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Abstract. Local expansions on continua are studied. It is shown, among other things, that
every generalized local expansion on a dendrite with a convex metric is an isometry.

§ 1. Introduction. The well known theorem of Banach (see [2], § 2, Theorem 6,
p. 160) called Banach Contraction Mapping Principle or Banach’s fixed point theorem
(cf. e.g. [25], Proposition 40, p. 453) says that if fis a continuous mapping of a com-
plete metric space X with a metric ¢ into itself such that for every x,x e X

(1) o(f (), f(x)N<Mo(x,x"), where 0<M<1,

then f has a fixed point. Mappings satisfying (1) are called contractions. They are
of a great importance in the functional analysis and in its applications, and have
a large bibliography which treates not only on contraction mappings in the above
sense, but also on various generalizations of the notion. However, the research in
this field did not pay till now so great attention to investigate and study other general
classes of mappings, in particular extensions, i.e., such continuous mappings f of X
into itself that for every x, x'e X we have

e(f (), f(x))=Mo(x,x"), ~where M>1.

The results presented here are a contribution to this theme.

The paper contains some investigations of continuous mappings of metric
spaces, especially so called generalized local expansions, i.e., such mappings which
“do not diminish distances between points locally, or — more precisely — continuous
mappings of a metric space X to ¥ having a property that for each point x of X there
exist a neighborhood of x and a constant M>1 that the distance between any two
points of the neighborhood (in X) is at least M times less than the distance between
their images under f (in ¥), These mappings were created as generalizations of local
expansions (for which the constant M is strictly greater than one) investigated
e.g. in [42], where a fixed point theorem is proved for such mappings of continua,
and in [15], where a necessary and sufficient condition is found, under which a linear
graph,adn{its a local expansiori onto itself (cf. also [14]).
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In § 2 we collect the necessary information concerning local isometries (mappings
which locally preserve distances). It is shown that any real-valued local isometry
defined on a connected subset of the real line is an isometry. § 3 concerns some general
properties of local expansions, and — mostly — of generalized local expansions,
§ 4 is devoted to generalized local expansions defined on unions of arcs. In particular,
arc-preserving mappings are studied. It is proved that every generalized local expan-
sion of [0, 1] onto itself has to be either the identity or the symmetry with respect
to . The results of this paragraph are applied in the next one which contains in-
vestigations of generalized local expansions of some convex spaces. The main result
of § 5 says that a generalized local expansion of a dendrite with a convex metric
onto itself is an isometry. Finally, generalized local expansions are studied on some
spaces with a radially convex metric.

The following standard notation will be used in the paper. The space of all
numbers with the natural (i.e. euclidean) metric will be called the real line and will
be denoted by R. We put (p, ) and [p, q] for the open and the closed interval of
reals from p to g respectively. The unit circle will be denoted by S*, ie,
S = {ze R: |a| = 1}, where z means a complex number. Usually St will be
considered as a subspace of R, i.e., it will be equipped with the euclidean metric
(provided the opposite is not said). If « and b are points in a topological space, then
an arc from ¢ to b will be denoted by ab. We shall say that a subset 4 of a metric
space X (with a metric o) is linear if there exists an isometry p: A — R of A into R,
i.e., a mapping ¢ satisfying ¢(x, ») = l@(x)—¢@(»)| for each x, y &€ 4. An arc con-
tained in X is said to be a metric segment if it is linear, We shall use the symbol ab
to denote a metric segment from a to b. In particular, if X'is the euclidean n-space, R,
then ab will mean the straight line segment joining a and b. :

The authors wish to thank Professor W. Nitka for his valuable suggestions and
discussions on the topic of this paper.

§ 2. Local isometries. Let X and Y be metric spaces with metrics ¢y and gy
respectively. A mapping /2 X — ¥ of X onto Y is said to be an isometry if the
equality gy(f (%), f (%) = ex(7, 2) bolds for every two points y and z of X.

Manifestly each isometry is a continuous one-to-one mapping.

DerFINITION 2.1. A mapping /2 X — Y of X onto Y is said to be a local isometry
if for every point x of X there is an open nejghborhood U of x such that for every
two points y and z of U we have

QY(f(J”)’f(z)) = ox(y,2). Lo
Obviously each isometry is a local isometry (taking the whole space X for U)
but not invertedly, as it can be shown by the following example, which is due to
S. T. Czuba. ' ' g '
Exampre 2.1, Let — in the euclidean plane — the continuum X be the union
of three straight line segments forming the letter H, i.c., let X = ab u pg U cd,
where the points p and g are centres of the straight line segments ab and ¢d respect-

!

icm

©

On local expansions 189
ively and the segment pg is perpendicular to @b and cd. Further, let a mapping
X=X of X onto itself be defined as the central symmetry with respect to ¢ on
the segment cd and as the identity out of it. It is easy to see that fis a local isometry.
It is not an isometry since

o(f(@,/(©) = ala, d) # o(a, c)

(here ¢ means the cuclidean mettic in the plane).

The following proposition is obvious.

ProposITioN 2.1, Every local isomelry is a continuous mapping.

