

Close PL involutions of 3-manifolds have close fixed point sets: 1-dimensional components

by

W. Jakobsche (Warszawa)

Abstract. Let M be a closed PL 3-manifold and let ϱ be a metric on M. It is shown that for every PL-involution $f: M \to M$, and every $\varepsilon > 0$ there exists an $\eta > 0$ such that if $g: M \to M$ is a PL involution, η -close to f then there exists a homeomorphism $h: \operatorname{Fix}^1(f) \xrightarrow{\text{onto}} \operatorname{Fix}^1(g)$ which is ε -close to the inclusion $\operatorname{id}_{\operatorname{Fix}^1(f)} : \operatorname{Fix}^1(f) \to M$. $\operatorname{Fix}^1(f)$ denotes the sum of all 1-dimensional components of the fixed point set of f. (*)

1. Introduction. Let M be a closed PL 3-manifold and let $f: M \to M$ be a PL involution of M, i.e. $f^2 = \operatorname{id}$. Let $g: M \to M$ be another PL involution of M. We are interested in the question how close to the fixed point set $\operatorname{Fix}(f)$ of f must be the set $\operatorname{Fix}(g)$ if g is sufficiently close to f. It is obvious that $\operatorname{Fix}(g)$ must be contained in some small neighbourhood of $\operatorname{Fix}(f)$. In this note we consider only 1-dimensional components of $\operatorname{Fix}(f)$. By [2], p. 76 each of them is homeomorphic to S^1 . For any $f: M \to M$, by $\operatorname{Fix}^1(f)$ we denote the sum of all 1-dimensional components of $\operatorname{Fix}(f)$. The aim of this note is to show that, for every PL involution f of M, and every s>0, there exists an $\eta>0$ such that if g is a PL involution of M, η -close to f, then there is a homeomorphism $h: \operatorname{Fix}^1(f) \to \operatorname{Fix}^1(g)$ which is s-close to $\operatorname{id}_{\operatorname{Fix}^1(f)}$. (We consider M as a metric space with some metric g.) An analogous fact for the components of $\operatorname{Fix}(f)$ of dimension $\neq 1$, will be proved in [5].

The proof of the existence of a homeomorphism $h: \operatorname{Fix}(f) \to \operatorname{Fix}(g)$, close to $\operatorname{id}_{\operatorname{Fix}^1(f)}$, is a first step towards the proof of the fact that f and g are conjugate by the homeomorphism of M onto itself close to id_M .

2. Notation and terminology. We assume in the paper that all the manifolds, maps, homeomorphisms, isotopies and actions are PL. Any map which is not PL will be called a topological map. Let M be a compact 3-manifold, possibly with boundary. Then $\mathscr{H}_{PL}(M)$ denotes the space of all PL homeomorphisms of M onto itself. The space of PL actions of a finite group G on M, $\mathscr{A}_{PL}(G, M)$, is the space of all group homomorphisms $\varphi \colon G \to \mathscr{H}_{PL}(M)$, $g \mapsto \varphi^g$. In particular $\mathscr{A}_{PL}(Z_2, M)$ is equal to the space I(M) of all PL-involutions on M. We can identify $\mathscr{A}_{PL}(Z_2, M)$ and I(M) as follows: if $\varphi \in \mathscr{A}_{PL}(Z_2, M)$, then $\varphi \mapsto f$ where $f \mapsto \varphi^1$, $1 \in Z_2$. All

⁽¹⁾ See "Added in proof" at the end of [5].

the spaces described are considered with compact-open topology. If $h \in \mathcal{H}_{PL}(M)$, define $h * \varphi \in \mathcal{A}_{PL}(G, M)$ by $h \circ \varphi^g \circ h^{-1} = (h * \varphi)^g$ for any $g \in G$ (if $f \in I(M)$ then $h * f = h \circ f \circ h^{-1}$). For any $\varphi \in \mathcal{A}_{PL}(G, M)$ we denote by $Fix(\varphi)$ the fixed point set of φ , and by $Fix^1(\varphi)$ the sum of all 1-dimensional components of $Fix(\varphi)$. We fix on M some metric ϱ , coincident with the topology on M. Then the space of all maps of $K \subset M$ into M is a metric space with the metric ϱ_K defined by

$$\varrho_{K}(f,g) = \sup_{\mathbf{x} \in K} \{ \varrho (f(\mathbf{x}), g(\mathbf{x})) \},$$

and I(M) is a metric subspace of this space, for K=M. For any $f \in I(M)$ the quotient space M|f is a PL space (possibly not a manifold) such that the projection map of M onto M|f, which we shall denote by p_f , is PL. If K is a f-invariant PL-submanifold of M, then I(K,f) is the space of all involutions $g \in I(M)$ such that $g|M \setminus K = f|M \setminus K$ and I'(K,f) is the space of all involutions $g \in I(K)$ such that there is a $g' \in I(K,f)$ such that g'|K = g. For any space M and any subspace M of M, by M and M and M are denote the topological interior of M in M and a closure of M in M, respectively, and we put M is M and M in M and M is M and we put M is M and M is M and M in M and M is M in M and M is M and M is M and M is M in M and M is M and M is M in M and M is M in M and M is M in M in M and M is M in M

3. The equivalence of close free actions. The following theorem shows that if φ is a free action of a finite group G on a 3-manifold, then the action of G, close to φ must be conjugate to φ by a homeomorphism of M close to id_M , and, moreover, each of them can be joined with φ by a small G-isotopy.

