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On the fundamental ‘dimension of the Cartesian
product of compacta with the fundamental dimension 2

by

Stanislaw Spiez (Warszawa)

Abstract. In this paper we prove that if X is a compactum with Fd(X) = Fd(XxS) =2
then Fd(Xx ¥) = Fd(§*x ¥) for any compactum ¥ with Fd(Y)>0.If a continuum X < E? has
a nontrivial shape then Fd(X % ¥)> Fd(S*x ¥) for any compactum Y. The fundamental dimension
of the Cartesian product of movable compacta X3, X, ..., Xk with Fd(X) =2(fori=1,2,..,k)
is not less than k.

1. Introduction. Let G = {G,, py} be an inverse sequence of groups. We say
that G contains elements of infinite order (shortly InG # 0) if there is an index n,
such that for each mzn, the image pi(G,) contains elements of infinite order.
‘We say that G has torsion (shortly TorG # 0) if there is an index np such that for
any mn, the homomorphism pj, maps some torsion element of G,, onto a non-
trivial element. Observe that if TorG =0 and InG = 0 then G is isomorphic
with the trivial sequence. i

We will prove that if X is a continuum with Ill(pl'o——ﬂ.’l(X)) # 0 then
Fd(Xx Y)=Fd(S!x ¥) for any compactum Y (Corollary (2.5)). If X is a non-
approximatively 1-connected continuum in E*, then In (pro—m, (X)) # 0 (if X<E3
is an approximatively 1-connected continuum then X has the trivial shape or the
shape of a bouquet of 2-spheres). Thus if a continuum X < E® has a nontrivial
shape then Fd(Xx ¥)»Fd(S*x Y) for any compactum T.

S. Nowak [8] has proved that if ¥ is a & -compactum (¥ e #), ie.

Fd(Y) = max{n| H"(X, G) # 0 for any abelian group G},

then Fd(X'xY) = Fd(X)+Fd(Y) for every compactum Y with Fd(X) # 2. The
present author [10] has constructed an example of a continuum X with Fd(X) = 2
such that Fd(Xx Y)<Fd(X)+Fd(Y) for any compactum Y with Fd(Y) # 0.

For a continuum X with Tor(pro-m,(X)) # 0 we have Fd (Xx V)=2+Fd(Y)
for any compactum Y e & (Corollary (3.4)).

If X, X, .., X, are continua with Fd(Xy) = Fd(X;x Sy =2, then
Fd(X, % X, % .. x X)) = k (if k>2) and Fd(X;x ¥) = Fd($*x ¥) for any com-
pactum Y with Fd(Y)>0 (Theorer?(A.LLand (4.2)).
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We prove that if X is a movable non-approximatively 2-connected continuum
with Fd(X) = 2, then Fd(XxY)=Fd(S?xY) for any compactum Y. If
X, X,, ..., X are movable continua with Fd(X;) = 2 then Fd(X;x X, x..x X))
>k (Corollary (6.8)). A similar fact does not hold for continua with fundamental
dimension >3. For any integer n>3, there exists [9] a family {X;}2,
with fundamental dimension 7n such that Fd(X;x X;x..xXp) =n for any k.
We give an example of a family {X;};2; of continua with fundamental dimension 2
such that Fd(X; x X, x...x X;) = 2 for any k.

We assume that the reader is familiar with some elementary facts from shape
theory (f11, [2]).

I wish to thank dr. A. Kadlof and dr. hab. S. Nowak for their valuable remarks.

2. Continua with In(pro-m (X)) # 0. We first i;)rove the following
(2.1) LemMA. Let 1 X — Y be a map of CW-complexes such that

(2.2) ¥ HY(Y,B) > H(X,B,) (n=0)

" is a nontrivial homomorphism for some local system of abelian groups B on Y (B is

the local system of abelian groups on X induced by B and f). If g;: Py = Q; is a map
of CW-complexes such that (g;)4(m;(Py)) contains an element of infinite order for
(1<i<k), then the map

fXgyxaxgy: XxPix. . XP,—>YxQx..x04

is not deformable to the (n+k—1)-skeleton (Y x Qyx...x Q@1 of ¥x 0, %...
.. X Oy (i.e. there is no homotopy bt X XPyX. .. %P, —Yx 0y x..xQ, 011,
such that hy = fx g x...x gy and

BUX X Py X XxPYS(¥x Q) X x QTTE"1)

Proof. For simplicity of notation, we. will prove this lemma in the case of
k = 1 (the proof in the general case is the same) and denote g = g;, P = P,,
Q ='Q,. Since g4 (7 (P)) contains an element of infinite order, there is a map
u: ST = P such that (g a)y: 7,(SY) - n,(Q) is 2 monomorphism. Let g: § — @
be a covering such that im(g o o)y = img, and let g;:c be a lifting of the map
gow: S' > Q, i.e. we have the following commutative diagram:

0
”T“// q
an
N
go

4 e~
The map g4 is a monomorphism, and thus the map (g o &), is an isomorphism.
Let K be a space of homotopy type (Z, 1) (i.e. n(K) = Z and %,(K) = 0 for every
n>1) such that K> { and the 2-skeleton K'® of K is equal to the 2-skeleton O
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of Q. The map i (gm): S — K, where i1 § — K is the inclusion map, induces
the isomorphism
) (io(gom)s: m(SY - m(K);
50 (both S* and K are spaces of homotopy type (Z, 1)) the map i o (g} o ¢) is a homo-
topy equivalence. Thus :

(io(geo)*: HAK,Z) - H'(S.,Z)

is an isomorphism. _
From the Kiinneth formula (see [13], [9]) and (2.2) it follows that the map

Vs (i ° (ﬁ)): XxS'— Y%K induces the nontrivial homomorphism
(Fx (i (G o mn)*: H (YK, BOZ)~ H" H(X x 5", B,®2).