A local isometry need not be a one-to-one mapping. To see this, consider

ExAmpLE 2.2, Let R be the real line and let the unit circle $* = {z: |3] = 1}
have the length of the shortest arc from z; to z, contained in S as the distance
between z; and z,. The mapping f: R — 8" defined by f(x) = exp(2nix) is a local
isometry but not one-to-one.

It is easy to verify the following two propositions (see [29], p. 17 for the definit-
ion of the product mapping):

PROPOSITION 2.2, [f f2 X' = Y is a local isometry and if AcX, then
flA: A= f(A)eY is a local isometry.

ProroSITION 2.3, The mapping

Sixfoxoonfir XyxXox..xX, = Vix¥Vyx.xY,

is « local isometry [f and only if fi1 X = Yyis a local isometry for everyi = 1,2, ..., n.

To show the main result of the present paragraph (Theorem 2.1 below) we need
two lemmas.

LeMMA 2.1. Let A be a connected subset of the real line R andlet f: A — f(A) =R
be u local isometry, Then f has not a local extremum at interior points of A.

Indeed, suppose on the contrary that there is an interior point x, of 4 at which
the mapping /-has o local extremum. Without loss of generality we can assume that
the extremum i3 a maximum. Thus there is a positive number & such that
(xg—08, xg+8) e and that the following implications hold:

(2) ir
(3) it

then  f(x)<f(x0),

[f D) =S (@] = |p—2l .

Putting K = max [ f(xy=48),/(x,+48)} we have K<f(xy) by (2) and (3).
By Darboux property for the (continuous) mapping f (see e.g: [25], Proposition 31,
p. 171) applied to the intervals [x,~+8, xo] and [xq, X0 ++0] we can find reals x,
and x; such that y,—§8 <.y, <X <X, <X+ 48 and f(xy) = f(x5) = 3(K+/ (%),
contrary to (3).

LEMMA 2.2, Let A be a connected subset of the real line Rand let f: A — f(A)=R
be a local isometry. Then [ is one-to-one.

N & (X, X ),

Mz @ (Xy=8, xo4-6),  then
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Tn fact, it is a consequence of Lemma 2.1 and of Weierstrass’ theorem (sec
e.g. [25], Proposition 29, p. 170).

THEOREM 2.1. Let A4 be a conmected subset of the real line Rand let f: 4 — f(A)<= R
be a local isometry. Then f is an isometry.

Proof. Let a and b be distinct points of 4. If f (a) = f(b), then (since f, being
a local isometry, is not a constant mapping) we see that /" has a local extremum at
an interior point of the closed interval [a, b]eA by Weicrstrass’ theorem ([25],
Proposition 29, p. 170) contrary to Lemma 2.1. Thus f(a) 5 f(b) and we can
assume — without loss of generality — that f(4) </ (6). Then the mapping 7, being
continuous and one-to-one (see Proposition 2.1 and Lemma 2.2), is increasing
in [a, b] (see [25], Proposition 35, p. 181). Further, since f is a local isometry, for
every point x € [4, b] there is a number 6, >0 such thatify, z & (x— 48, x+4 3 N A,
then

(4) FO)—~f@)| = |p~2].

The family of open intervals {(x—%6,, x+45.): xe[a, b1} is a covering of
[a, b], and by compactness of [a, b] there is a finite sequence of points xy, x,, ..., i
in [a, b] such that

k
(5) [aa b]C .E)l(xi——%ax” xl']"}[sx‘) .

Put§ = min{}d,: i=1,2, ..., k}>0. We show now that for any two points y
and z of [a, b] with |y—z]<8 equality (4) holds. Indeed, it follows from (5) that
there is a point x,, such that [y=xi|<%dy,. Thus |z—ux,) Klz—y|+ly—x,
<0+%0,, <9, and therefore for the points yand z we have |y—z| <d,,, whence (4)
follows.

Now take a natural j such that (b—a)/j <8, and define a; = a+i(b—a)/j for
i=0, 'l R ,] Thus' wehavea = gy<a;<a,<... <d..y <a;= b, whence, the mapping
S ‘being increasing, f(a) = f(ay)< Flad<fla)<..<fla;.)< Sla) = fb).
Moreover, f(a;41)—f(a) = ;44 —~a; for every i=0,1,..,/—1, which implies
. . iz Lty
immediately that f()—f(4) =lz(; Lf(ae)=f(a)] =Y (ap —a) = b—a, and

= =0
the proof is complete.

Let us observe that Theorem 2.1 cannot be generalized to a local isometry
defined ox? an grbitrary connected set 4 or even on the connected union of Tinitely
fnany straight line segments. In other words, the condition 4 <R is essential. Indeed,
it can be seen again by Example 2.1. Similarly, the condition f(4)< R is essential

too, as Example 2.2 shows. It is quite easy to verify that the connectedness of A is
also an essential hypothesis in Theorem 2.1.

§ 3. Local expansions. Let X and ¥ be metric spaces with metrics gy and gy
respectively.