THEOREM (3.1). Let M be a compact 3-manifold, $\varphi \in \mathcal{A}_{PL}(G, M)$, and let K be a compact, φ -invariant, 3-dimensional PL submanifold of M, such that $\varphi|K$ is free. Let L be a neighbourhood of K in M, and let V be a neighbourhood of id_M in $\mathcal{H}_{PL}(M)$. Then there is a neighbourhood U of φ in $\mathcal{A}_{PL}(G, M)$, such that if $\psi \in U$ and $\psi|K \cap \partial M$ = $\varphi|K \cap \partial M$, then there is an isotopy h_t , $t \in [0, 1]$, such that $h_0 = \operatorname{id}_M$, $h_1 * \psi|K = \varphi|K$, $h_t \in V$ for any $t \in [0, 1]$, and $h_t|\partial M \cup (M \setminus L) = \operatorname{id}_{\partial M \cup (M \setminus L)}$.

In the proof of (3.1) we shall need the following lemma, which easily results from [8]. Theorems 1 and 3.

LEMMA (3.2). Let M be a compact 3-manifold, L the 3-dimensional PL submanifold of M, and U a neighbourhood of id_M in $\mathcal{H}_{PL}(M)$. Then there exists a neighbourhood V of id_M in U, such that, for any $h \in V$ satisfying $h|L \cup \partial M = \mathrm{id}_{L \cup \partial M}$, there is an isotopy h_t , $t \in [0, 1]$, such that $h_0 = \mathrm{id}_M$, $h_1 = h$, and for every $t \in [0, 1]$, $h_t \in U$ and $h_t|L \cup \partial M = \mathrm{id}_{L \cup \partial M}$.

Proof of (3.1). By Lemma (3.2), there is a neighbourhood V' of id_M in V, such that, for every $h \in V'$ satisfying $h|\partial M \cup (M \setminus L) = \mathrm{id}_{\partial M \cup (M \setminus L)}$, there is an isotopy $h_t \in V$ such that $h_t|\partial M \cup (M \setminus L) = \mathrm{id}_{\partial M \cup (M \setminus L)}$, and h_t joins h and id_M . Then, by Theorem (2.3) of [3], there is a neighbourhood U of φ in $\mathscr{A}_{PL}(G, M)$, such that for every $\psi \in U$ there is a topological homeomorphism $h \in \overline{V}'$ such that $h|\partial M \cup (M \setminus L) = \mathrm{id}_{\partial M \cup (M \setminus L)}$, $h * \psi = \varphi$ on K, and h is PL on K, where \overline{V}' is a closure of V' in the space of all topological homeomorphism of M onto itself. The fact that h may be chosen PL on K follows from the proof of (2.3). Then, by [4],

there is a homeomorphism $h' \in V'$, with h = h' on $\partial M \cup (M \setminus L) \cup K$. Then we put $h_1 = h'$, and we find h_t joining h_1 and id_M by the choice of V'.

4. Actions with fixed points. Now we restrict our attention to the case of $G = Z_p$, where p is a prime number. In such a situation $\varphi \in \mathscr{A}_{\mathrm{PL}}(Z_p, M)$ is free on the complement of $\mathrm{Fix}(\varphi)$. Note, that $\mathrm{Fix}(\varphi)$ is a PL subspace of M, and by [2], p. 76, and [10], p. 280, each of the components of $\mathrm{Fix}(\varphi)$ is a manifold of dimension ≤ 2 (we assume, that φ is not trivial on any component of M).

Note that for any neighbourhood L of $Fix(\varphi)$ in M, we can find a regular, φ -invariant neighbourhood K of $Fix(\varphi)$ in M, such that $K \subset L$, and $p_{\varphi}(K)$ is a regular neighbourhood of $p_{\varphi}(Fix(\varphi))$ in M/φ . The next lemma is a direct consequence of (3.1):

LEMMA (4.1). Let M be a closed 3-manifold, $\varphi \in \mathcal{A}_{PL}(Z_p, M)$, where p is a prime number, and let K be a regular, φ -invariant neighbourhood of $Fix(\varphi)$ in M. Then for every neighbourhood V of id_M in $\mathcal{H}_{PL}(M)$ there is a neighbourhood U of φ in $\mathcal{A}_{PL}(Z_p, M)$, such that for every $\psi \in U$ there is an isotopy h_t , $t \in [0, 1]$, such that $h_0 = id_M$, $h_1 * \psi | M \setminus K = \varphi | M \setminus K$, and, for every $t \in [0, 1]$, $h_t \in V$, and $h_t | Fix(\psi) = id_{Fix(\psi)}$.

5. The proof of the main theorem. The aim of this section is to prove

THEOREM (5.1). Let M be a closed PL 3-manifold. Then, for every $f \in I(M)$ and every $\varepsilon > 0$, there is an $\eta > 0$, such that for every $g \in I(M)$ satisfying $\varrho_M(f,g) < \eta$ there exists a homeomorphism h: $\operatorname{Fix}^1(f) \to \operatorname{Fix}^1(g)$ such that $\varrho_{\operatorname{Fix}^1(f)}(h, \operatorname{id}_{\operatorname{Fix}^1(f)}) < \varepsilon$.

We begin by proving some lemmas: The first of them is easy, and so we omit its proof.

LEMMA (5.2). Let M be a closed 3-manifold, and let $f \in I(M)$. Then, for every $\delta > 0$ there exists a regular f-invariant neighbourhood K of Fix(f) in M, such that $p_f(K)$ is a regular neighbourhood of $p_f(Fix(f))$ in M|f and that the following condition is satisfied:

(*) For every component F of Fix¹(f) the component K_F of K containing F may be considered as a total space of a locally trivial PL fibre bundle q_F: K_F → F such that each fibre q_F⁻¹(x), x ∈ F, is a PL, f-invariant disc of diameter <δ (in metric ρ), properly embedded in K_F (i.e. ∂(q_F⁻¹(x)) = q_F⁻¹(x) ∩ ∂K_F) and such that q_F⁻¹(x) ∩ F = {x}.

