

A representation theorem for compact-valued multifunctions

by

B. S. Spahn (Warszawa)

Abstract. It is proved that every weakly measurable compact-valued multifunction defined on an arbitrary set and ranging in a metric space of weight $\leq c$ admits a measurable selector; moreover a single valued representation is found. The proof is based on a theorem on decomposition of point-finite completely additive families.

This paper is another attempt to extend the general selector theorem of Kuratowski and Ryll-Nardzewski [9] under some additional assumptions to the non separable case. Our results generalize in a certain sense the theorem of Ioffe [6] and answer a question from [7]. The results are based on a theorem on the decomposition of point-finite completely additive-Borel families which yields also that the class of the members of such a family is bounded. This result was obtained independently also by Hansell in [4].

1. Notations and terminology. We use notations and terminology of [1] and [8]. For a set X and a space Y we understand by $F\colon X\to \mathscr{D}(Y)$ a set-valued mapping or multifunction mapping points of X to non-empty subsets of Y. For a given family \mathscr{M} of subsets of Y a multifunction F is said to be weakly \mathscr{M} -measurable if the set $F^-(U)=\{x\in X\colon F(x)\cap U=\varnothing\}$ belongs to \mathscr{M} for each open set U in Y. A mapping $f\colon X\to Y$ is a selector for F provided $f(x)\in F(x)$ for each $x\in X$.

Let $\mathscr{A} = \{A_t\}_{t \in T}$ be an indexed family of subsets of a set X. Then we say that \mathscr{A} is point-finite if the set $\{t \in T: x \in A_t\}$ is finite for all $x \in X$. For a family \mathscr{M} of subsets of X \mathscr{A} is called completely additive- \mathscr{M} provided $\bigcup_{t \in T} A_t \in \mathscr{M}$ for any $T' \subset T$. An indexed family $\mathscr{A} = \{A_t\}_{t \in T}$ of subsets of a space X is said to be σ -discretely-decomposable (see [5]) if there exist sets A_t^n $(t \in T, n = 1, 2, ...)$ such that $\{A_t^n\}_{t \in T}$ is discrete for fixed n and $A_t = \bigcup_{t \in T} A_t^n$ for every $t \in T$.

Let \mathcal{M}_0 be a field of subsets of a set X and \mathcal{M} the σ -field generated by \mathcal{M}_0 . For each ordinal $\alpha < \omega_1$, we have defined in a natural way families

$$\mathcal{F}_0,\mathcal{F}_1,...,\mathcal{F}_\alpha,...,\mathcal{F}_0=\mathcal{M}_0$$

where the sets of the family \mathcal{F}_{α} are countable intersections or unions of sets belonging to \mathcal{F}_{ϱ} with $\varrho < \alpha$ according to whether α is even or odd (see [8] § 30, p. 345). By the class of $M \in \mathcal{M}$ with respect to \mathcal{M}_0 we understand $\inf(\alpha: M \in \mathcal{F}_{\alpha})$. For a metric space we denote by Σ_{α} the Borel sets of additive class α . R_+ are the non-negative reals and b (continuum) is the power of the reals. $D(\mathfrak{m})^N$ means the countable product of a discrete space of cardinality \mathfrak{m} . We consider it in its usual product metric (see [1], p. 326).

2. Point-finite completely additive families.

LEMMA. Let $\mathcal M$ be a σ -field of subsets of an arbitrary set X and $\mathcal A=\{A_i\}_{t\in T}$ a point-finite completely additive- $\mathcal M$ family with $\bigcup \mathcal A=X$ and $|T|\leqslant c$. Suppose that the index set T is a subset of R_+ . Then the function f defined by $f(x)=\min\{t\colon x\in A_t\}$ is $\mathcal M$ measurable with respect to the discrete topology on R_+ . Moreover $\{A_i, f^{-1}(t)\}_{t\in T}$ is again a point-finite completely additive family.

Proof. We shall prove the equality

$$f^{-1}(T') = \bigcap_{m=0}^{\infty} \bigcup_{n=0}^{\infty} \left[\bigcup \left\{ A_t \colon t \in T' \text{ and } n2^{-m} \leqslant t < (n+1)2^{-m} \right\} \setminus \bigcup \left\{ A_t \colon t \in T \text{ and } t < n2^{-m} \right\} \right] \in \mathcal{M}, \quad \text{where } T' \subset T.$$

To this purpose let $f(x) = t' \in T'$. For each m we can find a number n(m) such that $n(m)2^{-m} \le t' < (n(m)+1)2^{-m}$. Of course $x \notin A_t$ for $t < n(m)2^{-m}$. So x belongs to the right-hand side.