DerFmvrTIoN 3.1, A continuous mapping f: X — ¥ of X onto ¥ is said to be

©
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an expansion (a generalized expansion) if there exists a constant > (M21) such
that for every two points 3 and z of X the incquality
© (£ (3),f (D)= Mox(y, 2)
holds. ‘

DEFle'pI(SN 3.2. A continuous mapping f: X - ¥ of X onto ¥ is said to be
a local expansion (a generalized local expansion) if for every point x of X there exist
an open neighborhood U of x and a constant M>1 (M =1) such that for every
two points y and z of U inequality (6) holds.

The following is an immediate consequence of the above definitions.

ProvositioN 3.1, (a) Lach expansion is a generalized expansion. (b) Each
expansion. is a local expansion. (¢} Each generalized expansion is a generalized local
expansion. (d) Each local expansion is a generalized local expansion. () Each isometry
is a generalized expansion. (€) Each local isometry is a generalized Tocal expansion..

The function tangent tan: (—4m, 47) - R is an example of a generalized ex-
pansion which is neither an expansion nor an isometry, The same function serves.
as an example of a generalized local expansion which is not a local expansion. For
every natural #>1 the mapping f: S*' — S* defined by f(z) = 2* for ze S is
a (generalized) local expansion which is not a (generalized) expansion.

ProrositioN 3.2, Each generalized expansion is a one-to-one mapping.

Tndeed, if' p # z, then gy(y, £)>0, which implies gy(f (), f ()= ox(y,2)>0,
and thus f(») # f(2).

It follows from Proposition 3.2 that if f: X — ¥ is a generalized expansion,
then there exists an inverse mapping f™': ¥ — X. Obviously we have

ProrosiTioN 3.3, If f: X' — Y is a generalized expansion, then the inverse
mapping f~*: Y — X does not increase distances of points, and thus it is continuous.

ProOPOSITION 3.4, Let [+ X = Y be a generalized local expansion, let xe X
and let U be an open neighborhood of x as in Definition 3.2, Then the partial mapping
FIU: U= f(U)s Y is one-to-one. :

In fact, for fixed distinct points 3 and z of U we have

ex((L1U), (SIUNE) = oy(S (), ()2 Mox(r, 22 ey, >0,

which implics /'(y) # f(z).

COROLLARY 3.1, Liceh generalized local expansion is ¢ locally one-to-one mapping.

Similarly to Propositions 2.2 and 2.3 for local isometries, we have -~ for local
expansions - the following two propositions, the proofs of which are quite casy
and thus are left to the reader,

PROPOSITION 3.5, [f f: X = Y is a (generalized) local expansion and if A= X,
then [1A: A - f(A)<= Y is a (generalized) local expansion.

Proposrrion 3.6. The mapping

SixfaXo oyt XixXyx . oxX, = Yyx Yox,.x Y,
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is a (generalized) local expansion if and only if fi2 X, — Y, is a \generalized) local
expansion for every i = 1,2, .., 1.

Let us recall that a mapping /* X — ¥ is said to be open if the image of an open
setin X is open in ¥. A mappingf: X — ¥ of X onto Y is said to be a local homeo-
morphism provided that for every point x e X there exists an open ncighborhood
U of x such that f(U)is an open subset of ¥ and that f|U: U~ f(U)cY is a
‘homeomorphism. Obviously each local homeomorphism is an open mapping.

ProrosiTiON 3.7. If @ generalized local expansion iy open, then it is a local
homeomorphism.

Indeed, let f: X — ¥ be an open generalized local expansion, let x ¢ X and
let U be an open neighborhood of x as in Definition 3.2. Then /' (U) is an open subset
of Y. Further, the partial mapping /' |U is continuous by continuity of f, and it is
one-to-one by Proposition 3.4. Thus there exists an inverse mapping

(f1O)7H f(U) » U=X.

'We have to show that (f|U)™* is continuous. To this end fix a point p e f(U) and
a number s>0. Let g € f(U) be such that gy(p, g) <e. Then there are points y and z
in U with f(3) =p and f(z) = g, Le, y = (fI0)"p) and z = (F|U)" (9.
‘The mapping f being a generalized local expansion and. y, z € U, there exists a con-
stant M>1 such that inequality (6) holds, whence

ox(>, )< Mox(y, 2 <ex(f (). f(2) = axlp, @) <e,
and the proof is complete.

The hypothesis of openness of the mapping is essential in the above proposition;
it can be seen from the example of a local expansion f: X — X defined on the union X
of three circles, which is neither an open mapping nor a local homeomorphism
(see [42], Example, p. 3).

A statement similar to Proposition 3.7 was used in [42] to prove that every
open local expansion of a continuum onto itself has a fixed point. However, this
result cannot be extended to generalized local expansions: we must have the sharp
inequality M>1 to reach a fixed point of the mapping, Namely the central symmetry
fi ST = S* defined on the unit circle §* = {ze R*: |z| = 1} by £ (z) = ~zis a gen-
eralized local expansion (it is an isometry even) without fixed points. Also openness
of the mapping is essential in this fixed point theorem, as it was shown in [42], p. 3
by the example mentioned above of a local expansion on the union of three circles.
But a question arises if this hypothesis can be weakened in some way. Let vs recall
that 2 mapping f/: X — ¥ of a continuum X onto Y is said to be confiuent (see [11],
p. 213) if for every continuum Q<Y and for every component C of f~!(Q) we
have f(C) = Q. It is known that each open mapping of a continuum is confluent
(see [11], VI, p. 214). Observe that the local expansion on the union of three circles

(142], Example, p. 3) discussed above is not only non-open, but also non-confluent.
So we have
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PropLeM 3,1. Docs there exist a confluent local expansion of a continuum onto
itself which is fixed point free?