We are going to use all the notations of (5.2) in the whole of section 5. Moreover, we shall use the following notations: Let $g \in I'(K_F, f)$. If K_F is orientable, then we put $\widetilde{K}_F = K_F$ and $\widetilde{g} = g$. If K_F is non-orientable, then we define \widetilde{K}_F as a double covering of K_F , and \widetilde{g} as an involution on \widetilde{K}_F , such that $g \circ \pi = \pi \circ \widetilde{g}$ where $\pi \colon \widetilde{K}_F \to K_F$ is a covering projection. In both cases \widetilde{K}_F is a solid torus and \widetilde{f}' is a standard rotation on it, where $f' = f | K_F$. Fixing an orientation on $F \cong S^1$ and on $[0,1] \subset R^1$, we can define a space $\langle x,y \rangle \subset F$, $x,y \in F$, as an arc s([0,1]), where $s \colon [0,1] \to F$ is an orientation-preserving embedding with s(0) = x, s(1) = y. For any $W \subset K_F$, we denote $g[W] = W \cup g(W)$.

In the next two lemmas we assume that $K = K(\delta)$ is the neighbourhood of Fix(f) in M, found in the previous lemma, which satisfies (*), and that F is some component of $Fix^1(f)$.

LEMMA (5.3). Let F be a component of $\operatorname{Fix}^1(f)$, and let K_F be a component of K containing F. Then there exists a $\delta_1 > 0$ such that, for any $g \in I'(K_F, f)$ satisfying $\varrho_{K_F}(g, f | K_F) < \delta_1$, the set $F_g = \operatorname{Fix}(g)$ is homeomorphic to S^1 and $(q_F|F_g)_*$: $H_l(F_g, Z_2) \to H_l(F, Z_2)$ is an isomorphism, where $(q_F|F_g)_*$ is a homomorphism induced on the Z_2 -homology by the map $q_F|F_g \colon F_g \to F$.

Proof. By (4.2) and the proof of (4.3) of [3], given s>0, there is a $\delta_1>0$, such that for every $g\in I'(K_F,f)$, satisfying $\varrho_{K_F}(g,f|K_F)<\delta_1$, there is an equivariant map $r_g\colon (K_F,g)\to (K_F,f|K_F),\frac{1}{2}\varepsilon$ -close to id_{K_F} and such that $(r_g|F_g)_*\colon H_l(F_g,Z_2)\to H_l(F_g,Z_2)$ is an isomorphism, where $F_g=\mathrm{Fix}(g)$ $(r_g$ is equivariant, and so $r_g(F_g)\subset F)$. Moreover, it is easy to see that if δ_1 is small enough then $\varrho_{F_g}(q_F|F_g,\mathrm{id}_{F_g})<\frac{1}{2}\varepsilon$. This implies that we can choose δ_1 such that, for any homeomorphism $s\colon S^1\to F_g=\mathrm{Fix}(g)$ where g is such that $\varrho_{K_F}(g,f|K_F)<\delta_1$, the compositions $q_F\circ s$ and $r_g\circ s$ are ε -close. But $(r_g|F_g)_*$ is an isomorphism of the Z_2 -homology, and F_g is a manifold, so at least one homeomorphism $s\colon S^1\to F_g$ must exist. If ε is small enough, then $q_F\circ s$ and $r_g\circ s$ are homotopic, and so they induce the same homomorphism on the Z_2 -homology as well as $r_g|F_g$.

LEMMA (5.4). Let α , α_1 , $\alpha_2 \in F$, and let $\delta_1 > 0$ be the number satisfying the hypothesis of (5.3), and let $g \in I'(K_F, f)$ be such that $\varrho_{K_F}(g, f | K_F) < \delta_1$ and $g[q_F^{-1}(a)] \subset L = q_F^{-1}(\langle a_1, a_2 \rangle)$. Then, there exists a PL disc $D \subset p_g(L) \subset K_F/g$, properly embedded in K_F/g and such that $\partial D = p_g(q_F^{-1}(a) \cap \partial K_F) \subset \partial (K_F/g)$.

Proof. By (5.3) $F_g=\operatorname{Fix}(g)\cong S^1$ and $q_F|F_g\colon F_g\to F$ has degree $\neq 0$. So $q_F^{-1}(a)\cap F_g\neq \emptyset$, and we can find a curve $s\colon [0,1]\to q_F^{-1}(a)$ joining some point $s(0)=a'\in q_F^{-1}(a)\cap F_g$ and some point $b=s(1)\in q_F^{-1}(a)\cap \delta K_F$. There exists a PL curve $\alpha\colon [0,1]\to q_F^{-1}(a)\cap \delta K_F$ such that $\alpha(0)=b,\ \alpha(1)=g(b),\$ and $p_g\circ \alpha$ is a simple, closed curve in $\partial(K_F|g)$ (i.e. $p_g\circ \alpha(0)=p_g\circ \alpha(1),\$ and $p_g\circ \alpha|(0,1)$ is an embedding). Then we take the curve $\alpha'\colon [0,1]\to g[q_F^{-1}(a)]$ defined by $\alpha'(t)=s(3t)$ for $t\in [0,\frac13],\ \alpha'(t)=\alpha(3t-1)$ for $t\in [\frac13,\frac23],\$ and $\alpha'(t)=g\circ s(-3t+3)$ for $t\in [\frac23,1].$ Of course α' is a closed curve contractible in L. This implies that $p_g\circ \alpha'$ is a closed curve, contractible in $p_g(L)$. But the curves $p_g\circ s$ and $p_g\circ g\circ s$ are identical, and so it follows that $\bar{\alpha}=p_g\circ \alpha$ is a simple, closed curve contractible in $p_g(L)$, and such that $\bar{\alpha}([0,1])=p_g(q_F^{-1}(a)\cap \partial K_F)$.