Thus the map fx (i (g:;)) is not deformable to the n-skeleton (¥ x K) of Yx K
and so the map fx (g?;): XxS'— ¥x{ is not deformable to the n-skeleton
(rxJ)™ of ¥x&.

The following diagram commutes:

¥x @
-
fxcay idrxa
o
p T p— S 0}

f%(ge)

and idyx ¢ is a covering map. Thus the map fx (g ° &) is not deformable to the -
n-skeleton (Yx Q)™ of ¥Yx @ (if there is a homotopy he XxStoTx Q,
0<t<1, such that iy = fx(goa) and hy(XxSH=(¥x 0)™, then we _can Lift
this homotopy to a homotopy f: X% St ¥x @ for which ho = fx(g oo?) and
i (XxSHe(Yx0)™, which is impossible). Finally fxg: XxP —¥xQ is not
deformable to the n-skeleton (¥x Q)™ of ¥x Q.

‘ (2.3) CoroLLARY. Let Y be a contimum with Tn(pro-m, (¥)) # 0 and let X be
a compactum with Fd(X)>=3. Then FA(Xx Y)zFd(X)+1.

Proof. Let Fd(X) = n<co. Then X has the shape of the inverse limit of an
inverse sequence {X,,, ™ of polyhedra with dimension <. Since Fd(X) = n,
we can assiume that the map pT: X,, — Xy is not deformable to the (n—l)-skelet.on
XU of ¥, . Thus from the deformation theorem of obstruction theory (Exercise
B-7, Chapter IV of [4] or [3]) it follows that there is a local systerilic))f abelian groups
B on X, (we can take B such that BX" D = n(X;, X&) such that the
homomorphism

(P12 HY(Xy, B) = H'(Xons By)

2%
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is nontrivial (here B, is a local system of abelian groups on X, induced by B
and pY).

We can assume that Y is the inverse limit of an inverse sequence of polyhedra
{Y,, ¢} such that (¢7)4(m,(¥,)) contains an element of infinite order for each
m>1. By Lemma (2.1) the map py xg7: X, % ¥,, = X{ x Y, is not deformable to
the n-skeleton (X, x Y)® of X;x ¥, for any m>1, and so Fd(Xx Y)zn+1.

By a similar argument to the above we obtain

(2.4) CorROLLARY. Let Y; be a continuum with In(pro-m,( Y,-)) # 0 for each
i=1,..,k Then Fd(¥Y; x Y, x..x )=k

‘We also obtain

(2.5) COROLLARY. Let Y be a continuum with In(pro- nl(Y)) #0.Then FA(X'x Y)
>Fd(Xx SY) for any compactum X.

Proof. By Corollaries (2.3) and (2.4) the inequality Fd(X'x ¥)>Fd(Xx S?)
holds for any continuum with Fd(X) $ 2. If Fd(X) = Fd(XxS') = 2 then
evidently FA(Xx Y)2Fd(XxSY). Let. Fd(XxSY)>Fd(X) = 2. Then by Cor-
ollary (2.3) we have FA(Xx YxSH2Fd(XxSY)+1 = 4; thus Fd(Xx Y)>3
= Fd(XxSY.

S. Nowak [9] has proved a similar result for continua with fundamental di-
mension 1. If Fd(Y) = 1 then In(pro-m,(Y)) # 0, and so we have given a new
{simpler) proof of the results of S. Nowak.

Let X be a continuum in E* with a nontrivial shape. If X is approximatively
1-connected then X has the shape of a bouquet of 2-spheres. If X is not approxi-
matively 1-connected then In(pro-nl(X)) # 0. Thus by Corollary (2.5) we obtain
the following

(2.6) COROLLARY. If a continuum X<E3 has nontrivial shape then Fd(Xx ¥)
=Fd(Sx Y) for any compactum Y.

3. Continua with Tor(pro-=;(X)) # 0. By a pseudoprojective plane of order
m>2 we mean the matching of discD and its boundary S* by a covering map
w: 8t — St of degree m. Now we prove the following

(3.1) LemmaA. Let g: P~ Y be a map of a pseudoprojective plane P (of order
m22) into a CW-complex Y which induces a nontrivial epimorphism gy m,(P) —
= 7y(Y). Then g*: HXY,Z) - H*(P,Z) is a nontrivial homomorphism (in fuct,
g* is a monomorphism).

Proof. Let m,(Y) & Z and let K be a CW-complex of homotopy type (Z, 1)
such that Y<K and Y® = K™, The composition f = ie g (where i: ¥ — K is
the inclusion) induces the nontrivial epimorphism fy: n,(P) — n,(K). Let a be
a generator of n,(P) = Z,. Then b = fy(a) is a generator of ,(K) = Z,. Let
m = ['k. Because K is a space of homotopy type (Z;, 1), the homotopy class of
the map f is determined by the homomorphism f,. So finduces up to the chain
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equivalence the following homomorphism of a complex (with free operators) C(P}
into a complex (with free operators) C(K) in the sense of [14]:

1 8 o
0 z ZZ T LT L0 ...
1 id | Jo f1 f2
¢ £ \l( 3 4’ a’ \L &
0 z zZ, 7z, 7z, 77, ..

where &(no+nya+ .ty @) = (ng+n +..tn,_ ;) and &@etnb+..+
i BTY) = (g +ngFotip-y); 8(x) = (a—1)x and o(x) = (I+a+.. Aam Y x
for x € ZZ,; 8'(x) = (b—1Dx and o'(x) = (1+5b+.. AP D x for xe ZZ;; fo(D) = 1,

fi(1) =1 and f,(1) = 1.

