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Close PL involutions of 3-manifolds have close fixed point sets:
1 -dimensional components

by

W. Jakobsche (Warszawa)

Abstract, Let M be a closed PL 3-manifold and let ¢ be a metric on M. It is shown that for
every PL-involution f: M - M, and every s> 0 there exists an 7> 0 such that if g: M — M is

to
a PL involution, n-close to f then there exists a homeomorphism #: Fix'(f) il Fix(g) which
is z-close to the inclusion idpjacsy: Fix'(f) - M. Fix}(f) denotes the sum of all 1-dimensional
components of the fixed point set of £ (%)

1. Introduction. Let M be a closed PL 3-manifold and let f: M — M be a PL
involution of M, i.e. f* = id. Let g: M — M be another PL involution of M. We
are interested in the question how close to the fixed point set Fix(f) of f must be
the set Fix(g) if g is sufficiently close to f. It is obvious that Fix(g) must be contained
in some small neighbourhood of Fix(f). In this note we consider only 1-di-
mensional components of Fix(f). By [2], p. 76 each of them is homeomorphic
to S1. For any f: M — M, by Fix'(f) we denote the sum of all 1-dimensional
components of Fix(f). The aim of this note is to show that, for every PL involution
f of M, and every £>0, there exists an >0 such that if g is a PL involution of M,
n-close to £, then there is a homeomorphism /: Fix!(f) — Fix' (g) which is e-close
0 idpjezisy (We consider M as a metric space with some metric .) An analogous
fact for the components of Fix(f) of dimension # 1, will be proved in [5].

‘The proof of the existence of a homeomorphism A: Fix(f) — Fix(g), close
to idgy sy, is a first step towards the proof of the fact that f and g are conjugate
by the homeomorphism of M onto itself close to idy,-

2. Notation and terminology. We assume in the paper that all the manifolds,
maps, homeomorphisms, isotopies and actions are PL. Any map which is not PL
will be called a topological map. Let M be a compact 3-manifold, possibly with
boundary. Then #p (M) denotes the space of all PL homeomorphisms of M onto
itself. The space of PL actions of a finite group G on M, s/p (G, M), is the space
of all group homomorphisms ¢: G — #p (M), g + ¢°. In particular e (Z,, M)
is equal to the space I(M) of all PL-involutions on M. We can identify &/p (25, M)
and I(M) as follows: if ¢ € #p(Z,, M), then ¢ ~f where fi—»(pf, leZ,. All

(*) See “Added in proof” at the end of [5].
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the spaces described are considered with compact-open topology. If & & #p (M),
define h* @ e Lp(G, M) by hoo?oh™ = (h* @) for any geG (if fellM)
then h*f=hofoh ). For any ¢ € Zp (G, M) we denote by Fix(¢) the fixed
point set of ¢, and by Fix! (¢) the sum of all 1-dimensional components of Fix(¢).
We fix on M some metric g, coincident with the topology on M. Then ‘the space
of all maps of K= M into M is a metric space with the metric g defined by

ex(f; 0) = sup {2 (0, g}

and J(M) is a metric subspace of this space, for K = M. For any fe I(M) the
quotient space M|f is a PL space (possibly not a manifold) such that the projection
map of M onto M]f, whichwe shall denote by py, is PL. If K is a f-invariant PL-
submanifold of M, then I(K,f) is the space of all involutions g € I(M) such that
gIM\K = fIM\K and I'(K, f) is the space of all involutions g € I(K) such that
there is a g’ e I(K, f) such that g'|K = g. For any space W and any subspace T
of W, by Int, T and Cl, T we denote the topological interior of T'in ¥ and a clo-
sure of T in W, respectively, and we put Fry T = Cly T\Inty, T.

3. The equivalence of close free actions. The following theorem shows that
if ¢ is a free action of a finite group G on a 3-manifold, then the action of G, close
to ¢ must be conjugate to ¢ by a homeomorphism of M close to id,,, and, more-
over, each of them can be joined with ¢ by a small G-isotopy.

