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Abstract. In this note we prove the following:

If X is a movable continuum such that pro-w,(X) is stable, and pro-Hy(X) are stable for all k&
and are trivial for all but finitely many %, then X is an ANR-divisor.

Introduction. In [2] J. Dydak has raised the following question:

Let X be a movable continuum such that pro-7,(X) is stable, and pro-H,(X)
is stable for all k and trivial for all but finitely many k. Is X an ANR-divisor?
The aim of this note is to give a positive answer to the above question.

We assume that the reader is familiar with some elementary facts from shape
and ANR-divisors theories (see [3]).

1. Preliminaries. The following theorem is a special case of Theorem 2 in [1]:

(1.1) THEOREM. Let X be a continuum. Then the following conditions are equivalent:

a. pro-H{X) is stable for all k,

b. H¥X) is finitely generated for all k.

Let us prove the following:

(1.2) TueoreM. Let X be a movable continuum such that pro-H,(X) are stable
Jor all k and are trivial for all but finitely many k. If X is approximatively 1-connected
then X is a pointed FANR.

Proof. In [1] J. Dydak proved the following fact (Lemma 3):

Let X be a continuum and let n>0. Then H"(X)/Tor H"(X) is isomorphic to
Hom(pro-H,(X)) and Tor H*(X) is isomorphic to Ext,(pro-H,_,(X)).

In our case the above lemma implies that H™(X) are trivial for all but finitely
many n. Since X is approximatively 1-connected and movable, the fundamental
dimension of X is finite (see [5]). Moreover, by Theorem (1.1) we infer that H"(X)
is finitely generated for all n. Hence Theorem (1.2) follows from a result of
R. Geoghegan and R. C. Lacher (see [4]), which states that the shape of each finite
dimensional and approximatively 1-connected continuum X is polyhedral if and only
if its integral Cech cohomology is finitely generated.

The next three theorems may be found in [3] p. 119-122.
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(1.3) TreoreM. If Sh(X) = Sh(Y) and Y is an ANR-divisor, then Y is an
ANR -divisor.

(1.4) THEOREM. If X is a pointed FANR, then X is an ANR-divisor.
(1.5) TeEOREM. Let X and Y be compacta. If X U Y and X n Y are ANR -div-
isors, then X and Y are ANR-divisors.

II. The main theorem. The aim of this note is to prove the following theorem:

(2.1) TeeoreM. If X is a movable contimim such that pro-n,(X) is stable,
and pro-H(X) are stable for all k and trivial for all but finitely many k, then X is an
ANR-divisor.

Proof. Let xy € X and let (X, x,) = lim {(X;, xo), Jfa'}. We denote the natural
projection by f,: X — X,. Since pro-m(X, x,) is stable, we may assume that
(f)e: 7Ky X0) = my(X,,, %) is an isomorphism for every mzn. Let (S, 50)
be a finite bouquet of 1-spheres such that there is an epimorphism ¢: 7,(S, 5o}
— 7y(X, x). Then there are maps gn: (S, 80) = (X, x,) such that

Gwe = (7 m)s

for all m>n

and
@s = (f)so.
Let us consider the space
(:Y;IJ J’o) = (M(gn)s xO)

where M(g,) is a mapping cylinder of g,.
One can see that the map

bt X 0 S - Mgy
defined by the formula
iin-x-l(x) {fn-H(X)

has an extension 7" L: M(g,.,) ~ M(g,).
Let (Y, yo) = im{(¥,, yo), A2}. It is easy to check that

Sh(X, x9) = Sh(¥, 3,) .

for xe‘Yn+1 >
forxesS

Theorem (1.3) implies that X is an ANR-divisor if and: only if ¥'is an ANR-div-
isor. Let us consider the space (¥ U CS, y,) where CS denotes the cone over
S Y. Then by Theorems (1.2) and (1.4) the set ¥ U CS is an ANR-divisor. Since
Y n CS is an ANR-divisor, our theorem can be denved from Theorem (1.5). The
proof is completed.

The author is grateful to Dr. 8. Splez for his valuable sugestnous durmg the
preparation of this note.
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