Now we can use the Dehn lemma (see [7], p. 101) to find the required disc D (we use the Dehn lemma to the manifold $p_g(\operatorname{Int}_{K_F}L)$, because $p_g(L)$ may not to be a manifold).

The most complicated part of the proof is contained in the following:

LEMMA (5.5). Let M be a closed 3-manifold $f \in I(M)$ and let $K = K(\delta)$ be a regular f-invariant neighbourhood of Fix(f) in M satisfying condition (*) of (5.2). Then for every $\varepsilon_1 > 0$ there exists a $\delta_1 > 0$, such that, for every component F of $Fix^1(f)$,

and every $g \in I'(K_F, f)$ such that $\varrho_{K_F}(f|K_F, g) < \delta_1$, the space Fix(g) is homeomorphic to S^1 , and the following condition is satisfied:

(**) For every $b \in F$ and every $c, d \in Fix(g) \cap q_F^{-1}(b)$, there is a component m of the space $Fix(g) \setminus \{c, d\}$, such that $diam(q_F(m)) < \varepsilon_1$.

Proof. Suppose that, on the contrary, there is an $\varepsilon_1>0$ such that for every $\delta_1>0$ there exists a component F of $\operatorname{Fix}^1(f)$ and $g\in I'(K_F,f)$ such that $\varrho_{K_F}(f|K_F,g)>\delta_1$, or $\operatorname{Fix}(g)$ is not homeomorphic to S^1 , or (**) is not satisfied. This fact and Lemma (5.3) imply that for our ε_1 we can choose some particular δ_1 , a component F of $\operatorname{Fix}^1(f)$, and $g\in I'(K_F,f)$ such that $\varrho_{K_F}(f|K_F,g)<\delta_1$, $\operatorname{Fix}(g)\cong S^1$, and $(g_F|\operatorname{Fix}(g))_*\colon H_i(\operatorname{Fix}(g),Z_2)\to H_i(F,Z_2)$ is an isomorphism, but (**) does not hold. Moreover, we can claim that our δ_1 is chosen so small that the following condition holds:

(***) For our chosen δ_1 and g, the condition $\varrho_{K_F}(f|K_F,g) < \delta_1$ implies that for every two points $a_1, a_2 \in F$, with $\varrho(a_1, a_2) > \varepsilon_1$, there are three points $b_0, b_1, b_2 \in \langle a_1, a_2 \rangle \subset F$, such that $b_i \neq b_j$ for $i \neq j$, $b_0 \in \langle b_1, b_2 \rangle$, and the neighbourhood L_i of $q_F^{-1}(b_i)$ in K_F for i = 1, 2, such that

$$g[q_F^{-1}(b_i)] \subset L_i \subset g[L_i] \subset q_F^{-1}(\langle a_1, a_2 \rangle), \quad g[L_i] \cap q_F^{-1}(b_0) = \emptyset,$$

and $L_i = q_F^{-1}(n_i)$, where n_i is some arc contained in $\langle a_1, a_2 \rangle$.

Now, in the described situation we want to obtain a contradiction with our assumptions. We shall get it in several steps. In all of them we shall denote $F_g = Fix(g)$.

The construction of D_0 , D_1 , m_1 and m_2 . The degree of the map $(q_F|F_g)\colon F_g\to F$ is not 0; so, for $b\in F$ and c, $d\in q_F^{-1}(b)\cap F_g$, there is a component m of $F_g\setminus\{c,d\}$ such that $q_F(\overline{m})=F$, where $\overline{m}=\operatorname{Cl}_{F_g}(m)$. Condition (**) does not hold, and so we can choose points $b\in F$, and c, $d\in q_F^{-1}(b)\cap F_g$, so that the sets $q_F(\overline{m}_1)$ and $q_F(\overline{m}_2)$ both have diameters $>\varepsilon_1$, where \overline{m}_1 and \overline{m}_2 are the closures of the components m_1 , m_2 of $F_g\setminus\{c,d\}$. Then $q_F(\overline{m}_1)\cap q_F(\overline{m}_2)=q_F(\overline{m}_1)$, where i=1, or 2, and so there is an arc $n=\langle a_1,a_2\rangle=q_F(\overline{m}_1)\cap q_F(\overline{m}_2)$ such that a_1,a_2 are the points of F, and $\varrho(a_1,a_2)>\varepsilon_1$. Having chosen a_1,a_2 , we can find the points b_0,b_1,b_2 and the neighbourhoods L_i of $q_F^{-1}(b_i)$ for i=1,2, guaranteed by (***). We consider the projection $p_g\colon K_F\to K_F/g$.

The properties of the neighbourhoods L_i described in (***) and Lemma (5.4) imply that there are two discs, D_0 and D_1 , contained in $p_g(L_1)$ and $p_g(L_2)$, respectively, properly embedded in K_F/g and such that $p_g(q_F^{-1}(b_i) \cap \partial K_F) = \partial D_{i-1}$, for i = 1, 2.