THEOREM (3.1). Let M be a compact 3-manifold, ¢ € sty (G, M), and let K be
a compact, @-invariant, 3-dimensional PL. submanifold of M, such that ¢|K is free.
Let L be a neighbourhood of K in M, and let V be a neighbourhood of id s in 5p (M).
Then there is a neighbourhood U of ¢ in ofp (G, M), such that if y € U and y|K n 0M
= @|K n OM, then there is an isotopy h,, t€ [0, 1], such that hy = idy, by * Y|K
= @|K, h,e V for any te[0,1], and h|0M U (M\L) = idapr,, anpy-

In the proof of (3.1) we shall need the following lemma, which easily results
from [8], Theorems. 1 and 3.

LemMma (3.2). Let M be a compact 3-manifold, L the 3-dimensional PL sub-
manifold of M, and U a neighbourhood of id, in #p (M). Then there exists a neigh-
bourhood V of idy in U, such that, for any heV satisfying hlL v M =
there is an isotopy h,, t € [0, 1], such that h,
h,e U and h|L U OM = idy e

Proof of (3.1). By Lemma (3.2), there is a neighbourhood V' of id,, in ¥,
such that, for every he V’ satisfying h|0M U (M\L) = idspygnry> there is an
isotopy h, e V such that h|0M U (MN\L) = idayy nry> and k, joins £ and idy.
Then, by Theorem (2.3) of [3], there is a neighbourhood U of ¢ in &/p (G, M),
such that for every e U there is a topological homeomorphism #e ¥’ such that
hleM v (MNL) = idayoonzy. A*¥ = ¢ on K, and h is PL on K, where V' is
a closure of V¥’ in the space of all topological homeomorphism of M onto itself.
The fact that  may be chosen PL on X follows from the proof of (2.3). Then, by [4],

idyyom»
= idy, by = h, and for every t [0, 1],
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there is a homeomorphism &’ e V', with h = &' on 0M U (M\L) U K. Then we
put ky = I', and we find A, joining %, and id,, by the choice of V.

4. Actions with fixed points. Now we restrict our attention to the case of G = Z ps
where p is a prime number. In such a situation ¢ € ./, v(Z,, M) is free on the com-
plement of Fix(¢). Note, that Fix(¢) is a PL subspace of M, and by [2], p. 76,
and [10], p. 280, each of the components of Fix(¢) is a manifold of dimension <2
(we assume, that ¢ is not trivial on any component of M).

Note that for any neighbourhood L of Fix(p) in M, we can find a regular,
@-invariant mneighbourhood X of Fix(p) in M, such that K<L, and p,(K) is
a regular neighbourhood of p,,,(Fix(go)) in M/¢. The next lemma is a direct conse-
quence of (3.1):

LeMMA (4.1). Let M be a closed 3-manifold, ¢ € sty (Z,, M), where p is a prime
number, and let K be a regular, @-invariant neighbourhood of Fix(p) in M. Then
for every neighbourhood V of idy in #p (M) there is a neighbourhood U of ¢ in
Ao (Z,, M), such that for every Vs € U there is an isotopy h,, te [0, 1], such that
hy = idy, Byl MNK = @|M\K, and, for every te[0, 1], h,e V, and h|Fix(y} =
idFix(\l’)‘

5. The proof of the main theorem. The aim of this section is to prove

THEOREM (5.1). Let M be a closed PL, 3-manifold. Then, for every fe I{(M) and
every &0, there is an n>0, such that for every geI(M) satisfying oy(f, g)<n
there exists a homeomorphism h: Fix'(f) — Fix' (9) such that opainfiht, idgp ) <e

We begin by proving some lemmas: The first of them is easy, and so we omit
its proof.

Lemma (5.2). Let M be a closed 3-manifold, and let fe I(M). Then, for every
8>0 there exists a regular f-invariant neighbourhood K of Fix(f) in M, such that
p(K) is a regular neighbourhood of p/(Fix(f)) in M|f and that the following con-
dition is satisfied:

(¥)  For every component F of Fix!(f) the component Ky of K containing F may
be considered as a total space of a locally trivial PL fibre bundle qp: Ky — F
such that each fibre gy '(x), x € F, is a PL, f-invariant disc of diameter <§
(in metric @), properly embedded in KF (i.e. 6(qF1(x)) = q7 ' (%) 0 0Kp) and
such that g7 '(x) A F = {x}.

