

2.5. THEOREM. If X has a primitive base and f: X -» Y is a perfect mapping then
Y has a primitive base.

3. Spaces with a 0-base and perfect mappings. A base & for a space X is said
tobea B-base [WoW] if # can be written as # = G 2, where if x e Uc X, U open
in X, there exists some # and Be &, such that xe Bc U and ord(x %,) is finite.
A quasi-development [B] for a space X is a base ¥ = U Y, where for any xe X

the collection {st(x, @,,). neN, xeSt(x,%,)} is a local base at x.
Bennett and Lutzer have shown [BL] that a space X has a 6-base if and only
©

if it is quasi-developable. In fact, a quasi-developable space X has a base # = |J 5#,
n=1

where if x € U, with U open in X, there is some n with st(x, #,)= U and ord (x, 5,)
= 1. This base, which is simultaneously a 6-base and a quasi-development, is
quite often the easiest form of a f-base to work with.

To characterize quasi-developable spaces, using spaces with a primitive base,

we consider the following property on a topological space.
' 0

(¥) ‘If % is any well-ordered open cover of X there is an open refinement 4 = U %,
n=1

of % such that if xe X there is some ne N with st(x, 4,)cF(x, %) and
ord(x,%,) = 1.

The proof of the next result is straightforward and is left to the reader.

3.1. THEOREM. A space X is quasi-developable if and only if X satisfies (x) and
has a primitive base.

The main reason for Theorem 3.1 is to use Theorem 2.5 to solve the corre-
sponding problem concerning the invariance of quasi-developable spaces under
perfect mappings. This will follow once condition (x) above is shown to be preserved
under perfect mappings. We begin with a preliminary lemma.

3.2. LEMMA. If X satisfies condition () and % is any well-ordered open cover

of X there is an open refinement 4 = \) %, of U such that whenever C< X (C# 9)
n=1

is compact and Ue % such that C< p(U, %) there is some n € N such that 9, covers
C and st(x,%,)cU for some xe C with ord(x,%,) = L.

(-]
Proof. If % is any well-ordered open cover of X let # = U #, be the open
n=1

refinement as given in (+). Let 9;, %;, %;, ... be an enumeration of the open col-

2¢
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lections obtained by taking unions of a finite number of famlhes from {#,,#,,..}.

We show & = U %, satisfies the desired condition. Suppose Cis a2 nonempty com-
=1

pact setin X and Ue % such that Ccp(U; %). Let n, be the first integer such that

there is some x; € C with st(xy, J :

then 3#,, is one of the collections ; and we are through. Otherwise, there is a finite
k

Sequence nq, Mg, ..., % (nondecreasing) of positive integers such that {J 2,

i=1
covers C a.nd for each i, 1<z<k n; 1s the smallest integer such that there is
X; eC- U{H: Hes#,, 1<j<i}

with st(x;, #,)<U and ord(x;, #,) = 1. It follows that U #,, = %,, for some

B =1
re N, and for this choice of %, we have st(x;, 4)<=U and ord(x,, %) = 1.

The author wishes to thank the referee for suggestions which substantially
shortened the proof of the next theorem.

3.3.TueoreM. If f: X —» Y is a perfect mapping and X satisfies condition (*)
then Y also satisfies condition (x).

Proof. Let ¥ be any well-ordered open cover of ¥ and let %
N o

= {f~Y(W): We#?} have the obvious order induced by #". Let ¥ = | 4, be
. n=1

the refinement of % given by Lemma 3.2,
For neN and We ¥ let
AW) = {x: xest(x, g)=U{Uew: U<f"1(W)}}
Note that
L A(W) 0 (Ug)=U{Ue@: U<f (W)}
€

1

H (W) = W—f(A,,(W)) and o, = {(H(W): WeW'}.

To prove that # = U o, satisfies (*) with respect to #" take y e ¥ and let
) ; n=1
W =F(y,#). Let ne N-and xef~(y) be chosen such that
e Ué, st(x, G)f TNW).

Then f"*(») N A(W) = @ and consequently y e H,(W)<W. If W<W then
y & H(W') because y ¢ W*. If W'>W then x € 4,(W’) and’ therefore y ¢ H(W).
Thus ord(y, 5#,) = 1 and st(y, #)c= W. .

Combining the results of Theorem 2.5, Theorem 3.1, and Theorem 3.3 we
have the main result of this section.

3.4. THEOREM. Iff+ X - Y is a perfect mapping and X is a quasi- developable
space then Y is also quasi-developable,

and

icm®
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It should be remarked that condition (#) has equivalent formulations. The
proof of Remark 3.5, which uses standard techniques, is left to the reader. The
proof can also be recovered from techniques used for Lemma 4 and Proposition 7
of [BL]. -

3.5. Remark. For any space X the following are equivalent.

(a) X satisfies (x).

(b) If % is any well-ordered open cover of X there is an open refinement %

= U @, of % such that if x & X there is some ne N with xest(x, &, )c:F(x ).

n=1
(c) If % is any well-ordered open cover of X there is a refinement 2 = U 2,
. n=1
such that each 2, is discrete relative to |J#, and if x € X there is some ne N and
Pe, with xe P<F(x, %).
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