Let us recall a result of Eilenberg who proved that each local homeomorphism
of a continuum X onto a dendrite (i.c. a locally connected continuum containing
no simple closed curve) is a homeomorphism (see [18], Theorem IIT, p. 42; compare
also [45], Corollary, p. 199). This result has firstly been extended to A-dendroids
(i.e. hereditarily decomposable and hereditarily unicoherent continua) and secondly
to tree-like continua by Mackowiak (see [33], Theorem 9, p. 857; [34], Proposition 7
and Theorem 8, p. 287; and [35], Theorem, p. 64). Thus, as an immediate conse-
quence of Proposition 3.7 we get the following particular version of Maékowiak’s
result quoted above:

PrROPOSITION 3.8. If f+ X — Y is an open generalized local expansion of a con-
tinnum X onto a tree-like contimum Y, then f is a homeomorphism.

We put this proposition only to ask whether openness of the mapping is an essen-
tial hypothesis here. In other words we have the following

ProOBLEM 3.2. Can openness of the generalized local expansion f of a continuum X
onto a tree-like continuum Y be omit to still get the conclusion that X is tree-like
and f is a homeomorphism?

Note a partial answer to this question: the answer is positive if X is arcwise.
connected (see Corollary 4.2 below).

§ 4. Local expansions on the unions of arcs. Consider a class of continua called
arc-continua and defined as follows.

DepmNrTIoN 4.1, A continuum X is called an arc-continuum provided for each
point x of X therc exists a non-degenerate arc A< X such that xe 4.

Obviously all arcwise connected continua are arc-continua, while hereditarily
indecomposable ones are not. The simplest indecomposable continuum of Knaster
(see [30], § 48, V, Example 1, p. 204) is an arc-continuum, but Janiszewski’s irre-
ducible continuum without arcs (see [24], p. 128; compare [30], § 48, V, p. 207,
the footnote) is an example of a hereditarily decomposable one which is not.

Observe that being an arc-continuum is not a hereditary property, as an example
of the done over the pscudo-are shows. Observe further that continuous mappings
do not preserve being an arc-continuum. For example, if P denotes the pseudo-arc
and I denotes the unit segment of reals, then Px J is an arc-continuum, while P is
a continuous image of P x [ under the natural projection and P is not an arc-con-
tinuum, However, if the mappings under consideration are gencralized local ex-
pansions, then they do. Namely we have

PROPOSITION 4.1, If J2 X = Y is a generalized local- expansion of an drc-
continuum X onto Y, then Y is an arc-continuum.

In fact, let p be a point of ¥, and let x &/~ 4(p)= X. The mapping f bEi_llg a gen-
eralized local expansion, there exists an open. neighborhood U as in Definition 3.2.

Take an arc 4 such that x € A< X, Thus there exists a non-degenerate arc B

3 — Fundamenta Mathematicae CXVIL
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such that xe Bc4 n U= U. The partial mapping f|U being continuous and one-
to-one by Proposition 3.4, we see that f|B: B — f(B) is a homeomorphism. Thus £ (B)
1:s a non-degenerate arc containing p = f(x) and contained in' ¥, and therefore ¥
is an arc-continuum.

By an n-od with vertex p we mean a continuum homeomorphic to the union
of n straight line segments such that they all and every two of them have only the
point p in common. Given a continuum X, a point p € X is said to be of order greater
than or equal to n (writing Ord, X>n) if there exists in X an n-od with vertex P
(cf. [10], p. 230). A point p € X is called an end point of X if p lies on a non-degencrate
arc contained in X and if p is an end point of every arc 4 such that peEAcX (see
[10], p. 230). We denote the set of all end points of a continuum X by E(X)

. PROPOSITION 4.2. Let f: X — Y be a generalized local expansion of a con-
tinwm X onto Y, and let K be an arc-contimmm contained in X. If pek and
Ord,K=n, then Ord;, f(K)=n.

Indeed, let L be the n-od with vertex p which is contained in K by assumption
and let U be an open neighborhood of p taken from Definition 3.2. Thus there exists
an n-od NcL n UcK having p as its vertex. We conclude from Proposition 3.4
that fIN: N —f(N) is a homeomorphism. Then f(p) is the vertex of the n-od
SN =f(K), and the proof is complete.

As an immediate consequence of Proposition 4.2 we get

ProrosimioN 4.3. Let f: X — Y be a generalized local expansion of a con-

tinwum X onto Y, and let K be an arc-continuum contained in X. If
; ' eld in X, Jf peK
7(p) € E(f(K)), then p e E(K). If p and

. PropoSITION 4.4. Let f: X Y be a generalized local expansion of a con-
t.muum X onto ¥, and let Y contain no simple closed curve. For each arc abe X its
image f (ab) under f is the arc F(@) 1 (B) having f(a) and f(b) as its end points.