We are going to use all the notations of (5.2) in the whole of section 5. More-
over, we shall use the following notations: Let g € I'(Kp, f). If Ky is orientable,
then we put K, = K, and § = g. If Ky is non-orientable, then we define R; as
a double covering of K, and § as an involution on Rp, such that gom =mo§
where m: Ky — Kp is a covering projection, In both cases K is a solid torus and
F’ is a standard rotation on it, where f’ = f |K. Fixing an orientation on F = St
and on [0, 1]<R!, we can define a space {x,y)<=F, x,y € F, as an arc s([0, 1]),
where s: [0, 1] — F is an orientation-preserving embedding with s(0) = x, s(1) = ».
For any W< Ky, we denote g[W] = Wu g(W).
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Tn the next two lemmas we assume that K = K(6) is the neighbourhood of
Fix(f) in M, found in the previous lemma, which satisfies (%), and that F is some
component of Fix'(f).

LemMMA (5.3). Let F be a component of Fix* ( f), and let Ky be a component of K
containing F. Then there exists a §,>0 such that, for any g el'(Kp, [) satisfying
0xo(g,f|Kp) <8y, the set F, = Fix(g) is homeomorphic to S* and (qy|F,)s: H(F,, Z,)
— H(F, Z,) is an isomorphism, where (qp|F,)s is a homomorphism induced on the
Z,-homology by the map qg|F,: F, — F.

Proof. By (4.2) and the proof of (4.3) of [3], given &>0, there is a 6, >0, such
that for every g € I'(Ky, f), satisfying ¢g,.(g,f]|Kp) <0, there is an equivariant
map ry: (Kp, 9) = (Kp,f|Kp), %e-close to idy, and such that (r,|F),: H(F,,Z,)
— H{(F,,Z,) is an isomorphism, where F, = Fix(g) (r, is eqluvarlant and 50

(F,)= F). Moreover, it is easy to see that if §, is small enough then g (¢5|F,, id,)
<e. This implies that we can choose &, such that, for any homeomorphism
st St> F, = Fix(g) where g is such that 0x:(g,f 1K) <6y, the compositions
gros and ryos are e-close. But (r,|F,), is an isomorphism of the Z,-homology,
and F, is a manifold, so at least oné,homeomorphism s: S s F, must exist. If ¢ is
small enough, then gros and r,os are homotopic, and so they induce the same
homomorphism on the Z,-homology. This implies that gglF, induces an iso-
morphism on the Z,-homology as well as r,|F,.

LemMma (5.4), Let a, oy, o, € F, and let 8,>0 be the number satisfying the hy-
pothesis of (5.3), and let g € I'(Kg, ) be such that o, (g,f1Kr) <8, and g[q7 “(a)]<L
= g7 "({ay, a,)). Then, there exists a PL disc Dep(L)cKglg, properly embedded
in Krlg and such that 8D = p,(q7 ‘(@) n 0Ky)<=0(Ks/g).

Proof. By (5.3) F, = Fix(g) = S* and gi|F,: F,— F has degree # 0. So
47 (@) n F, # @, and-we can find a curve s: [0, 1] - g5 ‘(@) joining some point
5(0) = a' eq7 (@) » F, and some point b = s(1)e g5 (@) N 8K;. There " exists
a PL curve a: [0, 1] - g7 {a) n 0Ky such that a(0) = b, a(1) = g(b), and p,oa
is a simple, closed curve in 9(Kp/g) (i:e. p,oa(0) = p,oa(l), and p, o al(0, 1) is
an embedding). Then we take the curve o': [0, 1] — glgr (a)] defined by «'(r)
= s(3t) for t&[0, 3], &'(t) = a3t—1) for te[}, 4], and «'(1) = g o 5(—31+3)
for te[%,1]. Of course o is a closed curve contractible in L. This implies that
Py is a closed curve, contractible in p,(L). But the curves p,os and p,ogos
are identical, and so it follows that & = p, o o is a simple, closed curve contractible
in p,(L), and such that &([0, 17) = p,(¢7 *(a) ~ 0K).

Now we can use the Dehn lemma (see [7], p. 101) to find the required disc.D
(we use the Dehn lemma to the manifold p,(Intg,L), because p,(L) may not to.be
a manifold).

