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A representation theorem for compact-valued
multifunctions

by

B.S. Spahn (Warszawa)

Abstract. It is proved that every weakly measurable compact-valued multifunction defined
on an arbitrary set and ranging in a metric space of weight <¢ admits a measurable selector;
moreover a single valued representation is found. The proof is based on a theorem on decomposition
of point-finite completely additive families. ’

This paper is another attempt to extend the general sclector theorem of Kura-
towski and Ryll-Nardzewski [9] under some additional assumptions to the non
separable case. Our results generalize in a certain sense the theorem of Ioffe [6]
and answer a question from [7]. The results are based on a theorem on the de-
composition of point-finite completely additive-Borel families which yields also that
the class of the members of such a family is bounded. This result was obtained
independently also by Hansell in [4]. .

1. Notations and terminolegy. We use notations and terminology of [1] and [8].
For a set X and a space Y we understand by F: X — 2(Y) a set-valued mapping
or multifunction mapping points of X to non-empty subsets of Y. For a given
family # of subsets of X a multifunction F is said to be weakly M -measurable
if the set F~(U) = {x € X: F(x)n U = &} belongs to .# for each open set Uin Y.
A mapping /2 X — Y is a selector for F provided f(x)e F(x) for each x e X.

Let o = {A,},,7 be an indexed family of subsets of a set X. Then we say that o/
is point-finite if the set {t € T: x € A,} is finite for all x € X. For a family .# of subsets
of X o is called completely additive-# provided () 4,€ 4 for any T'<T. An

teT’
indexed family & = {A,},,r of subsets of a space X is said to be o-discretely-decom-
posable (see [5]) if there exist sets A} (te T, n=1, 2, ...) such that {4}},.r is discrete
o0
for fixed n and 4, = | 4] for every teT.
=1
Let #, be a field of subsets of a set X and .# the o-field generated by ..
For each ordinal a<w, we have defined in a natural way families

Fooy Frn s Fogs ooy Fo = My
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where the sets of the family &, are countable intersections or unions of sets belonging
to &, with g <o according to whether o is even or odd (see [8] § 30, p. 345). By the
class of M e .# with respect to .4, we understand inf(a: M e &,}. For a metric
space we denote by X, the Borel sets of additive class a. R.. are the non-negative
reals and b (continuum) is the power of the reals. D ()" means the countable product
of a discrete space of cardinality m. We consider it in its usual product metric (see [1],
p- 326).

2. Point-finite completely additive families.

LemMA. Let # be a o-field of subsets of an arbitrary set X and st = {4}y

" a point-finite completely additive-# family with \) of = X and |T| <e. Suppose that

the index set T'is a subset of R . Then the function [ defined by f(x) = min{t: x e A}

is M measurable with respect to the discrete topology on R.. Moreover {ANTY (1)} qr
is again a point-finite completely additive family.

Proof. We shall prove the equality

o ®

T =on QO[U {4 teT" and m2"t<(n+1)27"N

N\U{4;: teT and t<m2™}e #, where T'<T.

To this purpose let f(x) = t' e T". For each m we can find a number n(m) such that
n(m)2™"<t' <(n(m)+1)27™. Of course x ¢ 4, for t<n(m)27™ So x belongs to the
right-hand side.

_ If conversely f(x) = t, ¢ T’ then there exists an m such that for all » with
n27"<min{z # #: x € 4.} <(n+1)27™ we have #,<#2~™ and therefore x does not
belong to the right-hand side.

) Put now C, = ANf~(#). The family {Ci}lier is of course point-finite and it
is completely additive because we can prove for any I"<T

U.C=0 0 ULV T and m27"<e<(rer 1277

NU{4; teT and t<n2™]e A .

'Indeed, ifxeC, for'some te T’ we simply take k>1/| f (x)—1|. On the other hand,
if x belongs to the right-hand side, we find # and m such that x € 4 ; for some te 1"
with 1>n2™™ and f(x)<t. We conclude that x e C,.

LEMMA.Z.. Let X, M, o4, T be as in Lemma 1. Then of admits a o~disjoint com-
pletely additive-# decomposition. More specifically, there exist disjoint completely

additive families {4}};e7, n = 1,2, ..., such that
o0
) 4, = U A" and
n=1

n_ . . . .
2) tEJTA, = {xeX: x is contained in at least n members of of}.
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Proof. Applying Lemma 1 to the family o/ we put A} = f~1(z) and obtain
the point-finite completely additive family {4N4,},cr.