. }’roof. The mapping f being continuous, the set f(ab) is a loc
continuum (s_ee e.g. [30], § 50, IT, Theorem 2, p. 256) thiri c(zntains noa 1811'31’11;(1): I::fs:z:
curve. Thus it is a dendrite. Recall that each dendrite has at least two ehd points
([45], Chapter IIT, Theorem (6.1), p. 54, and Chapter 'V, Theorem (1.1) (ii) 11 88)
If f(ab) would have more than two end points, then there would be ’a‘.mmé
xeab\{a, b} having f(x) as an end point of f(ab), contrary to Pro‘positior‘xl 4.3
Therefore f (.ab) has exactly two its end points, say f (p) and £ (q) whcrcﬁ and' ‘
are some points ?f the arc ab. Then — since a dendrite is g contin’uum irreduciEIZ
about the set of its end points (in fact, it follows easily from Theorem (1. 1) (ii). in
Ch‘apter V of [45], p. 88) — it is a continuum irreducible between these~two end
points, and, being locally connected, it is an arc. Thus it is the only arc in ¥ joinin
f(p) and f(g). Now it follows from Proposition 4.3 that p aﬁd q are end]point§
of ab,_ and therefore we have f(ab) = f (@) f(b), which finishes the proof. ‘

As an immediate consequence of Proposition 4.4 we get

COROLLARY 4.1. Let f* X — Ybea generalized local expansion of a continuum X
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onto Y and let Y contain no simple closed curve. Then for each arc ab< X the partial
mapping flab: ab — f(ab) is a homeomorphism.

Note that we cannot omit the assumption of Proposition 4.4 that Y contain
no simple closed curve; e.g. if f1 S* — S* is a local expansion defined by f(2) = z*
for each z € §'!, then the arc {z = exp(ip): 0 @<} is mapped onto the whole S*.

Mappings for which the conclusion of Proposition 4.4 holds have been exten-
sively studied by many authors under the name of arc-preserving mappings. More
precisely, a continuous mapping f of a topological space X onto a topological space ¥’
is said to be arc-preserving provided that the image under f of any arc in X is either
an arc or a single point in ¥ (see [44], p. 305). A true arc-preserving mapping is de-
fined so as to eliminate the possibility of an arc being carried into a point, that is,
the image of every non-degenerate arc in X is a non-degenerate arc in Y. A tree-
preserving and true tree-preserving mappings have been defined in a similar manner
(see [43), p. 576). Tt is known that arc-preserving mappings of locally connected
continua are tree:preserving (dendrite-preserving) (see [43], Theorem 7, p. 588,
and [22], p. 70). Mappings of this kind were studied also in [20] and [21], mainly for
locally connected continua. From some other points of view they were investigated
in [16] and [17]. Arc-preserving mappings are related in some way to monotone ones
for some types of continua, see [13], § 6, especially Proposition 3, p. 307.

The following problem is a slight modification of one asked in [12].

ProBLEM 4.1. Characterize all the continua Y such that every continuous
mapping of a continuum X onto Y is arc-preserving.

Proposition 4.4 is a contribution in this direction. Namely it can be refor-
mulated as

PrOPOSITION 4.5. Every: generalized local expansion of @ continuum onto one
which contains no simple closed curve is true arc-preserving.

As a consequence of the above proposition we get

COROLLARY 4.2. If f: X — Y is a generalized local expansion of an arcwise con-
nected contimum X onto a continmium Y which contains no simple closed curve, then fis
a homeomorphism. .

Observe that arcwise connectedness of X is a necessary assumption in the above
corollary, Indeed, it can be seen by )

ExaMPLE 4.1, Put in the rectangular cartesian coordinates x; yin the plane,

A= {(x,y): » = sin(n/x) and 0<x<1} U {0,): —1<y<4}

and § = (4, 2). Let g denote the central symmetry with respect to the point s,
i.e., we define g((x,)) = (1~x,4~y) for every point (x,y) in the plane. Put
X = AU g(4). Thus g maps X onto itself and point-inverses of g are two-point-
sets composed of the points just opposite with respect to s. Let Y = X|/G denote the
quotient space of X under an equivalence relation G- defined by pGq if and only if
¢ = g(p). Then ¥ is homeomorphic to so called Warsaw circle (i.e. sin'(l/:g)—circle)
and the quotient mapping (the natural projection) f: X' — ¥ can be considered
3w
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as a generalized local expansion (we multiply the metric in Y by a sufficiently large
constant if necessary). We see that X is not arcwise connected, ¥ contains no simple
closed curve, and f is not a homeomorphism. Note that X is an arc-continuum, and
thus the example shows that we cannot replace arcwis¢ connectedness of X in
Corollary 4.2 by the property of being an arc-continuum.

Let us recall that a dendroid means an arcwise connected continuum which is
hereditarily unicoherent (and, consequently, contains no simple closed curve),
Thus Corollary 4.2 implies

COROLLARY 4.3. Every generalized local expansion of a dendroid onto itself is
a homeomorphism. '

Note that it follows also from Corollary 4.2 that any generalized local expansion
of the Warsaw circle (i.e. sin(1/x)-circle) onto itself is a homeomorphism. Thus it
'is natural to ask the following

PrOBLEM 4.2. Characterize all the continua X having the property that every
generalized local expansion of X onto itself is a homeomorphism.