If conversely $f(x) = t_0 \notin T'$ then there exists an m such that for all n with $n2^{-m} \le \min\{t \ne t_0: x \in A_t\} < (n+1)2^{-m}$ we have $t_0 < n2^{-m}$ and therefore x does not belong to the right-hand side.

Put now $C_t = A_t \setminus f^{-1}(t)$. The family $\{C_t\}_{t \in T}$ is of course point-finite and it is completely additive because we can prove for any $T' \subset T$

$$\bigcup_{t \in T'} C_t = \bigcup_{k=0}^{\infty} \bigcap_{m=k}^{\infty} \bigcup_{n=0}^{\infty} \left[\bigcup \left\{ A_t \colon t \in T' \text{ and } n2^{-m} \leqslant t < (n+1)2^{-m} \right\} \cap \\ \cap \bigcup \left\{ A_t \colon t \in T \text{ and } t < n2^{-m} \right\} \right] \in \mathcal{M}.$$

Indeed, if $x \in C_t$ for some $t \in T'$ we simply take k > 1/|f(x) - t|. On the other hand, if x belongs to the right-hand side, we find n and m such that $x \in A_t$ for some $t \in T'$ with $t \ge n2^{-m}$ and f(x) < t. We conclude that $x \in C_t$.

Lemma 2. Let X, M, A, T be as in Lemma 1. Then A admits a σ -disjoint completely additive-M decomposition. More specifically, there exist disjoint completely additive families $\{A_i^n\}_{i\in T}$, n=1,2,..., such that

(1)
$$A_t = \bigcup_{n=1}^{\infty} A_t^n$$
 and

(2)
$$\bigcup_{t \in T} A_t^n = \{x \in X: x \text{ is contained in at least } n \text{ members of } A\}.$$

Proof. Applying Lemma 1 to the family $\mathscr A$ we put $A_t^1=f^{-1}(t)$ and obtain the point-finite completely additive family $\{A_t \setminus A_t^1\}_{t \in T}$.

In the induction step we assume that all A_t^i for i < n have been defined and that $\{A_t \bigcup_{i=1}^{n-1} A_t^i\}_{t \in T}$ is a point-finite completely additive family. Applying Lemma 1 to the latter family we define $A_t^n = f^{-1}(t)$. Again by Lemma 1 $\{A_t \bigcup_{i=1}^n A_t^n\}_{t \in T}$ is point-finite completely additive and the induction is finished.

In order to prove conditions (1) and (2) let us assume that A_{t1}, \ldots, A_{tn} , $t1 < t2 < \ldots < tn$, are all elements of $\mathscr A$ containing a given point x. Then $x \in A_{t1}^1, x \in A_{t2}^2, x \in A_{t3}^n, \ldots, x \in A_{tn}^n$ and hence $x \in \bigcup_{t \in T} A_t^m$ whenever $m \le n$. Further we conclude $x \notin A_{t1}^m, x \notin A_{t2}^m, \ldots, x \notin A_{tn}^m$ hence $x \notin \bigcup_{t \in T} A_t^m$ whenever m > n and therefore condition (2) holds. On the other hand, if $x \in A_t$ then t = ti for some $i \le n$ and $x \in A_{t1}^i$. This proves condition (1).

Theorem 1 ($^{\lambda}$). Let \mathcal{M}_0 be a field of subsets of an arbitrary set X and \mathcal{M} the σ -field generated by \mathcal{M}_0 . Then the class with respect to \mathcal{M}_0 of the members of a point-finite completely additive- \mathcal{M} family is bounded; i.e. there exists an $\alpha < \omega_1$ that all members of the family are of class α .

This is an easy combination of a general result of Preiss [10] and our Lemma 2. Let us however give a short proof of this fact.

Proof. If the class were not bounded this would be so for a subfamily $\mathscr{A} = \{A_t\}_{t \in T}$ of cardinality \aleph_1 , $T \subset R_+$. By Lemma 2 there is a decomposition of \mathscr{A} into disjoint completely additive families $\{A_t^n\}_{t \in T}$ and we have $\bigcup_{t \in T'} A_t = \bigcup_{n=1}^{\infty} \bigcup_{t \in T'} A_t^n$ for any $T' \subset T$. So it is sufficient to show that the families $\{A_t^n\}_{t \in T}$ are of bounded class.