The homomorphism &': ZZ, — Z is a 2-cocycle of complex C(K). Suppose
that £*: HX(X,Z) - H*(P,Z) is a trivial homomorphism. So there is a homo-
morphism t: ZZ, —Z such that t(l+at..+am H=¢ef(1)=1 But t(1+a+...
ek a™™ 1) = m-s, and so m-s = 1, which is impossible. Thus g* is nontrivial.

(3.2) Lemma. Let f1 X — Y be a map of CW -complexes such that fa(a) is non-
zero for some torsion element a € ny(X). Then the map fxidg: Xx 8" — YxS" is
not deformable to the (n+1)-skeleton (Yx S of ¥x S™

Proof. Let g: P — X be a map of a psendoprojective plane (of order m) such
that g#(nl(P)) is a (finite) subgroup of m,(X) generated by the element a & m,(X).
Since f#(a) is nonzero, the homomorphism (fo g)y: m,(P) — m;(Y) is nontrivial.
Let g: Y—> Y be the covering such that (fo g)u(m,(P)) = ga(n () = Z, (k>2)
and let f og be a lifting of the map fog, i.e. the following diagram commutes:

P—X—Y

Since ¢4 is a monomorphism, ( f ° g)# is a nontrivial epimorphism.
By Lemma (3.1). the map f og induces the nontrivial homomorphlsm

(fo 9)*: HXY,Z) —» H*P,Z). By the Kiinneth formula the map (fa g)>< 1ds...
PxS"— ¥x.S" induces the nontrivial homomorphism

((Fe g) xidg)*: H*2(Fx 8", Z)— H*X(Px 5", Z).
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Thus the map (jr”o\gv)xids.x is not deformable to the (n-+1)-skeleton of ¥xS",
It follows that the map ( fo g) xidg (and so also the map fxidgs) is not deformable
to the (n+1)-skeleton of Y xS™

(3.3) CoroLLARY. Let X be a contimum with T or(pro~n (X )) # 0. Then
Fd(XxS")zn-+2.

By a result of S. Nowak [8] we obtain the following

(3.4) CorROLLARY. Let X be a continuum with Fd(X)<2 and Tor(pro-m; (X ))# 0.
Then FA(X) = c[X] = 2 (where c[X] is the maximal number n such that there is
a Cech local system of abelian groups B on X such that H(X, B) 9é 0) or equivalently
Fd(Yx X) = FAdY+2 for every contimum YeZF.

4, Continua with Fd(X xS') = 2. The class of these continua contains all
continua with FA(X) = 1 and all continua with ¢[X]<Fd(X) = 2 (see [8]).

If X is an approximatively I-connected continuum with Fd(X) = 2, then X

‘has the shape of the inverse limit of an inverse sequence of bouquets of 2-spheres
and it is easy to see [8] that then Fd(Xx S") = 3.

Let ¥ be a continuum with Fd(Y) = Fd(¥YxS") = 2. Then: pro-n;(¥) is
not isomorphic to the trivial sequence and Tor(plo 7;(Y)) = 0 by Corollary (3.3).
Thus In(pro-m,(¥)) # 0.

Let ¥; be a continuum with Fd(Y;) = Fd(Y;xS") =2 for i=1,2,....k,
k2. Then Fd((¥y xSt x(¥yx SY) x...x(¥, x S1))<2k. Since §* % 8§* x...x S* is
an Z -compactum, it follows by the theorem of Nowak [8] (see the introduction)
that Fd(Y; x Y, x...x Y )<k. Thus, by Corollary (2.4), we obtain the following

(4.1) TeEOREM. Let Y, be a continuum with Fd(Y}) = Fd(Y;xSY) =2 for
each i=1,2,..,k k=2. Then FA(Y; x Yy x..x Y) = k.

. Let Y be a continuum with Fd(¥) = FA(¥YxS') = 2. If X is a continuum
with Fd(X) = Fd(Xx S')<co (it can hold only if Fd(X) = 2) then by Theorem
(4.1) we have Fd(Xx Y) = 2 = Fd(XxSY). If X is a continuum with 0<Fd(X)
<Fd(XxS?), we have Fd(Xx Y)<Fd(X)+1 (see [9], [10]), and so Fd(Xx ¥)
<Fd(Xx$Y). Thus by Corollary (2.5) we have

(4.2) THEOREM. Let Y be a continuum with FAd(Y) = Fd(¥Yx S') = 2. Then
Fd(Xx Y) = Fd(XxSY) for any compactum X with Fd(X)>0.

Let ¥ be an & -compactum. If Fd(X) # 2 or 2 = Fd(X)<Fd(XxS*!), then
by the theorem of S. Nowak we have Fd(X x ¥) = Fd(X)+Fd(Y). If 2 = Fd(X)
= Fd(XxS"'), then by Theorem (4.2) Fd(XxY) = Fd(S'x¥Y) = Fd(¥)--1.
Thus we obtain the following (see [5]):

(4.3) CorROLLARY. If Y is an & -compactum and X is a compactum with Fd(X)
>0, then Fd(¥Yx X)>Fd(Y).

5. Nop-approximatively 2-connected continua. We will prove the following

(5.1) TueoREM. Let X; be a non-approximatively 2-connected continuum with
Fd(X) =2 for eachi =1,2,..., k. Then FA(X, x X, x...x X;) = 2k.

icm®
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Proof. Each X; has the shape of the inverse limit of an inverse sequence X;
= {X, ., P¥} of 2-dimensional polyhedra, We can assume that the map pi;:
X; ,— X; 1 induces the nontrivial homomorphism f, 21 7o(X;,) = (X, 4). Let
gi* S? > X ;,n be a map such that Piiog;is homotoplcally nontrivial. Let g;: Xl -
— X, ; be the universal covering and let /;: S% - X] ; be a lifting of pj4 o g;. So
we have the following commutative diagram:

.

AN

N
G P
.