Recall that [p, ¢] denotes the closed interval of reals from p to“g.

ProposITION 4.6. If f: [a,b] - f([a, by=R is a generalized local expansion
and if
(7 ‘ fB)—f@)i<b—a,
then f([a, b)) = [f(a),f(B)] and f is an isometry.

Proof. The image f ([«, b]) is a compact and connected subspace of the real
line R, so the first part of the conclusion is an immediate consequence of Cor-
ollary 4.2. '

The mapping f being a generalized local expansion, for every point p € [«, b]
there exist an open neighborhood U, of p and a constant A£,>1 such that for every
two points x and y of U, we have

{8) | fE)—f D= My |x~y].

Since the family {U,: p € [a; b]} is an open covering of [a, b], there exists a finite
sequence of points py, pa, ..., Py in [a, b} such that {U,: i = 1,2, ..., n} is a finite
«covering of [a, b] and there is the Lebesgue coefficient of this covering, i.c., such
a positive number ¢ that if some two points of [z, b] differ less than e, then they
belong to the same element of the covering {U,,;: i = 1, 2, ..., n} (see [30], § 41, VI,
‘Corollaries 4¢ and 4d, p. 23 and 24). Thus for every two points x, y of [a, b] we
see by (8) that

© i [f )= (1=

Now we shall show that the mapping f'is a local isometry. Suppose the contrary.
Tt means that there exists a point x € [a, b] such that for each open neighborhood U
«of x there are two points y and z in U with | £ () —f (z)| % | y—2z|. Since f'is a gener-
«alized local expansion, hence every point of [a, b] has an open neighborhood with
ithe property that for any two points of this neighborhood the mapping f doesnot

[x—y|<e, then
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diminish distances between them. Therefore we conclude that the point x has an -
open neighborhood U,cla, b] containing two points x” and x" such that
(10) S ) =f (> x" —x"] .

Let 7 be a natural and let us take a set of m+1 points x; (for j = 0,1, ..., m)
in [a, b] such that }

(n U = Xg <Xy <Xp<...<Xy = b,
(12) {X’, x”}c:{xo, X1 X2y eees Xpgj s
1
(13) Xppy— XK= (b—a)<e  for every j = 0,1,..,m—1,
: : n )

where ¢ is — as previously — the Lebesgue coefficient for the covering
{Upii=1,2,..,n}.

Thus every two consecutive points x; and x;,, belong to the same element of this
covering, whence by (9) and (13) we have

(14) | f () =S (x| 2%y —x;  for every j = 0,1,..,m—1.

For every i = 1,2, ..., n the partial mapping f|Up, is a generalized expansion,
whence it follows that f is monotone. Thus we have

m=-1

m—1
{13) f®)-flal = j';olf(xjﬂ)-—f(xj)l>J_Zo(xj+1—w‘;) =b-a,

where the inequality is a consequence of (14). Further, (10) and (12) imply that the
inequality in (15) is a proper one, i.e., that it cannot be replaced by the equality. So
we have |f(b)—f (a)]>b—a contrary to (7). Therefore we have shown that f is
a local isometry. Now the conclusion follows from Theorem 2.1, and the proof is
complete.

Proposition 4.6 implies

COROLLARY 4.4, If f: [0,1]1 = [0, 1] is a generalized local expansion of the unit
interval of reals onto itself then f is either the identity or the central symmetry with
respect to %, i.c. a mapping defined by fx) = 1—x for each x€ [0, 1].

Corollary 4.2 and Proposition 3.6-imply that if a product-mapping f: I"— 1"
(i.c. such that /= fy % f5 % ... % f,) of the cuclidean unit cube I" onto itself is a gener-
alized local expansion, then it is an isometry. Thus the following problem seems to
be interesting.

Prosuem 4.3. Ts every generalized local expansion of I" onto itself an isometry?

Tt is remarkable that the suspected affirmative answer to this question cannot
be generalized to Hilbert cube, Namely Prof. David P. Bellamy in a conversation
with the first author has shown a local expansion of Hilbert cube onto itself. As
we know, the result has not been published.
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ProrostTION 4.7. Let f: X — Y be a generalized local expansion of a continuum
X with a metric gy onto a continuum Y with a metric gy. If an arc ab is a metric
segment in X such that its image under f is a metric segment in Y, i.c.,

16) f(@) = f@)f@®,
and if ‘
63)) ox(f (@, f (B))<ox(e, b),

then flab: ab — f (ab) is an isometry.
Proof. Since @b and f (ab) are metric segments in X and Y respectively, there
are isometries
iyt ab—»R and i, _}:(Z/}) - R

of these segments into the real line R. Let us define 2 mapping
VAL i1(%) ‘*.f'*(h(EE))CR

putting f* = i,(f|ab)i7!. We have then the following commutative diagram:

R —
Xoab—> f(ab)e ¥
i i2

Roi,(ab) - FHi(ab)) =R

‘ The mapping f* is a generalized local expansion as the composite of two iso-
metries iy * and 7, and of the generalized local expansion f |@b (sce Proposition 3.5).
Observe that the length of the closed interval 7,(ab) in the real line R is equal to
ex(a, b). Similarly, it follows from (16) that the length of the closed interval iy( f'(ab))
in R is equal to oy(f(4),f (B)). But iy(f(ab)) = f*(i,(ab)) by the definition of f*.
Thus we see that inequality (17) implies inequality (7) and we conclude from Prop-
osition 4.6 that f* is an isometry. Further, it follows from the definition of the

metry as a composite of three isometries, and the proof is complete.