In the induction step we assume that all Al for i<n have been defined and that
n—1

{4\ U Af},ET is a point-finite completely additive family. Applying Lemma 1 to
i=1

the latter family we define 47 = f~*(¢). Again by Lemma 1 {4,\ | 4},. is point-
i=1

finite completely additive and the induction is finished.
In order to prove conditions (1) and (2) let us assume that 4,,..., 4,
t1<t2<..<tn, are all elements of o/ containing a given point x. Then

xedl,xedh, xed),...,xe Al and hence x € () AT whenever m<n. Further
teT

we conclude x¢ A}y, x¢ Afy, ..., x ¢ Al hence x¢ U A7 whenever m>n and
teT

therefore condition (2) holds, On the other hand, if x e 4, then ¢ = ¢i for some
i<n and x e 4%. This proves condition (1).

TueoreM 1 (V). Let M, be a field of subsets of an arbitrary set X and M the
o-field generated by M . Then the class with respect to My of the members of a point-
finite completely additive-# family is bounded; i.e. there exists an a<w, that all
members of the family are of class o.

This is an easy combination of a general result of Preiss [10] and our Lemma 2.
Let us however give a short proof of this fact.

Proof. If the class were not bounded this would be so for a subfamily
o = {A},cr of cardinality 8;, T<R,. By Lemma 2 there is a decomposition of s/
into disjoint completely additive families {4},.r and we have UT 4, =1 U 4}

te

’ n=1 teT’
for any T'<T. So it is sufficient to show that the families {4/},.r are of bounded

class.
Let 4,, = U {4}: te[a, bl=R}. Of course

B = sup{class of 4,: a,b rational}<w; .

(| A isless or equal to S+1.

a<t<b

Now for an arbitrary ¢ € T the class of 4y =

ratl::mnl
COROLLARY 1. Let X be a metric space and of = { A}y a poini-finite completely
additive-Borel family which is o-discretely-decomposable. Then s is completely addi-
tive-X, for some a<w;.

o0
Proof (compare Lemma 4 in [7]). Take « as in Theorem 1. Let 4; = UlA:'

n=
where {4}}, oy is discrete for each fixed n. We may assume that A} = APNA,. Take
() After this paper had been written the author obtained a pfeprint [4] from R. W. Hansell

where Theorem 1 is also proved in a different way.
4.
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T'cT and put G" = (J 4;. By a classical result of Montgomery (see [8] § 30) G" is

teT”
©

o0
a Borel set of classo. Weget U 4, = (U U 4! = U G" a set of additive class .

teT” teT' n=1 n=1
3." A selection theorem for absolutely analytic spaces. A metric space is called
absolutely analitic provided that it is an analytic subset whenever embedded in
a complete metric space. In [5] Hansell proved the deep theorem that a disjoint
completely additive analytic in an absolutely analytic space is o-discretely-decom-

posable. This was extended to the case of point-finite families in [7], Theorem 1.

The theorem below answers Question 2 in [7].

THEOREM 2. Let X be an absolutely analytic metric space and Y an arbi-
trary metric space. Every compact-valued wealkly-Borel-measurable multifunction
F: X — P(Y) admits a Borel-measurable selector. Moreover the selector is of class o
for some ¢<w,.

The theorem follows immediately from Theorem 2 in [7] and the lemma below.

LeMMA 3. Let F: X — 2P (Y) be as in Theorem 2. Then F is weakly X -measurable
for some a<w,.

Proof. Let {Uj},er, n = 1,2, ..., be a base for the topology of the space Y,
the families {U7},.r being discrete. Now the family &, = {F~(UN},ep is point-
finite, for the compact set F(x) intersects only finitely many of the sets Uy Tt is also
completely additive-Borel because |J F™(UP) = F~(|) UY) for any I"<T. By

teT’ teT’

Theorem 1 in [7] and Corollary 1 there is an o, <o, that &7, is additive-Z,,. To end
the proof it is sufficient to put o = supw,. For any open set U in Y the set F~(U)

is the countable sum of sets of classnac and therefore of additive class o,
COROLLARY 2. Each point-finite completely additive-Borel covering of = {4} ier
of an absolutely analytic space X has a completely additive-Borel disjoint refinement.
Proof. In Theorem 2 put ¥ = T with the discrete topology and
Fx) = {t: xe4}.
If f is a measurable sclector then {F~%()},er is the requested refinement,
QuEsTION. Does Corollary 2 hold 'in general or at least for a metric space?

(Compare Lemma 2 and see also [4]). Notice that under additional set-theoretical
assumptions a more general fact for metric spaces was proved by Fleissner in [2].

4. A representation theorem. The representation of the multifunction in the
following theorem is analogous to the theorem of Ioffe [6] where it is proved for
closed-valued maps into 2 Polish space and DY instead of D (o)™

THEOREM 3. Let X be an arbitrary set with a o-field M and Y a metric space of
weight m< c. Then every compact-valued weakly-measurable multifunction F: X — P (Y)
admits a measurable selector. Moreover Jor the Baire space Z = D(m)" there is
a mapping ®: ZxX -~ P(Y) with &(-,x) continuous, ®(z,*) measurable and
D(Z,x) = F(x) for each xeX. ) . o
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Proof. We shall identify D(m) with T< R, and we assume that the metric of ¥
is. bounded by 1. .