N

)

/

S§2—>X; > X1
ai Y
The map h;: S? — X, 1 is homotopically nontrivial and X ;1 is a 1-connected 2-
dimensional polyhedron; so &¥: H*(X; ,Z) — H?(S* Z) is a nontrivial homo-
morphism. From the Kiinneth formula it follows that the map

By XX By §2x..x 8% = &y x..xXp

induces a nontrivial homomorphism
(hy X o h*: HM(E %o x By 1, Z) > H¥M(S*x..x S, Z).

So the map ky x...x h, is not deformable to the (2k—1)-skeleton

Ko x Xy, D
of X'mx.‘.x)?k,l and thus the map pj q%... xj);,l is not deformable to
(X1 %X Xk’l)(z"’l) .
Thus Fd(X; x...x X}) = 2k.

By a similar argument to the above one can prove the following

(5.2) ProrosITION. Let a compactum X have the shape of the inverse limit of
an inverse sequence {X;, pl} of polyhedra such that the image of the homomorphism
(p)*: H*(X,, B) - H*(X,, B,) contains elements of infinite order for some local
system of coefficients B on X, for every i (here B, denotes the local system of coef-
Sficients induced by B and p'). Then Fd(Xx Y)>k+2 for any non—approx:matzvely
2-connected compactum X with Fd(X) = 2.

The above proposition generalizes a result of S. Nowak [8]; case X =Sk

(5.3) ProposmioN. Fd(Xx Y)<Fd(S"x Y) for any compactum X with
Fd(X) = n.

Proof. If Fd(Y)<Fd(YxSY) (this always holds if 2 # Fd(Y)<o0), then
by the theorem of Nowak [8] Fd(S"x ¥) = n+Fd(¥); thus Fd(Xx ¥)<Fd(X)+
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+Fd(Y) =
orem (4.2)

Fd(S"x ¥). If Fd(X)>0 and Fd(Y) = Fd(¥YxS%), then by The-

Fd(Xx ¥)= Fd(Xx SHKFA(X)+1 = Fd(S"x 7).
Now we will prove the following

(5.4) TurOREM. Let X be a movable non-approximatively 2-connected continuum
with Fd(X) = 2. Then Fd(Xx Y) = Fd(S*x Y) for any compactum Y.

Proof. By Proposition (5.3) we have to prove that Fd(Xx ¥Y)>=Fd(S*x Y).
The continuum X has the shape of the inverse limit of an inverse sequence X
= {X;,pl} of 2-dimensional connected polyhedra such that

(5.9 Pi)#,zi 7o (X;

(5.6) for any 2<i<j there exists a map rf:

» X;) = %5(X;, x;) is a nontrivial homomorphism for any i<j;
X; = X; such that pioyeri=pi_,.

 For every i we choose x; € X; such that P Hx;41) = x;. We can assume that
ri(x) = x; (i<j). By (5.6), for any 2<i<j there exists an automorphism VIS
7,(X7, x;) = (X}, x;) (induced by a path) such that

5.7 (piy1o Maa=liegjo (PlDyz

Let ¢;: X; — X; be the univer.,al covering and let us choose % € X; such that

@(%;) = x; (for every 7). Let p X - X, and #: X, ——>X be the hftmgs of the

maps ple 0;: X,—» X; and )icfp, X - X;, respectively, such that p,(»cj)-— bt
and (%) = %;.

For any element a of an abelian group G denote by k(a) the greatest integer
such that a = k(a)-b for some element b e G. (k(e) = co for the trivial element
e€G) If f: G— H is a homomorphism, then k(@)<k(f(a) for any aeG. If
J: G— H is an isomorphism, then k(d) = k(f(a)) for any aeG.

Let2<i<j. Letb = (pﬁ_l)#‘z(a) be an element of im(pﬁ_1_)¢¢,2c7r2(}('~~ 12 X1}
with the smallest integer k(). By (5.7) we have

k((P::—l)#,z(P{ ° "{)#,z(a) = k(hi—1,j(P§~ 1)#,2(“)) = k((PE—q)# 2(“)) =k(®).

It follows that k((pf o rl)u,2(a)) = 1. Let (pf o rl)y 2(a) = (9))e 2(¢) and () a(a)
= (@) 4,2(d). Since (¢;)4 5 is an isomorphism, ¢ is a primitive element (i.e. k(o)
= 1) of the free abelian group n(¥;, %;). Since (X, #) has the homotopy type
of a bouquet of 2-spheres, there exists a map f: (¥;, #;) — (S, x) such that the
composition fo g, is homotopic to the identity map I(S: x> Where g1 (S% x) >
= (X,%)isa map which represents the element ¢ € n,(X;, &,). Since ¢ = ( B, #,2(d),

(5.8) the composition fo f
element d e m (X, %)).

Let ¥ = lim(Y;, ¢), where Y; are polyhedra. The continyum X x ¥ has the
shape of the inverse limit of the inverse sequence {X;x ¥;, pJ xq{} Suppose that

Fd(Xx Y) = n. Then for any i there exists a j such that the map pfx g¢i: X,>< Y~ ‘
— X;x Y; is deformable to the n-skeleton of X;x Y;. Since the map (p] e (pJ)x

g1 is homotopic to I , where g, represents the

icm
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xgi: X'jx Y; ~ X;x Y; is also deformable to the n-skeleton of X;x Y;, by the
covering homotopy property the map xgl: X;x ¥; » X,x ¥, is deformable to.
the n-skeleton of X;x ¥;. It follows by (5.8) that the map 1o xgi: §%x Y; -
—~ 8§?x Y; is deformable to the n-skeleton of S$%x ¥;; thus Fd(S’x Y)<n
= Fd(Xx 7).

6. Movable continma with Tor(pro-m;(X)) # 0 and Fd(X) = 2. Let the
pseudoprojective plane P of order »n’, where »’ is a positive integer, be the space
formed from the unit disc D = {xe R? ||x]|<1} by the identification on S*
={xe R ||x|| = 1} in polar coordinates (1, 6) = {1, §+2x/n’}.