The most complicated part of the proof is contained in the following:

Lemma (5.5). Let M be a closed 3-manifold fe I(M) and let K = K(5) be a
regular f-invariant neighbourhood of Fix(f) in M satisfying condition (x) of (5.2).
Then for every &, >0 there exists a 6, >0, such that, for every component F of Fix! (f),
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and every g € I'(Kp,f) such that og(f|Ks, 9)<5,, the space Fix(g) is homeo-
morphic to S*, and the following condition is satisfied:

(#%)  For every be F and every ¢, de Fix(g) n g7 '(b), there is a component m of
the space Fix(g)\{c, d}, such that diam(gp(m))<s;.

Proof. Suppose that, on the contrary, there is an &, >0 such that for every
8;>0 there exists a component F of Fix'(f) and gel'(Kpf) such that
0x-(/1Kr, g)>0y, or Fix(g) is not homeomorphic to S, or (xx) is not satisfied.
This fact and Lemma (5.3) imply that for our &, we can choose some particular 0;,
a component F of Fix'(f), and gelI'(Ky,f) such that ok f1Kr, 9)<8y,
Fix(g) = S*, and (¢n|Fix(9))s: H(Fix(9),Z,) ~ H(F,Z,) is an isomorphism,
but () does not hold. Moreover, we can claim that our &, is chosen so small that
the following condition holds:

(#%x)  For our chosen 6; and g, the condition gx.(f|KF,g)<8; implies that
for every two points ay, a, € F, with g(a,, a,)>¢,, there are three points
by, by, by €4ay, ayy < F, such that b; # b; for i # j, by e <b,, b,), and the

neighbourhood L; of g7'(h,) in K for i=1,2, such that
glar ' @)leli=glllegs Ka, @),  glLln g7 *(bo) =
and L; = g5 *(n;), where n; is some arc contained in <a,, a,).

Now, in the described situation we want to obtain a contradiction with our
assumptions. We shall get it in several steps. In all of them we shall denote F,
= Fix(g).

The construction of Dy, Dy, m; and m,. The degree of the map (gz|F)): F,—»F
is not 0; so, for be Fand ¢, d € g7 (b)) N F,, there is a component m of F)\{c, d}
such that gg(#) = F, where i = Clg (m). Condition (#) does not hold, and so
we can choose points be F, and c,de g7 '(b) N F,, so that the sets gx(/m;) and
qr(m,) both have diameters >g,, where m; and i, are the closures of the com-
ponents my, my of F\{c, d}. Then qx(7ii,) n gp(7i,) = g(F;), where [ = 1, or 2,
and so there is an arc n = {ay, a,) <qp(f;) N gp(M;) such that a,, a, are the
points of F, and ¢(ay,a,)>¢,. Having chosen a;,a,, we can find the points
by, by, b, and the neighbourhoods L; of g5 '(b,) for i = 1,2, guaranteed by (k).
We consider the projection p,: Kp — Kg/g.

The properties of the neighbourhoods L; described in (#++) and Lemma (5.4)
imply that there are two discs, Dy and Dy, contained in pg(Ll) and p,(L,), respect-
ively, properly embedded in Ky/g and such that p,(gr (6) n 8Ky) = 8D;_,, for
i=1,2,

Additionally, by the standard general position arguments, we may require
that, for each i = 0, 1, the sets D; and p,(F,) should be in general position; we
mean by this that for any point a € D; n py(F,) there is a PL homeomorphism of
some neighbourhood T of @ in Ky/g onto [—1,1]* which takes T n D; onto
{0} x[—1,11* and T n p,(F,) onto [—1, 11x{(0,0)}).
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The proof that K /7 is a solid torus. We use the notation of Ky and § introduced
below Lemma (5.2).

We may use the famous conjecture of P. A. Smith, proved for involutions
by Waldhausen [9], to prove that K¢/§ is a solid torus. Actually, gk = f'|0Ry,
R, = S'x S, where f’ = f |Kp, and F'10K5 is equivalent to the rotation of one
of the S!-factors, so Ky can be contained in some 3-sphere N as a solid torus
unknotted in N, and § can be extended to some involution 7 on N, such that 7|Kp
= § and Fix(g) = F, = n~(F,), where m: Ky — K is a covering projection
when &, is a double covering of Kp, and = = idg, if Ky = Kp. Then, by the Smith
conjecture, Fy is unknotted in N, and by [6] N/g is a 3-sphere. p;(aK,,.) is a torus
in NJ§, and /g is a closure of one of the components of (N]gN\pyeKp). Let us
note that we have found the discs Dy and D,, properly embedded in Kp/g. We
can use one of the components of 7~ (D), which is a disc in R;/3, as in [7], p. 107,
to prove that R/§ is a solid torus.