By induction we define for each n and (ry,7,,...,7,)eT" a multifinction
F,,..., satisfying the following conditions:

(1) B # Frp o (X) = F(x),

(2) F,,..», 18 weakly . -measurable,

(3) diam(F,,...(¥)<27",

(4) F,-,‘,,y,,(x) = U Fn.‘.r,,r(‘x)'

reT

Put F, (x) = F(x) for all r; € T and suppose that all F,,..r,-, have been defined.

Take a locally {inite open covering % = {U,} 1 of ¥ by sets of diameter <2™*
where some U, may be empty.

For rel let D= F; , (U). Then the family {D,},.r is completely
additive-# and since F"is compact-valued this family is also point-finite. We obtain
this from (1), and it does not interfere that the sets Fy ., (x) may not be closed.

We apply Lemma 1 to the family above. The sets D; = f~*(r) form a disjoint
completely additive refinement of the family {D,},.r. Let for r,eT

: s ()0 U, for xe D,
() Frprpe indx) = {an,"d(x) N U, for xe D\D,, .

Obviously the conditions (1), (3) and (4) are fulfilled. The only property to show is
the measurability of F,,, . _,... For simplicity we shall write in this part F, and
F,., instead of F,, .. _,.. and F, ., _, respectively.

Let U be an open subset of Y. The family {E,},.r, where

E ={xeX: F,oi(X)nU,nU # &}
is again point-finite completely additive-# and, using again Lemma 1 with respect

to the family {E},.y, we obtain its disjoint completely additive refinement
{E; =.f_1(r)}reT' Now

[-¢] [+s]
FR(UND,, = Fr(U) 0 () U LU{DND,,: reT and m2™*<r<(m-+1)275\
k=0 n=0

\U{E: reT and rz(m+1)27" e 4 .

This equality requires some proof. Let x € Fy (UN\D,,,. Of course x € D, for exactly
one 7 and so we got F,_;(x) n U, n U # @. This means that x ¢ E; for s>r and
of course x & J/y.. (U). Hence x belongs to the right-hand side.

Now let x ¢ F7(U), x ¢ D, and x & D;. It follows that F,_;(x) n U, n U = @.
From the definition of D! we know that #' = min{s € T+ F,_;(x) 0 U, n.U # @]>r.
(' is defined whenever x € F,—,(U).) For sufficiently big k we get‘(m+1)2""<r’
whenever 2 *<r< (m-1)27% But this means that x does not belong to the right-
hand side. c : ’

Realize at last that Fj(U)n D,, = F,y(Un U,) hence F,(U)e . This
ends the inductive construction of the system of multifunctions.
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We are now able to define ¥(z,x) = ﬂl‘ﬁ,:,,,,,,(x), for z = (ry, 15, ...). The

function @ is well-defined by conditions (1) and (3) and the compactness of F(x).
The ceadition F(x) = ¢(Z, x) follows from (4).

To prove the measurability of @, = &(z,*) it is enough to observe that for
a closed subset X of ¥ we have by (2) the relation

o HK) = ﬁ G By ) 0 {ye Y dist(y, K)<2™} s S e .
1

m=1 n=

- It remains to show the continuity of #(-, x). But whenever in the product metric

©

a(z,z) = 327" do(r,, rp)<27"2

n=1

for z = (r, 1y, .00, 2 = (r, 15, ),

d, being the discrete 0-1 metric, then ; = r} for i<k and therefore Frpre = Ff ol
Whence by (4) and the definition of ¢ we get dist(d(z, x), B(z, x))<27k This
proves that @(-, x) is continous for any xe X.

Remark 1. If # is generated by a field ., and F is weakly ¥,-measurable for
some a<w, then, thoroughly examinating the proof of Theorem 3 and using
Theorem 1, we see that the class of the selector.# is bounded.

Remark 2. Examinating the proof of [7], Theorem 2, one obtains in Theorem 2
a representation of the multifunction similar to that in Theorem 3.

Remark 3. We may of course in Theorem 3 remove the weight restriction
on Y by assuming that .4 consists of at most ¢ elements (which holds, for example,
if X is separable metric), but this is rather artificial. So the question is, how to get
rid of the cardinality restriction. Another way of generalizing this theorem is to con-
sider non-metrizable Y. This seems to be even more complicated. The so far best
result in this direction is that of Graf in [3]. Notice that the assertion of Theorem 3
with ¥ compact 0-dimensional would yield the existence of a Borel lifting for the
unit intervall with Lebesgue-measure (which was obtained so far under the assumption
of CH; cf. [3]). '
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