Additionally, by the standard general position arguments, we may require that, for each i=0,1, the sets D_i and $p_g(F_g)$ should be in general position; we mean by this that for any point $a\in D_i\cap p_g(F_g)$ there is a PL homeomorphism of some neighbourhood T of a in K_F/g onto $[-1,1]^3$ which takes $T\cap D_i$ onto $\{0\}\times[-1,1]^2$ and $T\cap p_g(F_g)$ onto $[-1,1]\times\{(0,0)\}$).

The proof that $\widetilde{K}_F/\widetilde{g}$ is a solid torus. We use the notation of \widetilde{K}_F and \widetilde{g} introduced below Lemma (5.2).

We may use the famous conjecture of P. A. Smith, proved for involutions by Waldhausen [9], to prove that $\widetilde{K}_F/\widetilde{g}$ is a solid torus. Actually, $\widetilde{g}|\partial\widetilde{K}_F=\widetilde{f}'|\partial\widetilde{K}_F$, $\partial\widetilde{K}_F\cong S^1\times S^1$, where $f'=f|K_F$, and $\widetilde{f}'|\partial\widetilde{K}_F$ is equivalent to the rotation of one of the S^1 -factors, so \widetilde{K}_F can be contained in some 3-sphere N as a solid torus unknotted in N, and \widetilde{g} can be extended to some involution \overline{g} on N, such that $\overline{g}|\widetilde{K}_F=\widetilde{g}$ and $\operatorname{Fix}(\overline{g})=\widetilde{F}_g=\pi^{-1}(F_g)$, where $\pi\colon \widetilde{K}_F\to K_F$ is a covering projection when \widetilde{K}_F is a double covering of K_F , and $\pi=\operatorname{id}_{\widetilde{K}_F}$ if $\widetilde{K}_F=K_F$. Then, by the Smith conjecture, \widetilde{F}_g is unknotted in N, and by [6] N/\overline{g} is a 3-sphere, $P_g(\partial\widetilde{K}_F)$ is a torus in N/\overline{g} , and $\widetilde{K}_F/\overline{g}$ is a closure of one of the components of $(N/\overline{g}) \setminus P_g(\partial\widetilde{K}_F)$. Let us note that we have found the discs D_0 and D_1 , properly embedded in K_F/g . We can use one of the components of $\pi^{-1}(D_0)$, which is a disc in K_F/\overline{g} , as in [7], p. 107, to prove that $\widetilde{K}_F/\overline{g}$ is a solid torus.

 $\widetilde{K}_F/\widetilde{g}$ is a double covering over K_F/g , or $\widetilde{K}_F/\widetilde{g}=K_F/g$, and $\widetilde{K}_F/\widetilde{g}$ is a solid torus; so K_F/ψ is a D^2 -bundle over S^1 (D^2 is a disc), and thus the Schoenflies theorem implies that there is a 3-cell $C\subset K_F/g$ such that C is a closure of one of the components of $(K_F/g)\setminus (D_0\cup D_1)$ and that $q_F(p_g^{-1}(C))\subset \langle a_1,a_2\rangle$. Then there are PL maps $q_1\colon C\to [0,1]$ and $q_2\colon C\to D^2$, such that the map $(q_1,q_2\colon C\to [0,1]\times D^2$ defined by $(q_1,q_2)(x)=(q_1(x),q_2(x))$ is a homeomorphism, and $q_1^{-1}(0)=D_0$ and $q_1^{-1}(1)=D_1$.

The existence of u_1, u_2 and u_3 . The fact that $\langle a_1, a_2 \rangle \subset q_F(\overline{m}_1) \cap q_F(\overline{m}_2)$ implies that there are three arcs $u_1, u_2, u_3 \subset p_g(F_g) \cap C$, such that $u_i \cap u_j = \emptyset$ for $i \neq j$, and that each u_i is bounded by two points, v_{i0} and v_{i1} , such that $v_{ij} = u_i \cap O_i$ for j = 0, 1.

Actually, the quotient spaces F_g/\overline{m}_1 and F_g/\overline{m}_2 are both homeomorphic to S^1 , and there are two maps $\pi_i\colon F_g/\overline{m}_i\to F,\ i=1,2$, defined by $\pi_i(\overline{m}_i)=b$, and $\pi_i(x)=q_F(x)$ for $x\in F_g\backslash\overline{m}_i$. By Lemma (5.3) $q_F|F_g$ has degree 2d+1 for some integer d, and so one of the maps π_1, π_2 , say π_1 , has degree 2e+1, and other one, (π_2) , has degree 2h, e+h=d. It is then easy to prove that p_g/\overline{m}_1) must contain two disjoint arcs u_1, u_2 with the required properties, and p_g/\overline{m}_2) must contain the third arc u_3 .

Note that only when h=0 we have to use the fact that $q_E(\overline{m}_1)\supset \langle a_1,a_2\rangle$ to prove the existence of u_1 and u_2 . Let u_i^* : $[0,1]\to C$ be a PL simple curve such that $u_i^*([0,1])=u_i$ and $u_i^*(j)=v_{ij}$ for i=1,2,3,j=0,1.

The description of C_1 , S_0 and S_1 . Let $C_1 = p_g^{-1}(C)$ and let $q \colon C_1 \to [0, 1]$ be defined by $q = q_1 \circ p_g$, and let $S_i = q^{-1}(i) = p_g^{-1}(D_i)$ for i = 0, 1. Then $p_g|S_i \colon S_i \to D_i$ is a branched covering with a branch set $S_i \cap F_g$, i.e. $p_g|S_i \wr F_g \colon S_i \backslash F_g \to D_i \backslash p_g(F_g)$ is a covering map and $p_g|S_i \cap F_g$ is a homeomorphism of $S_i \cap F_g$ onto $D_i \cap p_g(F_g)$. It is easy to prove, using the fact that D_i 's are in general position with $p_g(F_g)$, that S_0 and S_1 are compact surfaces, and so C_1 is a 3-manifold.