.§ 5. Local expansions on convex spaces. Let a metric space X with a metric ¢
be given. Let x, y, z be points of X. The point z is said to lic between the points x and v
provided that ¢(x, ») = o(x, 2)+0a(z, ») (see [36], p. 77; cf. [81, p. 317). A

A metric space X is said to be convex (in the well known sense of Menger [36],
p. 81 and 82) provided that for each two distinct points x and p of X there exists
a point z'e X different from x and y which lies between v and y. It was proved by
Menger ([36], p:89, cf. [37], p. 498; see also Aronszajn [1]; cf. [8], p. 41) that in every
complete convex metric space X each two points of X can be joined by a metric
segment.-Moreover, it is known (cf. e.g. [41], 2.3, p. 116) that a complete metric
space X is convex if and only if for every two points x and ¥ in X and for every ¢
where 0<t<1, there exists at least one point ze X such that ”

e, 2) = (1-t)e(x,y) and g(z,)) = t-g(x, ).
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This condition is related to a definition of a convex space due to Wilson ([46],
p. 112; cf. [31], p. 324): a metric space X with a metric g is called convex in this sense
if for every two points «, b e X and for every real number ¢ with 0<7<¢(a, b) there
exists exactly one point ¢ in X such that ¢(¢, ¢) =t and g(c,b) = ¢(a,b)—1.

If a metric space equipped with a metric ¢ is convex, then the metric ¢ is called
a convex metric.

Tn 1928 Menger proved that every metric continwum with a convex metric is
locally connected ([36], p. 98) and asked if the inverse implication holds in the follow-
ing sense. Let us call a topological or metric space convexifiable if it is homeomorphic
with a topological or metric space convexifiable if it is homeomorphic with a convex
metric space. Menger asked ([36], p. 98 and 99) if every locally connected metric
continuum is convexifiable, Some partial answers to this question have been proved
in various papers untill Bing solved the problem in the affirmative in 1949 [6]. Let
us recall some of the most important ones. Already in the above mentioned paper of
Menger it is proved (sce [36], p. 96) that a continuum X is convexifiable if there is
a metric ¢ on X such that for every point p of X and for every positive number &
there exists an open set containing p whose each point g can be joined with p by
a rectifiable arc of length (with respect to g) less than &. Two years later Kuratowski
and Whyburn proved in [31], p. 324 that convexifiability is an extensive property,
i.e., if every cyclic clement (ses e.g. [45], Chapter IV, p. 66; cf. [30], § 52, IL, p. 312)
of a locally connected continuum X is convexifiable, then the whole X is convexi-
fiable too. This theorem implies that acyclic curves can be convexified, whence —
in particular — it follows that every dendrite has a convex metric.

In 1938 Beer in [3] constructed, with a considerable difficulty, a convex metric
on every one-dimensional locally connected metric continuum. A year later Harold
shown [23] that some three types of locally connected metric continua are con-
vexifiable. In particular it is proved there that a plane continuum having finitely
many components of its complementary has a convex metric. Some other partial
results were also obtained by Bing [5). Finally Bing (6], Theorem 8, p. 1109) and —
in the same time — Moise ([38], Theorem 4, p. 1119) have proved that every locally
connected metric continuum is convexifiable. However, Moise’s paper [38] contained
an error (see [39]) rectified later by a result of Bing in [4]. Methods used by Bing
to get the result are related to partitioning of a set — see an expository article [7],
where the result is repeated as Theorem 6, p. 546.

After this short summary of selected results concerning convexification of a space,
we come back to the topic of the paper, i.c. to local expansions. We begin with

ProroOSITION 5.1. Let f: X — Y be a generalized local expansion of a con-
simum X onto a dendrite Y equipped with a convex metric. If an arc ab is a metric
segment in X, then its image under [ is a metric segment in Y, i.e. condition (16) holds.

Indeed, it follows from Proposition 4.4 that f(ab) is the arc f(a) f(B)=Y.
Since the metric on the dendrite ¥ is convex (and since Yis a complete space) hence
every arc in Y is a metric segment, and thus (16) follows.
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The assumption of convexity of the metric in ¥’ is essential in Proposition 5.1,
as it can be seen from

ExXAMPLE 5.1. Put — in the cartesian coordinates in the euclidean plane —
X = {(x, —x): —1<x<1}and ¥ = {(0, 2x): 0<x<1} U {(2x,0): 0<x<1), and
define f: X — Y by

0, —2x
F(x, =%) = {sz, 0);\)

In other words, f is a projection in direction of the vector [1, 1] of the segment X'
onto ¥, and Y is the union of two metric segments lying in the two axes of the
coordinate system (the metric is euclidean). The reader can easily verify that f is
a generalized local expansion.

if —1<x<0,
if O<x<l.