R,/§ is a double covering over Kilg, or Kp/d = Kylg, and R/ is a solid
torus; so Kz/i is a D*-bundle over S 1 (D? is a disc), and thus the Schoenflies theorem
implies that there is a 3-cell C=Ky/g such that C is a closure of one of the com-
ponents of (Kx/g)\(Do U Dy) and that ge(py Y(C))={ay, a,). Then there are PL
maps ¢g;: C = [0,1] and ¢g,: C — D?, such that the map {(¢;,¢,: C— [0, 11x D*
defined by (4, 42) (%) = (¢:(%), g2(x)) is a homeomorphism, and g7 1) = D, and
g7'(l) = Dy.

The existence of uy,u, and u;. The fact that {a;, a,) =qp(in,) N gp(7y)
implies that there are three arcs uy,u;, U3 Cp,(F) 0 C, such that u; nu; = @ for
i 5 j, and that each u; is bounded by two points, vy, and v;, such that v;; = u; 0
n D; for j =0, L.

Actually, the quotient spaces F,/fiy and F,/f, are both homeomorphic to S :
and there are two maps n;: F,/m; — F, i = 1,2, defined by =,(m,) = b, and 74(x)
= gu(x) for x e F,\#fi;. By Lemma (5.3) g5|F, has degree 2d+1 for some integer d,
and so one of the maps m,, 75, say =y, has degree 2e+1, and other one, (r,), has
degree 2h, e-+h = d. Tt is then easy to prove that p,(7i;) must contain two disjoint
arcs uy , u, with the required properties, and p,(7,) must contain the third arc u;.

Note that only when /4 = 0 we have to use the fact that gq(7,)>{a,, a,> to
prove the existence of u; and u,. Let ui: [0,1] = C be a PL simple curve such
that u7([0, 1]) = u; and uf(j)=vyfor i=1,2,3j=0,1

The description of Cy, S; and S;. Let C; = p,;l(C) and let g: Cy — [0, 1]

be defined by g =g,°p,, and let S, =g () =p, (D) for i=0,1. Then -

PglSi: S; = D, is a branched covering withi a branch set S; n F, i.e. P SINFy: SNF,
— D\p,(F,) is a covering map and p,|S;n F, is a homeomorphism of S; N F,
onto D; n p,(F,). It is easy to prove, using the fact that D’s are in general position
with py(F,), that S, and S; are compact surfaces, and so- C; is a 3-manifold.

The description of y;, y5, §; and ¥,. Let y,,v,: [0, 1] = D) be two simple PL
curves such that y3(0) = v14, ¥1(1) = 21, ¥2(0) = 124, ¥3(1) = v3; and ([0, 1)) N
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A 95((0, 11) = @, and (3((0, 1)) L ¥5((0, 1)) N p,(F,) = &, and let y; = yi([0, 1])
for i =1,2. Then let §; = p;'(y,), ¥, =p”_1('y2). For i = 1,2 we can find two
curves yi;: [0, 1] = ¥; and two arcs Yy = 5[0, 1), j = 1, 2, such that Fi=yyu
U Pizs Pgo Vi = Vi Yy N Yaz = pg_l({vil’ ) =50 F, and that y; = g(yp,).

It is not difficult to prove, considering some small g-invariant neighbourhood
of the unique intersection point p; Yv,,) of 1 and ¥,, that §, and ¥, intersect
transversally, and so they have the intersection index 1 in ;.

The proof that either §, or §, is not homologous to 0 in C;. We make us of the
theory of the intersection index of simplicial chains as developed in [1] on page 100.
We shall assume, that all the chains and cycles are considered with Z,-coefficients
(not Z as in [1]), and so the intersection index of chains takes a value in Z,, and
all the chains are in some triangulated manifold, not in R” as in [1]. All the arguments
of [1] remain valid in this case. For a given complex D in a given manifold, we

shall denote by zg(D) the k-chain ). 1-0; with Z,-coefficients, where a;, j<np,
J<np
are all the k-simplexes of D.