We will prove the following

(6.1) LemMA. Let A be a local system of coefficients on P such that A (x) is
isomorphic with the integral group ring ZZ, (for each x € P) and the group m (P)
= Z,, acts on A under an epimorphism ¢: n(Py - Z,. If q: P — P is the universal
covering, then the kernel of the homomorphism q*: H*P, A} — H*(P, Ay Is
equal to

(A+a+..+a" HZZ s(U+a+...+a" " HZZ,cHXP, )
= ZZ sl +a+..+a"" 122,

where a is a generator of the group Z, and s'n = n’ (here A", is the local system of"
coefficients on P induced by KA and q).

Proof. Let ¢;: D — D be the rotation of the angle 2in/n’. Let the natural
projection r: D — P be simplicial with respect to trianguiations K’ and K (of D~
and P respectively) and let ¢,: D — D be simplicial with respect to K'. Let
Gy, 0g, --e, 03 De all 2-simplexes of K’ oriented coherently; we will denote by the-
same symbols 2-simplexes of K with the orientation induced by r. We can assume
that ¢, € K’ has exactly one 1-face which is contained in S*. Let x,, €lo;| n S™.

The universal covering space P is formed from the n’-copies of the unit:
w1 w—1

disc {J Dx{i} by the identification on | S*x{i}
i=0 i=0

x0)=x,1)=..=@xn=-1).
We consider D x {i} as a subset of P, and let K be the triangulation on P induced
by triangulations K’ x{i} on Dx{i}. We can assume that g(x, i) = r(p(x)) for
xeD, i=0,1,..,n—1

Let C%(K, #) be a group of 2-cochains in the sense of [12]. Any 2-cochain:
ce CXK, A) is cohomology equivalent to a 2-chain ¢’ € C*(K, ") which is con~
centrated on oy, ie. ¢'(0y) = ze A (x,) and ¢'(c;)) = 0e A (x,,) for each i 1
(%, €lal). Let 1o = 63 %{0}, Ty .y Ty (It Dx{i}) be the simplexes of K
which are mapped by g onto ;. Then ¢’q is the 2-cochain. of CYR, A ») Which,
has nontrivial values only on simplexes o, Ty, ..., Ty-1- The 2-cochain ¢'g is.
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cohomology equivalent to the cochain Ze CYR, A ) which has nontrivial values
only on simplexes oy x{i} and &(oyx{i}) = a'ze A (x), for i=0,1,..,n" =1,
where x is a point of B such that g(x) = x,, and x € oy x{i}]. The 2-cochain ¢ is
cohomologically trivial iff ghz=7z for i=0,1,..,n/—1. This last holds iff
ze(l4a+...+a""HZZ, (here we identify o (x) with ZZ,); it proves the lemma.

Now we prove the following

(6.2) Lemma. Let f: P~ W be a map of the pseudoprojective plane P of order n’
into @ 2-dimensional CW-complex which induces a nontrivial homomorphism
fai m(P) = wy(W). Let q: P — P be the universal covering. If n* does not divide n',
where n is the order of imfy, then the map fq is homotopically nontrivial,

Proof. Let p: W— W be a covering such that py (7, (W)} = fu(mo(P)). Then
a lifting f: P — W of the map f induces an epimorphism fy: 7, (P) — 74( W). Let
K(P) and K(W) be spaces of type (Z,,1) and type (Z,, 1), respectively, such that
(KO7)® = W and (K(P))® = P. The map g: K(P) - K(W), such that g(x)
= J(x) for each x &P, induces an epimorphism of 1-homotopy groups. We have
the following commutative diagram:

p—1 W

3 i "

o v
K(P)——>K(W)

where j; and j, are the inclusions. One can easily see that ji: H K(P).Z) -
> H?*(P,Z) is an isomorphism, and also that g*: HYK(W),Z) ~ H*K(P),Z)
is a monomorphism; thus (j,of)* = (f)*oji: H*(K(W),Z)~ H*(P,Z) is
a monomorphism. If [c] = j¥(d)) e HX(W, Z), where [d] is a generator of the
group HX(K(W), Z) = Z,, then (f)*[c] = [cf]is an element of the group H*(P, Z)
of order n. )

We can assume that the map f: P — W is simplicial with respect to some
triangulations K and L (of P and W respectively) and that the map r: D—~ P is
simplicial with respect to the triangulations X' and K. Let 04, 0,, ..., 03 be all
2-simplexes of K' oriented coherently; we will denote by the same symbols 2-sim-
plexes of K with the orientation induced by r. Let L=(f)o)fori=1,2,..,k;
since [¢f] is an element of the group H *(P, Z) = Z,, of order n,

6.4) the greatest common divisor of integers #’ and (ly+lp+...-]) is equal
to s, where n' = s-n.

Let B be a local system of coefficients on W such that B(x) is isomorphic
with the integral group ring ZZ, (for each x e W) and the group n;(W) = Z, acts
freely on B. The map f: P > Wis simplicial with respect to the triangulations K, and L
where [is the triangulation on W induced by the map p and the triangulation L. Let
Ty, Tz, ... be all 2-simplexes of Lwith a once chosen orientation. Let us choose a point
x; € |7;| for each 7; and a point y; € |g;| for each g; such that f(y)) = x, for a certain ;.

icm

On the fundamental dimension of the Cartesian product of compacta 27

We assumne that Z < ZZ, (i.e. we identify an integer k € Z with (k+0-a+ et 0d"h)
e ZZ,, where a is a generator of Z,). Let ¢;: ZZ, — B(x;) be an isomorphism. For
the cocycle ¢ e Hom(C,(W), Z) we define a cocycle ¢’ e C*W, B) such that ¢'(z))
= ¢j{c(r)) € B(x;). Let By be a local system of coefficients on £ induced by B
and f. Then the cocycle ¢'f'e C*(P, By) is cohomological to the cocycle & e C*(P, B7)
such- that Z(¢) =0 for i=2,3,..,k and EZ(g,) = Mo~+myat..+m,_ja*~*
whete Mg+ oty = I+l + ..+ (here we identify B(yy) with ZZ,).
Suppose that the cocycle ¢ge C*P, By, is cohomologically trivial. Thus by
Lemma (6.1) we have mg = i = ... = m,_;. By condition (6.4), the greatest
common divisor of the integers n mg and n’ = n-s is equal to s. Thus » divides s
and so n? divides n’, which is impossible by the assumption of the lemma.