Let
$$A_{ab} = \bigcup \{A_t^n : t \in [a, b] \subset R\}$$
. Of course

$$\beta = \sup \{ \text{class of } A_{ab} : a, b \text{ rational} \} < \omega_1.$$

Now for an arbitrary $t \in T$ the class of $A_t^n = \bigcap_{\substack{a < t < b \\ a,b \\ \text{rational}}} A_{ab}$ is less or equal to $\beta+1$.

Corollary 1. Let X be a metric space and $\mathscr{A}=\{A_t\}_{t\in T}$ a point-finite completely additive-Borel family which is σ -discretely-decomposable. Then \mathscr{A} is completely additive- Σ_{α} for some $\alpha<\omega_1$.

Proof (compare Lemma 4 in [7]). Take α as in Theorem 1. Let $A_t = \bigcup_{n=1}^n A_t^n$ where $\{A_t^n\}_{t \in T}$ is discrete for each fixed n. We may assume that $A_t^n = A_t^n A_t$. Take

⁽¹⁾ After this paper had been written the author obtained a preprint [4] from R. W. Hansell where Theorem 1 is also proved in a different way.

 $T' \subset T$ and put $G^n = \bigcup_{t \in T'} A_t^n$. By a classical result of Montgomery (see [8] § 30) G^n is

a Borel set of class α . We get $\bigcup_{t \in T'} A_t = \bigcup_{t \in T'} \bigcup_{n=1}^{\infty} A_t^n = \bigcup_{n=1}^{\infty} G^n$, a set of additive class α .

3. A selection theorem for absolutely analytic spaces. A metric space is called absolutely analitic provided that it is an analytic subset whenever embedded in a complete metric space. In [5] Hansell proved the deep theorem that a disjoint completely additive analytic in an absolutely analytic space is σ -discretely-decomposable. This was extended to the case of point-finite families in [7], Theorem 1. The theorem below answers Question 2 in [7].

Theorem 2. Let X be an absolutely analytic metric space and Y an arbitrary metric space. Every compact-valued weakly-Borel-measurable multifunction $F\colon X\to \mathscr{P}(Y)$ admits a Borel-measurable selector. Moreover the selector is of class α for some $\alpha<\omega_1$.

The theorem follows immediately from Theorem 2 in [7] and the lemma below. Lemma 3. Let $F: X \to \mathcal{P}(Y)$ be as in Theorem 2. Then F is weakly Σ_{α} -measurable for some $\alpha < \omega_1$.

Proof. Let $\{U_t^n\}_{t\in T}$, n=1,2,..., be a base for the topology of the space Y, the families $\{U_t^n\}_{t\in T}$ being discrete. Now the family $\mathscr{A}_n=\{F^-(U_t^n)\}_{t\in T}$ is point-finite, for the compact set F(x) intersects only finitely many of the sets U_t^n . It is also completely additive-Borel because $\bigcup_{t\in T'}F^-(U_t^n)=F^-(\bigcup_{t\in T'}U_t^n)$ for any $T'\subset T$. By Theorem 1 in [7] and Corollary 1 there is an $\alpha_n<\alpha_1$ that \mathscr{A}_n is additive- $\Sigma_{\alpha n}$. To end the proof it is sufficient to put $\alpha=\sup_n\alpha_n$. For any open set U in Y the set $F^-(U)$ is the countable sum of sets of class α and therefore of additive class α .

COROLLARY 2. Each point-finite completely additive-Borel covering $\mathcal{A} = \{A_i\}_{i \in T}$ of an absolutely analytic space X has a completely additive-Borel disjoint refinement.

Proof. In Theorem 2 put Y = T with the discrete topology and

$$F(x) = \{t: x \in A_t\}.$$

If f is a measurable selector then $\{F^{-1}(t)\}_{t\in T}$ is the requested refinement.

QUESTION. Does Corollary 2 hold in general or at least for a metric space? (Compare Lemma 2 and see also [4]). Notice that under additional set-theoretical assumptions a more general fact for metric spaces was proved by Fleissner in [2].

4. A representation theorem. The representation of the multifunction in the following theorem is analogous to the theorem of Ioffe [6] where it is proved for closed-valued maps into a Polish space and $D(\mathfrak{m})^N$ instead of $D(\mathfrak{n}_0)^N$.