Let us consider some triangulation of C; in which §, and §, are subcomplexes
of C,. Then each §, supports a simplicial 1-cycle, z; = z,(§,), which determines
a homology class [z;]e H,(0C,,Z,), i = 1,2. Of course the fact that §, and ¥,
intersect transversally at a single point implies that z; and z, have the intersection
index 1 in 8Cy, and so [z,] # 0 and [z,] # 0. Suppose that iy([z;]) = 0, where
ix: H(0C,,Z,;) - Hy(Cy,Z,) is induced by the inclusion i: 6Cy — C;. Then
there is a 2-dimensional subcomplex D od C, with D n 8C; = ¥, (we may as-
sume that the triangulation of C, is fine'enough) and such that D supports a chain
v = z,(D) with dv = i(z,) where i: 0C; — C, is an inclusion as before. Then let
€ = C! U C? be the sum of two copies of C, with the boundary 8C; = C} = aC}
identified by the identity map (i.e. 8C} = 8C? = C! ~ C%). Then each C! contains
a copy D; of D which supports a 2-chain v; = z,(D;) with the boundary dv,
= i(z;). Then, we have D; N D, = §,cdC}, and the complex D = D, u D,
supports a 2-cycle © = z,(D) = v, +v,. The fact that the intersection index of z;
and z, in 8C, is 1 implies that the intersection index of & and i’(z) in C is 1, where
i": C; — C is the inclusion. This implies that the homology class ix([z]) € H; (C,Z,)
is non-trivial. This implies that 0 # i,(|z,]) € H{(Cy, Z;). So one of the 1-com-
plexes §; or §, supports a cycle which is not homologous to 0. We shall assume
that , supports such a cycle, and so we are no longer interested in y, and u3.

The final contradiction. The fact that C is a 3-cell implies that there is a PL
map F: [0, 1]x[0, 1] = C such that F|{1}x [0, 1] is an embedding of {1} %[0, 1]
onto y,, F|[0,1]x{i} is an embedding of [0,1]x{i} oento u;, i=1,2, and
F|{0}x[0, 1] is an embedding of {0}x[0, 1] into D,. Moreover, we can assume
that dim(S(F))<1, where S(F) = {xel0,1]x[0, 1]: card {F~Y(F(x))}>1 and
that dim(d A (p,(F,\u;\up)) <0, where 4 = F([0,1]x[0,1]). 4 is a subcomplex
of C in some triangulation of C, and the fact that dim(S(F))<1 implies that each
2 — Fundamenta Mathematicae CXVI/2
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1-simplex in AU\ NP0} x[0,1]) is a face of an even number of 2-sim-
plexes in 4. This implies that the chain v = z,(A) supported by 4 has the boundary
s=0v=z,(u U VY Y F({0} %[0, 1)). Then, pg"l(A) is a complex in C
which supports a chain = z,(p; '(4)). The fact that p;: C; — C is a double
branched covering with the branch set C n p,(F)) and that dim (A4 N (P FyNup\uy))
<0 imply that 35 = z,+z, where z; = z,(§,) and 7y = z;(F({0} x [0, 1])). By
our previous assumption [z,] is a non-trivial element of Hy(Cy,Z,) supported by
the subcomplex of Sy = p, YD) and zi.is a cycle homologous to z; supported
by the subcomplex of Sy = p; '(Do). Now, C; = NouU Ny, where each N, is
a 3-manifold which contains S;, i= 0,1, and Ny n Ny = g5 Y(by) (see condi-
tion (#xx)). By the Mayer—Vietoris argnment there is an isomorphism 2: H;(Cy, Z;)
o H,(Ny, Z,)®Hy(Ny, Z,) such that h([z;]) € Hy(Ny, Z,) and h(lz,]) € Hy(Ny, Z,).
This implies, that A(0) = h([z]1—[z]) = A([z;D—h([z1]) # O. This is a contra-
diction, which finishes the proof of the lemma.