From Lemma (6.2) we obtain the following

(6.5) COROLLARY. Let f: P — W be a map as in Lemma (6.2), Then fy, ot To(P) —
— ny(W) is a nontrivial homomorphism.

Let us formulate the following

(6.6) THEOREM. .4 movable continuum X with Tor(pro-m; (X’ )) # 0 and Fd(X)
= 2 is non-approximatively 2-connected.

Proof. We can assume that (X, x) is the inverse limit of an inverse sequence
{(X,. x,), pa} of 2-dimensional connected polyhedra such that the homomorphism
D 7 Xy, %) = 71(Xy, x1) maps a torsion element of 7,(X,, x,) onto a non-
irivial element for each n. Since X is a movable continvum and thus is uniformly
movable (see [7] and [117), there is an m>1 and a sequence of maps ;¢ (X, X,) —
— (X, x,) (for each ) such that

(6.7) et = and  plery=pi for nzm.

Let a be a torsion element of the group 7;(X,,, X,,) such that b = (1) (a) is
2 nontrivial element of the group = (Xi,xy). Let a; = " (@) € my (X5, x;) for
each i. Denote by /; the order of the element a; in 74(X7, x;) and by [ the order of
the element @ in 7,(X,,, X,). Since the maps Pty T, an #} are homotopic, there
is an automorphism (induced by a closed path) A: 7y(Xy, %)) = 74 (X, x;) such
that #(pi AT 1)e = (1)« . Thus the elements (o 1)*(ai+ 0= (P De(0) and a;
have the same order in the group m,(X;, x,). It follows that /;</i4y. Also 1<l
for any i. Thus there is an integer j such that I; = [; for i>j: Let f;: (P, p) — (X5, X))
be a map of the pseudoprojective plane of order [; such that im( f})4 is a subgroup
of my(X;, x;) generated by the element g, for each i>j. Then the map p‘j ofi: (P, p)—
- (X}, x;) induces a monomorphism (p} of)s: (P, p) — my(Xj, x;) for each i>j
and thus by Corollary (6.5) the homomorphism (p} o fdu,2t TP, p) ~ Ta( X, x5)
is not trivial, and so (p_"f)%,zz 75X, X)) — ma( X, x;) is not trivial for each i>j.
Thus (X, x) is non-approximatively 2-connected.

From Theorem (6.6) and the previous results foliows

(6.8) CoroLLARY. Let X; be a movable continuum with 1<Fd(X)<2 for
i=1,2,..,k Then FAd(X;x X, % XX zk.
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Proof. If X; is an approximatively 1-connected continuum, then X; is non-
approximatively 2-connected. Thus by Theorem (6.6) if X; is an approximatively
2-connected continuum, then In(pro-m,(X})) 5% 0. Thus by Corollary (2.5) and
Theorem (5.4) it follows that Fd(X; x X, x..x X)2Fd(¥; X ¥, x...x ¥3), where
Y, is equal to St or S2.

Remark. S. Nowak [9] has given an example of a family {X;}22 of polyhedra
with Fd(X;) = n>3 such that Fd(X; x...x X;) = n for any k.

7. Examples. We will give an example of an approximatively 2-connected
continuum ¥ with Tor(pro-z,(Y)) # 0 and Fd(X) = 2; thus the assumption of
movability in Theorem (6.6) is essential.

(7.1) ExampLe. Let P, be 2 pseudoprojective plane of order k. We consider P,
as a CW-complex with one O-cell {p,}, one 1-cell and one 2-cell. Then C(P,)
is the following complex with free operators (in the sense of [14]):

5 a=1 1+atetak—1)

0 z zZZ, 77, 7z, 0

where a is a generator of Z. Let f: (P2, py2) — (P4, pi) be a map of pseudopro-
jective planes (of orders k* and k respectively) which is a homeomorphism on
1-skeletons of Py. and P, and which induces the following homomorphism of
complexes C(P2) and C(Py):

-4 a=1 14gtentgkt~1
0 z ZZy ZZy ZZ, 0
lid i/fu f1 lfz
£ =1 \l( 14D+t pk-1t
0 zZ ZZy ZZ, ZzzZ, 0

where fo(1) = 1, fi(1) =1 and f,(1) = 1+b+...+5*"1. This map f induces the
epimorphism fi: (P2, pr2) = 71(Py, pr) and the trivial homomorphism f, ,:
T2(Pra, Dr2) = 72 Pr, Pi)-

Let & be a fixed integer >2. Let ¥, be the pseudoprojective plane of crder
k2" and let g% (Fpi1s Yusr) = (¥, 3,) be the map described above. Then
(¥, %) = m{(¥,, »), ¢»*'} is an approximatively 2-connected continuum with
Tor(pro-n;(Y,3)) s 0 and Fd(¥) = 2.

