

Remark on ANR-divisors

bv

Andrzej Kadlof (Warszawa)

Abstract. In this note we prove the following:

If X is a movable continuum such that $pro-\pi_1(X)$ is stable, and $pro-H_k(X)$ are stable for all k and are trivial for all but finitely many k, then X is an ANR-divisor.

Introduction. In [2] J. Dydak has raised the following question:

Let X be a movable continuum such that $pro-\pi_1(X)$ is stable, and $pro-H_k(X)$ is stable for all k and trivial for all but finitely many k. Is X an ANR-divisor? The aim of this note is to give a positive answer to the above question.

We assume that the reader is familiar with some elementary facts from shape and ANR-divisors theories (see [3]).

- I. Preliminaries. The following theorem is a special case of Theorem 2 in [1]:
- (1.1) Theorem. Let X be a continuum. Then the following conditions are equivalent:
- a. $pro-H_k(X)$ is stable for all k,
- b. $H^k(X)$ is finitely generated for all k.

Let us prove the following:

(1.2) THEOREM. Let X be a movable continuum such that $\operatorname{pro-}H_k(X)$ are stable for all k and are trivial for all but finitely many k. If X is approximatively 1-connected then X is a pointed FANR.

Proof. In [1] J. Dydak proved the following fact (Lemma 3):

Let X be a continuum and let n>0. Then $\check{H}^n(X)/\text{Tor}\check{H}^n(X)$ is isomorphic to $\text{Hom}_Z(\text{pro-}H_n(X))$ and $\text{Tor}\check{H}^n(X)$ is isomorphic to $\text{Ext}_Z(\text{pro-}H_{n-1}(X))$.

In our case the above lemma implies that $\check{H}^n(X)$ are trivial for all but finitely many n. Since X is approximatively 1-connected and movable, the fundamental dimension of X is finite (see [5]). Moreover, by Theorem (1.1) we infer that $\check{H}^n(X)$ is finitely generated for all n. Hence Theorem (1.2) follows from a result of R. Geoghegan and R. C. Lacher (see [4]), which states that the shape of each finite dimensional and approximatively 1-connected continuum X is polyhedral if and only if its integral Čech cohomology is finitely generated.

The next three theorems may be found in [3] p. 119-122.

^{1 -} Fundamenta Mathematicae CXVII

- (1.3) Theorem. If Sh(X) = Sh(Y) and Y is an ANR-divisor, then Y is an ANR-divisor.
 - (1.4) THEOREM. If X is a pointed FANR, then X is an ANR-divisor.
- (1.5) THEOREM. Let X and Y be compacta. If $X \cup Y$ and $X \cap Y$ are ANR-divisors, then X and Y are ANR-divisors.

II. The main theorem. The aim of this note is to prove the following theorem:

(2.1) THEOREM. If X is a movable continuum such that $\text{pro-}\pi_1(X)$ is stable, and $\text{pro-}H_k(X)$ are stable for all k and trivial for all but finitely many k, then X is an ANR-divisor.

Proof. Let $x_0 \in X$ and let $(X, x_0) = \underline{\lim} \{(X_n, x_0), f_n^m\}$. We denote the natural projection by $f_n \colon X \to X_n$. Since $\operatorname{pro-}\pi_1(X, x_0)$ is stable, we may assume that $(f_n^m)_{\#} \colon \pi_1(X_m, x_0) \to \pi_1(X_n, x_0)$ is an isomorphism for every $m \geqslant n$. Let (S, s_0) be a finite bouquet of 1-spheres such that there is an epimorphism $\varphi \colon \pi_1(S, s_0) \to \check{\pi}_1(X, x_0)$. Then there are maps $g_n \colon (S, s_0) \to (X_n, x_0)$ such that

$$(g_n)_{\#} = (f_n^m g_m)_{\#}$$
 for all $m \ge n$

and

$$(g_n)_{\#} = (f_n)_{\#} \varphi$$
.

Let us consider the space

$$(Y_n, y_0) = (M(g_n), x_0)$$

where $M(g_n)$ is a mapping cylinder of g_n .

One can see that the map

$$\hat{h}_n^{n+1} \colon X_{n+1} \cup S \to M(g_n)$$

defined by the formula

$$\hat{h}_n^{n+1}(x) = \begin{cases} f_n^{n+1}(x) & \text{for } x \in X_{n+1}, \\ x & \text{for } x \in S \end{cases}$$

has an extension h_n^{n+1} : $M(g_{n+1}) \to M(g_n)$.

Let $(Y, y_0) = \underline{\lim} \{ (Y_n, y_0), h_n^m \}$. It is easy to check that

$$Sh(X, x_0) = Sh(Y, y_0).$$

Theorem (1.3) implies that X is an ANR-divisor if and only if Y is an ANR-divisor. Let us consider the space $(Y \cup CS, y_0)$ where CS denotes the cone over $S \subset Y$. Then by Theorems (1.2) and (1.4) the set $Y \cup CS$ is an ANR-divisor. Since $Y \cap CS$ is an ANR-divisor, our theorem can be derived from Theorem (1.5). The proof is completed.

The author is grateful to Dr. S. Spież for his valuable sugestions during the preparation of this note.

References

- [1] J. Dydak, Some algebraic properties of continua, Bull. Acad. Polon. Sci. 27 (1979), pp. 717-721.
- [2] A. Kadlof and S. Nowak, Open problems in shape theory, preprint.
- [3] and J. Segal, Shape theory, Lecture Notes in Math. 688, Springer 1978.
- [4] R. Geoghegan and R. C. L. cher, Compacta with the shape of finite complexes, Fund. Math. 92 (1976), pp. 25-27.
- [5] S. Nowak, On the fundamental dimension of approximatively 1-connected compacta, Fund. Math. 89 (1975), pp. 61-79.

INSTYTUT MATEMATYKI UNIWERSYTET WARSZAWSKI INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW PKIN, 00-901 Warsaw

Accepté par la Rédaction le 6. 11. 1980