THEOREM 3. Let X be an arbitrary set with a σ -field \mathcal{M} and Y a metric space of weight $m \leq c$. Then every compact-valued weakly-measurable multifunction $F: X \to \mathcal{P}(Y)$ admits a measurable selector. Moreover for the Baire space $Z = D(m)^N$ there is a mapping $\Phi: Z \times X \to \mathcal{P}(Y)$ with $\Phi(\cdot, x)$ continuous, $\Phi(z, \cdot)$ measurable and $\Phi(Z, x) = F(x)$ for each $x \in X$.

Proof. We shall identify $D(\mathfrak{m})$ with $T \subset R_+$ and we assume that the metric of Y is bounded by 1.

By induction we define for each n and $(r_1, r_2, ..., r_n) \in T^n$ a multifunction $F_{r_1...r_n}$ satisfying the following conditions:

- (1) $\emptyset \neq F_{r_1...r_n}(x) \subset F(x)$,
- (2) $F_{r_1...r_n}$ is weakly \mathcal{M} -measurable,
- (3) $\operatorname{diam}(F_{r_1...r_n}(x)) \leq 2^{-n}$,
- (4) $F_{r_1...r_n}(x) = \bigcup_{r \in T} F_{r_1...r_n r}(x)$.

Put $F_{r_1}(x) = F(x)$ for all $r_1 \in T$ and suppose that all $F_{r_1...r_{n-1}}$ have been defined. Take a locally finite open covering $\mathscr{U} = \{U_r\}_{r \in T}$ of Y by sets of diameter $\leqslant 2^{-n}$ where some U_r may be empty.

For $r \in T$ let $D_r = F_{r_1, \dots r_{n-1}}^-(U_r)$. Then the family $\{D_r\}_{r \in T}$ is completely additive- \mathcal{M} and since F is compact-valued this family is also point-finite. We obtain this from (1), and it does not interfere that the sets $F_{r_1, \dots r_{n-1}}(x)$ may not be closed.

We apply Lemma 1 to the family above. The sets $D'_r = f^{-1}(r)$ form a disjoint completely additive refinement of the family $\{D_r\}_{r \in T}$. Let for $r_n \in T$

(5)
$$F_{r_1...r_{n-1}r_n}(x) = \begin{cases} F_{r_1...r_{n-1}}(x) \cap U_{r_n} \text{ for } x \in D_{r_n}, \\ F_{r_1...r_{n-1}}(x) \cap U_r \text{ for } x \in D_r' \setminus D_{r_n}. \end{cases}$$

Obviously the conditions (1), (3) and (4) are fulfilled. The only property to show is the measurability of $F_{r_1...r_{n-1}r_n}$. For simplicity we shall write in this part F_n and F_{n-1} instead of $F_{r_1...r_{n-1}r_n}$ and $F_{r_1...r_{n-1}}$ respectively.

Let U be an open subset of Y. The family $\{E_r\}_{r\in T}$, where

$$E_r = \{ x \in X \colon F_{n-1}(x) \cap U_r \cap U \neq \emptyset \}$$

is again point-finite completely additive- \mathcal{M} and, using again Lemma 1 with respect to the family $\{E_r\}_{r\in T}$, we obtain its disjoint completely additive refinement $\{E'_r=f^{-1}(r)\}_{r\in T}$. Now

$$F_{n}^{-}(U) \setminus D_{r_{n}} = F_{n-1}^{-}(U) \cap \bigcap_{k=0}^{\infty} \bigcup_{m=0}^{\infty} [\bigcup \{D'_{r} \setminus D_{r_{n}} : r \in T \text{ and } m2^{-k} \leqslant r < (m+1)2^{-k}\} \setminus \bigcup \{E'_{r} : r \in T \text{ and } r \geqslant (m+1)2^{-k}\} \in \mathcal{M}.$$

This equality requires some proof. Let $x \in F_n^-(U) \setminus D_{r_n}$. Of course $x \in D'_r$ for exactly one r and so we get $F_{n-1}(x) \cap U_r \cap U \neq \emptyset$. This means that $x \notin E'_s$ for s > r and of course $x \in F_{n-1}^-(U)$. Hence x belongs to the right-hand side.

Now let $x \notin F_n^-(U)$, $x \notin D_{r_n}$ and $x \in D'_r$. It follows that $F_{n-1}(x) \cap U_r \cap U = \emptyset$. From the definition of D'_r we know that $r' = \min\{s \in T: F_{n-1}(x) \cap U_s \cap U \neq \emptyset\} > r$. (r') is defined whenever $x \in F_{n-1}^-(U)$.) For sufficiently big k we get $(m+1)2^{-k} \leqslant r'$ whenever $m2^{-k} \leqslant r < (m+1)2^{-k}$. But this means that x does not belong to the right-hand side.