The description of γ_1 , γ_2 , $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$. Let γ_1 , γ_2 : $[0, 1] \to D_1$ be two simple PL curves such that $\gamma_1'(0) = v_{11}$, $\gamma_1'(1) = v_{21}$, $\gamma_2'(0) = v_{21}$, $\gamma_2'(1) = v_{31}$ and $\gamma_1'([0, 1)) \cap$

 $\cap \gamma'_2([0,1]) = \emptyset$, and $(\gamma'_1([0,1]) \cup \gamma'_2([0,1])) \cap p_g(F_g) = \emptyset$, and let $\gamma_i = \gamma'_i([0,1])$ for i = 1, 2. Then let $\tilde{\gamma}_1 = p_g^{-1}(\gamma_1)$, $\tilde{\gamma}_2 = p_g^{-1}(\gamma_2)$. For i = 1, 2 we can find two curves γ'_{ij} : $[0,1] \to \tilde{\gamma}_i$ and two arcs $\gamma_{ij} = \gamma'_{ij}([0,1])$, j = 1, 2, such that $\tilde{\gamma}_i = \gamma_{i1} \cup \cup \gamma_{i2}$, $p_g \circ \gamma'_{ij} = \gamma'_i$, $\gamma_{i1} \cap \gamma_{i2} = p_g^{-1}(\{v_{i1}, v_{i2}\}) = \tilde{\gamma}_i \cap F_g$ and that $\gamma_{i1} = g(\gamma_{i2})$.

It is not difficult to prove, considering some small g-invariant neighbourhood of the unique intersection point $p_g^{-1}(v_{21})$ of $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$, that $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ intersect transversally, and so they have the intersection index I in S_1 .

The proof that either $\tilde{\gamma}_1$ or $\tilde{\gamma}_2$ is not homologous to 0 in C_1 . We make us of the theory of the intersection index of simplicial chains as developed in [1] on page 100. We shall assume, that all the chains and cycles are considered with Z_2 -coefficients (not Z as in [1]), and so the intersection index of chains takes a value in Z_2 , and all the chains are in some triangulated manifold, not in R^n as in [1]. All the arguments of [1] remain valid in this case. For a given complex D in a given manifold, we shall denote by $z_K(D)$ the k-chain $\sum_{j \le n_D} 1 \cdot \sigma_j$ with Z_2 -coefficients, where σ_j , $j \le n_D$, are all the k-simplexes of D.

Let us consider some triangulation of C_1 in which $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ are subcomplexes of C_1 . Then each $\tilde{\gamma}_i$ supports a simplicial 1-cycle, $z_i = z_1(\tilde{\gamma}_i)$, which determines a homology class $[z_i] \in H_1(\partial C_1, Z_2)$, i = 1, 2. Of course the fact that $\tilde{\gamma}_1$ and $\tilde{\gamma}_2$ intersect transversally at a single point implies that z_1 and z_2 have the intersection index 1 in ∂C_1 , and so $[z_1] \neq 0$ and $[z_2] \neq 0$. Suppose that $i_*([z_1]) = 0$, where $i_*: H_1(\partial C_1, Z_2) \to H_1(C_1, Z_2)$ is induced by the inclusion $i: \partial C_1 \to C_1$. Then there is a 2-dimensional subcomplex D od C_1 with $D \cap \partial C_1 = \tilde{\gamma}_1$ (we may assume that the triangulation of C_1 is fine enough) and such that D supports a chain $v=z_2(D)$ with $\partial v=i(z_1)$ where $i:\partial C_1\to C_1$ is an inclusion as before. Then let $\overline{C} = C_1^1 \cup C_1^2$ be the sum of two copies of C_1 with the boundary $\partial C_1 = \partial C_1^1 = \partial C_1^2$ identified by the identity map (i.e. $\partial C_1^1 = \partial C_1^2 = C_1^1 \cap C_1^2$). Then each C_1^i contains a copy D_i of D which supports a 2-chain $v_i = z_2(D_i)$ with the boundary ∂v_i $=i(z_1)$. Then, we have $D_1\cap D_2=\tilde{\gamma}_1\subset\partial C_1^1$, and the complex $\bar{D}=D_1\cup D_2$ supports a 2-cycle $\bar{v}=z_2(\bar{D})=v_1+v_2$. The fact that the intersection index of z_1 and z_2 in ∂C_1 is 1 implies that the intersection index of \bar{v} and $i'(z_2)$ in \bar{C} is 1, where $i': \partial C_1 \to \overline{C}$ is the inclusion. This implies that the homology class $i'_*([z_2]) \in H_1(\overline{C}, Z_2)$ is non-trivial. This implies that $0 \neq i_*([z_2]) \in H_1(C_1, \mathbb{Z}_2)$. So one of the 1-complexes $\tilde{\gamma}_1$ or $\tilde{\gamma}_2$ supports a cycle which is not homologous to 0. We shall assume that $\tilde{\gamma}_1$ supports such a cycle, and so we are no longer interested in γ_2 and u_3 .