Let n be a positive integer and let = be an inverse sequence of groups (abelian
groups if n>1). We say that a continuum (X, x) is a space of shape type (7, 1)
ift pro-m,(X, x) is isomorphic to m and pro-m(X, x) is isomorphic to the trivial
sequence for every i # n. One can prove (using the Whitehead theorem in shape
theory [7]) the following

(7.2) ProposiTiON (V). -Let (X, x) and (Y, ») be continua of shape type (m, n)
with finite fundamental dimension. Then Sh(X, x) = Sh(¥;, y).

(*) The proof of this proposition is given in the appendix (Section '8).

icm

On the fundamental dimension of the Cartesian product of compacta 29

The next example shows that the assumptign of movability in Corollary (6.8)
is essential.

(7.3) ExampLE. Let Y (k) be the continuum defined in Example (7.1). If kand
are integers relatively prime (k>1, 1> 1), then one can check that pro-z,( ¥ (k) x YD)
and pro-m (Y (k-l)) are isomorphic. Since Y()yx Y(l) and Y(k-I) are continua
of shape type (m,l1) with finite dimension, by Proposition (7.2) we have
Sh(Y(k)x Y(D)) = Sh(¥(k-D)). Thus, if k;, k,,..,k, are different primes,
Y(k)x Y(k;)x...x Y(k,) has the same shape as Y(k;'k,-.. k), and so
Fa(Y (k) x Y(kp) x...x Y (k) = 2.

Now we will give an example of continua with Fd(X) = Fd(¥) = 2 such
that X is non-approximatively 2-connected and Fd(Xx ¥) =2 (compare The-
orem (5.4)).

(74) Exampre. Let (Y,3) =1lim{(¥,,»),q;"'} be the continuum from
Example (7.1). We will consider the suspension of a k-adic selenoid as the inverse
limit of an inverse sequence {(X,,x,),pi*'} of 2-spheres where pi*1: 52  §2
is a map of degree k.

Let (W,, w) = (X, x {3} v {x.} x ¥, (%, 7)) =(X, % ¥, (%, 7). The element
of 7,(W,, w,) represented by the imbedding (X, x,) — (W,, w,) we denote by s.
Let r*t: (Woi1, Wart) = (W,, w,) be a map satisfying the following conditions:

(7.5) (I.:+1|Yn+1) = [J:+1: (yn+1= yll+l) - (:Yn,y")C(W;,, wn) >
the map
(7.6) XD Ky X)) = (W, ),

induces the homomorphism of 2-homotopy groups such that Y X ) e 2(8)
= (I+a+...+a""Y)¢, where ¢ is a generator of the group 7,(X,4¢, X,1q) and
a s a generator of the group 7i;(W,, w,) (we consider m,(W,, w,) as a Zn,(W;, w,)-
module).

We: will prove that (W, w) = im{(W,, w,), r,*'} and (Xx Y, (x,7)) have
the same shape. Let 7,: (W,, w,) = (X, x Y,, (x,, ¥n)) be the inclusion map. One
can easily see that i,or;*' is homotopic to (pi¥1xgi*Y) oy, Thus i = {i}:
(W,w) = (Xx Y,(x,) is a shape morphism. It is easy to see that pro-m,(i) is
an isomorphism. Let (¥,, #,), (X,?Y,,, (x:,,\;,,)) = (X, x Y., (%,, 7)) and (W,, w,)
be the universal coverings of (¥}, ), (X, % ¥,, (x,, »,)) and (W,, w,), respectively
and let @3*': (e, Fors) = (o 5) and 7,2 (W ) > (X, T, (5, 53) e the
lifting of ¢3** and i,, respectively (we can. assume that i, is an inclusion map).
Let g,: (X,41,%44) = (W,, w,) be a map such that
§ (9n)#,2(8) = L+a+..+a**7 7Y (e)
and Jet f,4 1 = §, 08,41 where §,0 (X1, Xp41) — (W, W,) is a lifting of g, and
Spr1t (Kapr X Yoggs (Kigs ¥ps1)) = (X115 X,41) I8 the natural projection. One
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can check that
(7.7 B2 fo (B X8 o Teas
(1.8) B0 it o fruy = (P72 ).
Thus the map of sequences
P= 0 {07, W), 57— (X T, (o, 50)s PRI XYY

is a homotopy equivalence (in the sense of [6]). Since the covering maps induce
isomorphisms of the homotopy groups for n>2, pro-m,(i) is an isomorphism for
n>>2. By the Whitehead theore in shape theory (see [7] or [1] and [2]) iis a shape
equivalence. So (W, w) and (X% Y, (x, y)) have the same shape and thus

Fd(Xx Y, (x,) = Bd(W, w) = 2.

8. Appendix — the proof of Propesition (7.2). Let X and Y be continua of
shape type (, k) with finite fundamental dimension. We will show (Lemma (8.3))
that there is a shape morphism f: X — Y which induces isomorphisms of pro-
homotopy groups in all dimensions. By the Whitehead theorem in shape theory
(see {7] or [1] and [2]) it follows that Sh(X) = Sh(Y). We will first prove the
following i

(8.1) LEMMA. Let g: X — Y be a map of topological spaces such that for any
map ¢: 8* — X the composition g o ¢ is homotopically trivial. Let fy and fy be maps
of an n-dimensional CW-complex K into X. If folK"~ 1 = f11K"Y then g of, is
hotnotopic g o f; rel. K@=,

Proof. Let a: (B", 8" 1) — (K, K" Y) be a characteristic map of some
n-cell in K. We define the map

@ (B"x{0,1}) U (S"tx[0,1]) = X
by
@(x,i) =fialx) if xeB,i=0or1l,
o(x, 1) = foa(x) if xeS* ', re0,1]

(of course foa(x) = fiu(x) if xeS"™4).