Realize at last that $F_n^-(U) \cap D_{r_n} = F_{n-1}^-(U \cap U_{r_n})$ hence $F_n^-(U) \in \mathcal{M}$. This ends the inductive construction of the system of multifunctions.

We are now able to define $\Phi(z,x) = \bigcap_{n=1}^{\infty} \overline{F_{r_1...r_n}(x)}$, for $z=(r_1,r_2,...)$. The function Φ is well-defined by conditions (1) and (3) and the compactness of F(x). The condition $F(x) = \Phi(Z,x)$ follows from (4).

To prove the measurability of $\Phi_z = \Phi(z, \cdot)$ it is enough to observe that for a closed subset K of Y we have by (2) the relation

$$\Phi_z^{-1}(K) = \bigcap_{m=1}^\infty \bigcup_{n=1}^\infty \left\{ x \colon F_{r_1 \dots r_n}(x) \cap \left\{ y \in Y \colon \operatorname{dist}(y, K) < 2^{-m} \right\} \neq \emptyset \right\} \in \mathcal{M} \; .$$

It remains to show the continuity of $\Phi(\cdot, x)$. But whenever in the product metric

$$a(z,z') = \sum_{n=1}^{\infty} 2^{-n} d_0(r_n, r'_n) \le 2^{-k-2}$$
 for $z = (r_1, r_2, ...), z' = (r'_1, r'_2, ...),$

 d_0 being the discrete 0-1 metric, then $r_i = r_i'$ for $i \leq k$ and therefore $F_{r_1...r_k} = F_{r_1'...r_k'}$. Whence by (4) and the definition of Φ we get $\mathrm{dist}\big(\Phi(z,x),\Phi(z',x)\big) \leq 2^{-k}$. This proves that $\Phi(\cdot,x)$ is continous for any $x \in X$.

Remark 1. If \mathcal{M} is generated by a field \mathcal{M}_0 and F is weakly Σ_{α} -measurable for some $\alpha < \omega$, then, thoroughly examinating the proof of Theorem 3 and using Theorem 1, we see that the class of the selector \mathcal{M} is bounded.

Remark 2. Examinating the proof of [7], Theorem 2, one obtains in Theorem 2 a representation of the multifunction similar to that in Theorem 3.

Remark 3. We may of course in Theorem 3 remove the weight restriction on Y by assuming that \mathcal{M} consists of at most \mathfrak{c} elements (which holds, for example, if X is separable metric), but this is rather artificial. So the question is, how to get rid of the cardinality restriction. Another way of generalizing this theorem is to consider non-metrizable Y. This seems to be even more complicated. The so far best result in this direction is that of Graf in [3]. Notice that the assertion of Theorem 3 with Y compact 0-dimensional would yield the existence of a Borel lifting for the unit intervall with Lebesgue-measure (which was obtained so far under the assumption of CH; cf. [3]).

References

- [1] R. Engelking, General Topology, Warszawa 1976.
- [2] W. G. Fleissner, An axiom for nonseparable Borel theory, Trans. Amer. Math. Soc. 251 (1979), pp. 309-328.
- [3] S. Graf, A measurable selection theorem for compact-valued maps, Manuscripta Math. 27 (1979), pp. 341–352.
- [4] R. W. Hansell, Borel-additive families and Borel maps in metric spaces, preprint (1980).
- [5] Borel measurable mappings for nonseparable metric spaces, Trans. Amer. Math. Soc. 161 (1971), pp. 145-169.
- [6] A. D. Ioffe, Single valued mappings in the non-separable case, Trans. Amer. Math. Soc. 252 (1979), pp. 133-145.

- [7] J. Kaniewski and R. Pol, Borel-measurable selectors for compact-valued mappings in the non-separable case, Bull. Acad. Polon. Sci. 23 (1975), pp. 1043-1050.
- [8] K. Kuratowski, Topology I, New York-London-Warszawa 1966.
- [9] and C. Ryll-Nardzewski, A general theorem on selectors, Bull. Acad. Polon. Sci. 13 (1965), pp. 397-403.
- [10] D. Preiss, Completely additive disjoint system of Baire sets is of bounded class, Comm. Math. Univers. Carol. 15 (1974), pp. 341-344.

Accepté par la Rédaction le 19, 1, 1981