The proof of Theorem (5.1). Let feI(M), >0 be as in (5.1). Then we find
8 <1 and a neighbourhood K = K(8) of Fix(f) in M, guaranteed by Lemma (5.2),
which satisfies condition (¥) of (5.2). Let F be a component of Fix'(f). Let
{b,,b,, ..., b1}, [=2, be a finite set of points in F such that b; # b; for i # j,
by, b;41) contains no points by, for k % i, i+1, and the diameter of {b;, by4.1>
is smaller than Ze for every i</; here and in all the proof of (5.1) we consider the
index i of b, modulo I, i.e. we put [+1= 1, and by {x, »> € F, we denote the arc
in F bounded by x and y, as in Lemmas (5.3)~(5.5). Let &; = &;(F) be a positive

number smaller than 3 min {g(b;, b)}. Then, by Lemma (5.5) we can find
1<i,j<1

anumber 8, = &,(F) for our K(5) and &, such that for every g € I'(Ky, f) satisfying
ok (f1Kp, g)<5, condition (xx) of (5.5) holds. Let g eI'(Kp,f) be such that
ox(f1Kg, g9 <8y, and let F, = Fix(g). Making 6, smaller if necessary, we can
assume by Lemma (5.3) that F, = S* and that the degree of g|F,: F, — F is 2d+1
for some integer d. Then condition () of (5.5) easily implies that deg(ggF,) = 1.
This implies that the space F,\gr Y(b,) for any i</ has a component m such that
gp(M) = F where # = Clg,(m). Then the condition (+«) of (5.5) implies that
diam(gs(F,\m)}<2e; <diam(F). This implies that for every i</ there is exactly
one component m; of F\gr (b)) such that gp(7;) = F. Let us put n; = F\m.

By (x+) diam(gp(n,)) <2¢,. From this and from the fact that &; <3 min {o(b;, b))}
1<i<j<1
it follows that n; ~n; = @ for i  j. Then we consider the space F,\ U n;. It
i<l

consists of / components. The fact that deg(gy|F,) = ! implies that ¢x(F,\ U n) 0
i€1

N by, by > # D for every j<I; otherwise we would have a map s: F, — F homo-
topic to gp|F, and such that s|(F,\ U n) = ggl(F,\ U n) and s(n;) = b; for
i<t i<

J<I; but this is impossible, because then we would have s(F,) N <b;, b;4,1> = @
for some j</, and deg(s) = 1. From this fact and from the fact that gz(F,\ U n) n
i<1
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N ({by, b%, v, b)) = @ it follows that for every j<! there is exactly one com-
ponent r; of F)\ .U n;, such that erqu((b,-,ij)). Then for every j<! such

i<l
that q;l(bj) N F, contains more than one point we find an arc s;c F such that
diam(s)<e, and b;es; and for every j</ such that gr 1(bj) n F, contains one
point, we put s; = b;. Then s; N s; = @ for i # j. F\ |J s;has/ components, and
i<1
by z; we denote the unique component of F\ lgls,- such that z;c(b;, b;,1». Then
we can easily find a homeomorphism of F onto F,, such that, for every j<I, s; is
taken onto n;, and the closure Z; of z; in F is taken onto 7; (F; = CLg,(r;)). We de-
note this homeomorphism by A|F. It i§ easy to check that gg(h|F,idp)<e.

For every component F of Fix'(f) we can find the number & = &(F) and
then choose a number 6; = &;(F) for it in the way described. Then we take 6 such
that §'<8,(F) for every component F of Fix'(f). Hence, for every geI(K,f),
there is a homeomorphism #: Fix* (f) — Fix'(g) such that gpyacn(h, i) <é
Tt can be found in the following way: g|KyeI'(Kp,f) for every component F of
Fix'(f) and so for every such F we can find the homeomorphism A|F in the way
described and put i(x) = (h|F)(x) for xe F (note that we have found K = K(6)
at the beginning of the proof, common for all the components of Fix! (f)).

The fact that &' <8,(F) for every component F of Fix*(f) implies that, for  so
defined, we have Qpiyi(ny(B, idpyicry)<e Then, by Lemma (4.1), we can find 7>0
such that for every g e I(M), satisfying g,(f, g)<# there is g’ € I(K, f) such that
ou(f, g)<n and Fix(g) = Fix(g". Of course n is the required number, such
that for every g & I(M) with gy(f, g)<n there is a homeomorphism &: Fix' (f)
— Fix! (g) with ggie(n(t, i) <e If 1 and consequently &' is sufficiently small,
then # is onto Fix!(g). This can easily be deduced from Theorem (4.3) of [3].
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