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A characterization of middle graphs and a matroid
associated with middle grapbs of hypergraphs

by

_Mieczyslaw Borowiecki (Zielona Géra)

Abstract. The characterization of a middle graph of a graph is given by Akiyama, Hamada
and Yoshimura [1]. Some other properties of middle graphs are presented in [2] and [3]. In
a similar way we introduce a middle graph of a hypergraph and we give a characterization of those
graphs. With any middle graph G we associate a matroid Mg and we prove that it is graphic.

1. Definitions and notation. Let X be a finite set and let & = {E;: iel} be
a family of subsets of X. The pair H = (X, &) is called a hypergraph, which will be
denoted as the pair H = (V(H), E(H)). The hypergraph is said to be simple if the
edges E; are all distinct. If | E,| <2 for all i € I, then H is a multigraph. Now, if|E} =2
for iel and H is simple, then H is a graph.

We define the middle graph of the hypergraph H = (X, &), denoted by M (H),
as an intersection graph Q(F), where

F=Xué& X={x,..%xh X ={{x}..&x}

A graph G is called a middle graph if it is isomorphic to the middle graph M (H )
of a hypergraph H.

If H is a hypergraph and x € V' (H), then let us denote by N(x) and N[x] the
open and the closed neighbourhood of the vertex x in the hypergraph H, respectively,
i.e.x' € N(x)if and onlyif x' s xand there exists an edge £ of H such that {x', x}<E.
Obviously, N[x] = N(x) u {x}.

Leét G be a graph. The set {C;: i = 1,..., m} of the cliques of G is defined as

m

a C-cover of G, if | ¥(Cp) = V(G) and | E(C) = E(G).
i=1 i=1

If in the graph G there exists a stable set S such that the collection (set)
{{NIx]>: xe S} is a C-cover of G, then the set S is called C-stable, where {4
denotes a subgraph of G induced by A<=V(G).

A matroid . is a pair (Q, B) where Q is a non-empty finite set and B is a non-
empty collection of subsets of Q (called bases) satisfying the following properties:

(B1) no base properly contains another base,
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(B2) if By and B, are bases and if ¢ is any element of B, then there is an el-
ement ¢' of B, with the property that (B,\{g}) u {g’} is also a base.
Throughout, the terminology of Wilson [4] is used.

2. Theorems.

THEOREM 1. A graph G is a middle graph if and only if there exists a maximal
stable set S = {x;, ..., x,}=V(G) such that the collection {{N[x,]>: i =1, ek}
is a C-cover of G.

Proof. Let us assume that G is a middle graph of a hypergraph H. Now, we
consider the set S = {{x,}, ..., {x,}} and the collection

[N = 1, oy}

From the definition of the middle graph of the hypergraph H, the set .S is stable and
it is maximal. Moreover, any two elements of N({x,}) have a non-empty intersection;
therefore (N({x;})) is a clique of G for all i = 1, ..., n. Obviously, (N is
also a clique of G, and the collection {<N[{x;}]>: i =1,...,n} is a C-cover of G.

Now, assume that the collection {{N[x;,]>: i=1,..,k} is a C-cover of G
and S = {x;, ..., %} is a maximal stable set of G. A hypergraph whose middle
graph is isomorphic to G may be obtained in the following way:

Let V(H) = S and let V(G\S = {ey, ..., e,}. We denote the family of edges
of our hypergraph H by {E;: i = 1, ..., m}, where E, = {x;: x;e S and e;e N[x/]},
forj=1,..,kand i=1,..,m Itis easy to see that M(H)~G, and the proof is
complete.

Let G be a graph and let B be the collection

{B: B<V(G) and B is a C-stable set of G} .

ExaMPLES 1. Let G = K, V(K,) = {x;, ..., x,}, then Bg = {x}ri=1,..,n}.

2.1f G = Ky, V(G) = {y, %, ..., %}, then Bs = {{x, .., x,}}, n=2.

3.1 G =P, V(P) = {xy, .., x,}, n24, then By = @.

THeoREM 2. Suppose that B # . Then the pair Mg = (V(G), Bg) is a matroid.

Proof. Let Gbe a middle graph. We wish to prove properties (B1), (B2). Clear-
ly (Bl)is trivial. To prove (B2), we let By, B, €Bg and ge B,. If ge B, n Bz;
then ¢’ = ¢ and (B2) is true, Suppose that q € B)\B,. Obviously, B,\B, is not
empty. Since B; is C-stable, we have N(g)n(B,\B,) # & for every g e B,\B,.