The final contradiction. The fact that C is a 3-cell implies that there is a PL map $F: [0,1] \times [0,1] \to C$ such that $F|\{1\} \times [0,1]$ is an embedding of $\{1\} \times [0,1]$ onto γ_1 , $F|[0,1] \times \{i\}$ is an embedding of $[0,1] \times \{i\}$ onto u_i , i=1,2, and $F|\{0\} \times [0,1]$ is an embedding of $\{0\} \times [0,1]$ into D_0 . Moreover, we can assume that $\dim(S(F)) \leq 1$, where $S(F) = \{x \in [0,1] \times [0,1]: \operatorname{card}\{F^{-1}(F(x))\} > 1$ and that $\dim(A \cap (p_g(F_g \setminus u_1 \setminus u_2)) \leq 0$, where $A = F([0,1] \times [0,1])$. A is a subcomplex of C in some triangulation of C, and the fact that $\dim(S(F)) \leq 1$ implies that each

^{2 -} Fundamenta Mathematicae CXVI/2

1-simplex in $A \setminus u_1 \setminus u_2 \setminus \tilde{\gamma}_1 \setminus F(\{0\} \times [0,1])$ is a face of an even number of 2-simplexes in A. This implies that the chain $v = z_2(A)$ supported by A has the boundary $s = \partial v = z_1(u_1 \cup u_2 \cup \gamma_1 \cup F(\{0\} \times [0,1]))$. Then, $p_g^{-1}(A)$ is a complex in C_1 which supports a chain $\tilde{v} = z_2(p_g^{-1}(A))$. The fact that $p_g \colon C_1 \to C$ is a double branched covering with the branch set $C \cap p_g(F_g)$ and that $\dim(A \cap (p_g(F_g) \setminus u_1 \setminus u_2)) \le 0$ imply that $\partial \tilde{v} = z_1 + z_1'$, where $z_1 = z_1(\tilde{\gamma}_1)$ and $z_1' = z_1(F(\{0\} \times [0,1]))$. By our previous assumption $[z_1]$ is a non-trivial element of $H_1(C_1, Z_2)$ supported by the subcomplex of $S_1 = p_g^{-1}(D_1)$ and z_1' is a cycle homologous to z_1 supported by the subcomplex of $S_0 = p_g^{-1}(D_0)$. Now, $C_1 = N_0 \cup N_1$, where each N_i is a 3-manifold which contains S_i , i = 0, 1, and $N_0 \cap N_1 = q_g^{-1}(b_0)$ (see condition (***)). By the Mayer-Victoris argument there is an isomorphism $h \colon H_1(C_1, Z_2) \to H_1(N_0, Z_2) \oplus H_1(N_1, Z_2)$ such that $h([z_1']) \in H_1(N_0, Z_2)$ and $h([z_1]) \in H_1(N_1, Z_2)$. This implies, that $h(0) = h([z_1] - [z_1']) = h([z_1]) - h([z_1']) \neq 0$. This is a contradiction, which finishes the proof of the lemma.

The proof of Theorem (5.1). Let $f \in I(M)$, $\varepsilon > 0$ be as in (5.1). Then we find $\delta < \frac{1}{4}\varepsilon$ and a neighbourhood $K = K(\delta)$ of Fix(f) in M, guaranteed by Lemma (5.2), which satisfies condition (*) of (5.2). Let F be a component of $Fix^1(f)$. Let $\{b_1, b_2, ..., b_l\}, l \ge 2$, be a finite set of points in F such that $b_i \ne b_j$ for $i \ne j$, $\langle b_i, b_{i+1} \rangle$ contains no points b_k , for $k \neq i$, i+1, and the diameter of $\langle b_i, b_{i+1} \rangle$ is smaller than $\frac{1}{4}\varepsilon$ for every $i \le l$; here and in all the proof of (5.1) we consider the index i of b, modulo l, i.e. we put l+1=1, and by $\langle x,y\rangle\in F$, we denote the arc in F bounded by x and y, as in Lemmas (5.3)-(5.5). Let $\varepsilon_1 = \varepsilon_1(F)$ be a positive number smaller than $\frac{1}{4} \min_{1 \le i, j \le l} \{ \varrho(b_i, b_j) \}$. Then, by Lemma (5.5) we can find a number $\delta_1 = \delta_1(F)$ for our $K(\delta)$ and ε_1 , such that for every $g \in I'(K_F, f)$ satisfying $\varrho_{K_F}(f|K_F,g) < \delta_1$ condition (**) of (5.5) holds. Let $g \in I'(K_F,f)$ be such that $\varrho_{K_F}(f|K_F,g)<\delta_1$, and let $F_g=\mathrm{Fix}(g)$. Making δ_1 smaller if necessary, we can assume by Lemma (5.3) that $F_g \cong S^1$ and that the degree of $q_F|F_a\colon F_a\to F$ is 2d+1for some integer d. Then condition (**) of (5.5) easily implies that $\deg(q_F|F_q) = 1$. This implies that the space $F_q \setminus q_F^{-1}(b_i)$ for any $i \le l$ has a component m such that $q_{\overline{F}}(\overline{m}) = F$ where $\overline{m} = \text{Cl}_{F_0}(m)$. Then the condition (**) of (5.5) implies that $\operatorname{diam}(q_{F}(F_{a}\backslash m)) < 2\varepsilon_{1} < \operatorname{diam}(F)$. This implies that for every $i \leq l$ there is exactly one component m_i of $F_a \setminus q_F^{-1}(b_i)$ such that $q_F(\overline{m}_i) = F$. Let us put $n_i = F_a \setminus m_i$. By (**) diam $(q_F(n_l)) < 2\varepsilon_1$. From this and from the fact that $\varepsilon_1 < \frac{1}{4} \min_{1 \le i \le j \le l} \{\varrho(b_i, b_j)\}$ it follows that $n_i \cap n_j = \emptyset$ for $i \neq j$. Then we consider the space $F_{\emptyset} \cup_{i \leq l} n_i$. It consists of l components. The fact that $\deg(q_F|F_g)=1$ implies that $q_F(F_g \setminus \bigcup_{i \leq l} n_i) \cap$ $\cap \langle b_i, b_{i+1} \rangle \neq \emptyset$ for every $j \leq l$; otherwise we would have a map $s: F_a \to F$ homotopic to $q_F|F_g$ and such that $s|(F_g\setminus\bigcup_{i\leq l}n_i)=q_F|(F_g\setminus\bigcup_{i\leq l}n_i)$ and $s(n_j)=b_j$ for $j \le l$; but this is impossible, because then we would have $s(F_q) \cap \langle b_i, b_{i+1} \rangle = \emptyset$ for some $j \le l$, and $\deg(s) = 1$. From this fact and from the fact that $q_F(F_g \setminus \bigcup_i n_i) \cap$