Since (B"x{0,1}) U (S""*x[0, 1]) is an n-sphere, the map g o ¢ is homo-
topically trivial, and so there is an extension : B"x [0, 1] — ¥ of the map g o ¢.
So the maps gfyo and gf; « are homotopic rel. S"~*. It follows that the maps g/,
and gf, are homotopic rel. K&~ 1,

If L is a subcomplex of CW -complex K, then the pair (K, L) has the homotopy
extension property for any topological space. Thus by induction we can obtain
the following

(8.2) CoroLLARY. Let g;: X; — X;.q be a map of topological spaces such that
for any map @: S > X; the composition g;oq is homotopically trivial
(J=1,2,...,m). Let f, and f, be maps of an (n-+m)-dimensional CW -complex K
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into. Xy If folK™ = £yIK then the maps g0 g,_, o weogiofy, i=0,1, are
homotopic rel. K, .

Now we will prove the following

(8.3) LemmA. Let k and 1 be positive integers, Ik, Let X = {X,, P} be an
inverse sequence of connected CW-compléxes such that the pro-group n(X) is iso-
morphic to the trivial group for i='1,2, .., k—1 and dim X, <! for every n. Let
Y= {Y,.q\} be an inverse sequence of connected CW-complexes such that the
pro-group m(Y) is isomorphic to the trivial group for every i + k. Then Sfor any
morphism of pro-groups

¢: m(X) = n(Y)
there exists a morphism
i XY

such that m(f) is equivalent to ¢.

Proof. By the trick of Mardesi¢ (see Lemma 8.1.1 and the proof of The-
orem 8.3.2 in [2]) we may assume that n,(X;) and n(Y,) are the trivial groups for
i=1,2,..,k—1 and every integer n. Thus we can assume that X, (and Y,) has
exactly one O-cell and has no cells in dimensions 1, 2, ..., k—1 (for every n). We

may also ‘assume that the map ¢,*" induces the trivial homomorphism

wgnt 1)3 T Yyut) = 7l ¥,)

for i = k+1,2,...,] and every integer n. ‘
The morphism ¢ is a pair (¢,, ¢) which consists of an increasing map ¢ of
the set of all positive integers J and of a sequence of homomorphisms

(2 nk(Xq;(n)) -»n(Y,), neJ
such that )

(8.4) Ouo Tl ) = Tl Y o gpyy  for  ned.

By 5 we denote the integer 2/—2k—1 and by r the integer /—k—1. Let , de-
note the isomorphism of kth homotopy groups induced by the inclusion X%5" —
= Xpm- There is a map

. e+ 1
g Xy - Y,

such that
Tgn) = Pn o Y-

Since the map gi-m** induces the trivial homomotphism of (k+m)-th homotopy
groups for m = 1,2, ..., r and dim X,y <1, by induction we can define the map

Gu: Xm(n) - %, -r:

which is an extension of the map g, gl Of course m(g,) = m(q'i—,) © @, By

(8.4) we obtain

s -+
Wk(‘],':jf r °gn+s) = 7":I«:(gn °P$8:) S)) :
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‘Thus the map g, © ngﬁ,* 9 {s homotopic (relatively to the base point) to a map which
coincides the map ¢ s "og,, on the k-skeleton X g,’;},+ o of Xpsg- By Cor-

ollary (8.2) the maps g% g, optin™ and giIi™ o g, ; are homotopic (relatively
to the base point). Thus the maps g, ° eI and g © Guss are homotopic (rela-
tively to the base point), where J, = dn-s° In-

Thus the maps §,, where n = k-s+1, ke J, define a morphism (in procategory

homotopy) of X in a subsequence of Y. Since.

nk(gn) = nk(q:——s) © Py,

we can define required f.
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On a Problem of Silver

by
Arthur W. Apter (Newark, N.J.)

Abstract. We show that it is consistent, relative to an @ sequencev of measurable cardinals,
for N to bea Rowbottom cardinal and for DCy, to hold, where 7 is an arbitrary natural number.

Of all of the large cardinal axioms which are currently known, the axioms
which assert the existence of Rowbottom and Jonsson cardinals are amongst the
more interesting hypotheses. Most large cardinal axioms assert, at least when the
Axiom of Choice is true, that the cardinal in question is strongly inaccessible. This,
However, is not true about Rowbottom and Jonsson cardinals. Indeed, Devlin
has shown [3] that it is relatively consistent for 2% be a Jonsson cardinal,
and Prikry has shown [6] that, assuming the consistency of a measurable cardinal,
it is consistent for a Rowbottom cardinal of cofinality  to exist.

The above results inspire the following question: How large is the least Row-
bottom cardinal? Silver in his thesis [7] hypotheses that it is relatively consistent
that the answer is §,, assuming the Axiom of Choice.

~ The answer to Silver’s question is still not known, and is the only remaining
unsolved problem from Silver’s thesis. We have obtained a partial answer to Silver’s
question by showing that it is consistent, relative to the existence of an w sequence
of measurable cardinals, for x, to be a Rowbottom cardinal and for a large portion,
though not all, of the Axiom of Choice to be true. Specifically, we have proven
the following:

THEOREM 1, Assume that the theory “ZFC + There is an @ sequence of measur-
able cardinals” is consistent. Let ny € @ be a fixed (though arbitrary) natural number.
Then the theory “ZF 4 DCyy,+ 8, carries a Rowbottom filter” is consistent.

Note that some strong hypothesis is needed to obtain a model which witnesses
Theorem 1 since an unpublished result of Silver shows that if &, is 2 Rowbottom
cardinal, then it must be measurable in some inner model. Note also that other
partial results on Silver’s problem have been obtained. In particular, Bull in his
thesis [2] showed that, assuming the conmsistency of a measurable cardinal, the
theory “ZF+Vnew[2® = §,.;]+8, s a Rowbottom cardinal +71AC,” is
consistent.

Before beginning the proof of Theorem 1, we briefly mention some back-
ground information. Basically, our notation and terminology are fairly standard.
3 — Fundamenta Mathematicae CXVI/1
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