COROLLARY 5.1. Let f: X — Y be a generalized local expansion of a continuum X
with a metric oy onto a dendrite Y equipped with a convex metric Qy. If an arc ab is
a metric segment in X, and if condition (17) holds, then f lab: ab — f (ab) is an isometry.

In fact, the conclusion follows from Proposition 4.7 by Proposition 5.1.

THEOREM 5.1. A generalized local expansion of a dendrite with a convex metric
onto itself is an isometry.

Proof. Let ¢ be a convex metric on a dendrite X, and let /7 X — X be a gener-
alized local expansion. We shall prove that
(18) e(f(a),fB))=ela,b) for every a,be X.

In fact, if' o(f(a),f(b))>0(a,b), we are done. In the oppesite case, i.e., if
o(fla,f (B))<e(a, b) observe that the arc ab is just the metric segment @b by the
convexity of the metric ¢. So Corollary 5.1 can be applied and we conclude that f |ab
is an isometry, whence o(f(a),f(B)) = ¢(a;,b). Therefore (18) is established.

We conclude that f is one-to-one, and thus the inverse mapping f™%: X — X
can be considered. Obviously it is continuous and the inequality

o774 p), M) <elp, 4)

holds for every two points p and ¢ of X by (18). Thus /™% does not increase the
distances of points. It is known that if a continuous mapping of a completely bounded
space does not increase the distances of points, then it does not diminish them,
i.e. it is an isometry (see [L9], Theorem IV, p. 121; cf. [40], Theorems 1 and 2, p- 29

and 31). Therefore f~* is an isometry, whence f is. an isometry, and the proof is
complete.

Note that the convexity of the metric in Theorem 5.1 cannot be omitted, as
Example 2.1 shows. However, it is a consequence of Corollary 4,2 that every local
expansion of a dendrite (with an arbitrary metric) onto itself is a homeomorphism.
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COROLLARY 5.2, There is no local expansion of a dendrite with a convex metric
onto itself.

ProBLEM 5.1. Is it true that, given a dendrite X (with an arbitrary metric),
there is no local expansion of X onto itself?

Now let us turn our attention to a generalization of the notion of a convex
metric, namely to a metric which is radially convex with respect to a point. This
concept has been introduced by Koch and McAuley (see [27], p. 343, and [28], p. 3)
and used extensively by many authors, especially to characterize smooth continua
([9], p. 229; [13], p. 298 and Theorem 10, p. 310; [32], p. 181). Let us recall some
related notion, By a partial order on a set we mean a reflexive, transitive and anti-
symmetric binary relation. Let X be a metric space equipped with a partial order I'.
A metric ¢ on X is called radially convex with respect to I' if (x,y)e I, (y,2)el’
and y # z imply o(x, ¥)<e(x, z) (see [9], p. 229). It is proved in [9], Theorem 1,
p. 229, that if I' is a closed partial order on the compact metric space X, then there
exists an equivalent metric on X which is radially convex with respect to I.

A dendroid X is said to be smooth (see [13], p. 298) if there is a point p & X
(called an initial point of X) such that for every point a € X and for every sequence
of points @, € X which is convergent to a, the sequence of arcs pa, is convergent
to the arc pa. It is known ([26], p. 679) that if a dendroid X is smooth, then the
relation I' defined by (x, y) € I' provided that x e py is a closed partial order on X,
whence it follows that there exists an equivalent metric ¢ on X that is radially convex
with respect to I'. We call this metric o radially convex with respect to the point p,
or shortly a radially convex metric. In other words, a metric ¢ on a dendroid X is
said to be radially convex with respect to a point p € X provided that, for each points x
and y of X conditions x e py and x # y imply o(p, x)<e(p, y) (see [13], p. 310).

Let us note that we cannot replace, in Proposition 5.1, the convex metric on
the dendrite ¥ by a radially convex one: namely in Example 5.1 the euclidean metric
on Y is radially convex with respect to the origin (0, 0). Putting in the same example
a=(—1,1) and b = (1, —1) we see that (17) holds, and thus convexity of the
metric on ¥ cannot be replaced in Corollary 5.1 by radial convexity. Further, observe
that the euclidean metric for the continuum X of Example 2.1 is radially convex
with respect to the point p, the mapping /1 X — X considered there is a generalized
local expansion, and this shows that Theorem 5.1 is not longer true if one replaces
a convex metric of the dendrite by a radially convex one.

Consider a smooth dendroid X with an initial point p, and let the metric on X
be radially convex with respect to p. Take a generalized local expansion f of X onto
itself. Then, according to Corollary 4.3, the mapping f is a homeomorphism, and
therefore f(p) is an initial point of X.

ProsLEM 5.2. Ts it true that, for every point x of a smooth dendroid X with
an initial point p and with a metric which is radially convex with respect to p, if f'is
a generalized local expansion of X onto itself, then the partial mapping
JSlpx: px = f(px) is an isometry?
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