 \cap ($\{b_1, b_2, ..., b_l\}$) = \emptyset it follows that for every $j \leqslant l$ there is exactly one component r_j of $F_g \setminus \bigcup_{i \leqslant l} n_i$, such that $r_j \subset q_F^{-1}(\langle b_j, b_{j+1} \rangle)$. Then for every $j \leqslant l$ such that $q_F^{-1}(b_j) \cap F_g$ contains more than one point we find an arc $s_j \subset F$ such that $\dim(s_j) \leqslant \varepsilon_1$ and $b_j \in s_j$ and for every $j \leqslant l$ such that $q_F^{-1}(b_j) \cap F_g$ contains one point, we put $s_j = b_j$. Then $s_i \cap s_j = \emptyset$ for $i \neq j$. $F \setminus \bigcup_{i \leqslant l} s_i$ has l components, and by z_j we denote the unique component of $F \setminus \bigcup_{i \leqslant l} s_i$ such that $z_j \subset \langle b_j, b_{j+1} \rangle$. Then we can easily find a homeomorphism of F onto F_g , such that, for every $j \leqslant l$, s_j is taken onto n_j , and the closure \overline{z}_j of z_j in F is taken onto \overline{r}_j ($\overline{r}_j = \operatorname{CL}_{F_g}(r_j)$). We denote this homeomorphism by h|F. It is easy to check that $\varrho_F(h|F, \operatorname{id}_F) < \varepsilon$.

For every component F of $\operatorname{Fix}^1(f)$ we can find the number $\varepsilon_1 = \varepsilon_1(F)$ and then choose a number $\delta_1 = \delta_1(F)$ for it in the way described. Then we take δ' such that $\delta' < \delta_1(F)$ for every component F of $\operatorname{Fix}^1(f)$. Hence, for every $g \in I(K,f)$, there is a homeomorphism $h \colon \operatorname{Fix}^1(f) \to \operatorname{Fix}^1(g)$ such that $\varrho_{\operatorname{Fix}^1(f)}(h, \operatorname{id}_{\operatorname{Fix}^1(f)}) < \varepsilon$. It can be found in the following way: $g|K_F \in I'(K_F, f)$ for every component F of $\operatorname{Fix}^1(f)$ and so for every such F we can find the homeomorphism h|F in the way described and put h(x) = (h|F)(x) for $x \in F$ (note that we have found $K = K(\delta)$ at the beginning of the proof, common for all the components of $\operatorname{Fix}^1(f)$).

The fact that $\delta' < \delta_1(F)$ for every component F of $\operatorname{Fix}^1(f)$ implies that, for h so defined, we have $\varrho_{\operatorname{Fix}^1(f)}(h, \operatorname{id}_{\operatorname{Fix}^1(f)}) < \varepsilon$. Then, by Lemma (4.1), we can find $\eta > 0$ such that for every $g \in I(M)$, satisfying $\varrho_M(f,g) < \eta$ there is $g' \in I(K,f)$ such that $\varrho_M(f,g') < \eta$ and $\operatorname{Fix}(g) = \operatorname{Fix}(g')$. Of course η is the required number, such that for every $g \in I(M)$ with $\varrho_M(f,g) < \eta$ there is a homeomorphism h: $\operatorname{Fix}^1(f) \to \operatorname{Fix}^1(g)$ with $\varrho_{\operatorname{Fix}^1(f)}(h, \operatorname{id}_{\operatorname{Fix}^1(f)}) < \varepsilon$. If η and consequently δ' is sufficiently small, then h is onto $\operatorname{Fix}^1(g)$. This can easily be deduced from Theorem (4.3) of [3].

References

- [1] П. С. Александров, Топологические теоремы двойственности, Изд. Академии Наук СССР, Москва 1955.
- [2] A. Borel, Seminar on transformation groups, Ann. of Math. Studies 46 (1960).
- [3] A. L. Edmonds, Local connectivity of spaces of group actions, Quart. J. Math. 27 (1976), pp. 71-84.
- [4] A. J. S. Hamilton, The triangulation of 3-manifolds, Quart. J. Math. 27 (1967), pp. 63-70.
- [5] W. Jakobsche, Close PL involutions of 3-manifolds which are conjugate by a small homeomorphism, Fund. Math., this volume, pp. 73-81.
- [6] E. Moise, Periodic homeomorphisms of the 3-sphere, Illinois J. Math. 6 (1962), pp. 206-225.
- [7] D. Rolfsen, Knots and links, Publish or Perish Inc. 1976.
- [8] J. Sanderson, Isotopy in 3-manifolds. II. Fitting homeomorphism by isotopy, Duke Math. J. 26 (1959), pp. 387-396.
- [9] F. Waldhausen, Über Involutionen der 3-späre, Topology 8 (1969), pp. 81-91.
- [10] R. L. Wilder, Topology of manifolds, Amer. Math. Soc. Colloq. Publ., Vol. 32.

Accepté par la Rédaction le 12. 5. 1980