Moreover, |[N(g) n (B,\B,)| = 1. If it were not so, the induced subgraph
{N[gl> would not be a clique and B, ¢ Bg, in contradiction with the assumption.
Let N(g) & (B:\By) = {g'}. In a similar way, we obtain N(g') n (B,\B,) = {q}
for q' e B,\B,. Hence, there exists a bijection f: (B,\B,) — (B,\B;) such that
BN{gh) U {f(g)} is C-stable, i.e. it is an element of B;. Thus (V(G), Bg) is
a matroid. '

From the above and from the properties of matroids it is easy to verify the facts
described in' the next theorem. Other properties of the middle graphs, including the
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algorithm to verify whether a given graph G is a middle graph or not, are presented
in paper [2].

THEOREM 3. If G is a middle graph and Mg is its matroid, then:

(a) The rank r(Mg) of Mg is equal to the stability number B(G) of G.

(b) If S is a stable set and |S| = B(G), then S e Bg.

(c) The hypergraph H is uniquely determined up to an isomorphism by its middle
graph M(H). .

It is a reasonable question to ask whether a given matroid . is the circuit
matroid of some multigraph; in other words: whether there exists a multigraph G’
such that .# ; is isomorphic to the circuit matroid .# (G’). The answer to this question
is obtained in the next theorem. Morcover, we give the construction of such multi-

" graphs.

Suppose we are given the middle graph G = M (H) of a hypergraph H and the °
matroid s = (V(G), Bs) with rank function r, and let 4 = U B.

BeBg
Obviously, 4= ¥(G) and 4 does not contain the loops of .#. Note that the

set A contains only those elements of G which correspond to the vertices and loops
of H; if it were not so, the collection B; would not satisfy axiom (B2). These facts -
imply that the matroid .# ¢ does not have a circuit (a minimal dependent set) of size
greater than two. We define on the set A a relation R in the following way:
o)) xRy if and only if r({x,»}) =1.
Note that x and y form a pair of parallel elements of #g.

Above considerations give the following

LemMA. The relation R defined above is the equivalence relation on the set A.
The matroid Mg does not contain circuits of size greater than two.

THEOREM 4. Suppose we are given a matroid M = (V(G), Bg). Then there exists
a connected multigraph G’ such that M(Gy=Mg. .

Proof. Let 4 = {J B and let R be the relation defined by (1). Let us denote by

BeBg
AR = {Ay, .., A}

the factor set of 4 with respect to R.
Now, with every set 4; let us associate a multigraph G, with two vertices and |4,

parallel edges joining these vertices, and let H, be a multigraph with one vertex
and |V(G)\A4| loops. By the above and by the lemma it is easy to see that the circuit
matroid of the multigraph

k
G = (6_91 G)®H,,
where the operation @ is a direct sum operation (i.e. it is a multigraph obtained by

the coalescence of a vertex of G, with a vertex of G, and then of a vertex of G, @G,
with a vertex of G; and so on) satisfies the required isomorphism.
k

Note that the size of the collection B is equal to [] 4.
i=1

1#
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Powers of spaces of non-stationary ultrafilters
by

J.E. Vaughan (Greensboro, N. C.)

Abstract. Let X denote the space of all non-stationary ultrafilters on a regular uncountable
cardinal » (or more generally, the space associated with a normal ideal on #). These spaces were
recently introduced by Eric van Douwen, who showed that X is strongly -compact but not
x-bounded. We show in this paper- that X? is not strongly %-compact, X**is not totally initially
x-compact and X* (assuming GCH) is initially %-compact for all cardinals . These results answer
two basic questions concerning these compactness-like properties.

1. Introduction. The theory of products of countably compact and related spaces
is extensive, but the generalization of this theory to higher cardinals is not as well
developed. There are some very basic questions which have been answered in the
countable case but not in the uncountable case. Two of these questions are concerned
with the notions of strong x-compactness and TI-x-compactness.

A space X is said to be strongly %-compact provided that for every filter base
on X of cardinality <, there exists a compact set K= X such that Fn K # &
for all Fin %. A Ts-space X is TI-%-compact provided that for every filter base &
on X of cardinality <x, there exist a compact set K= X and a filter base & of cardi-
nality < such that ¢ is finer than & (i.e., every member of & contains a member
of %) and % converges to K in the sense that every open set containing X also contains
a member of ¥ (see § 2 for the definition of TI-x-compactness in general ‘spaces
and for all other definitions).

Clearly, every strongly x-compact space is TI-x-compact (take {4 to be
{FnK: Fe #Y)), and the converse is true if » = o (in the class of T;-spaces).
The simple proof of the equivalence of these two properties for the case % = « does
not extend to higher cardinals; so we have the basic question: '

1.1. For x>w, is every TI-x-compact space strongly %-compact?

An important property of the class of TI-x-compact spaces is that it is stable
under x-fold products (i.e., every product of <x TI-x-compact spaces is
TI-%-compact). The proof of this does not extend to strong »-compactness; so we
have a second basic question:

1.2. For x> w, is every product of no more than % strongly ¥~ compact spaces,
strongly s»-compact?
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