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Abstract. The main purpose of this paper is to study the three covering properties; metacoms
pactness, subparacompactness and submetacompactness, of product spaces. Every product space
dealt here has at least one factor in which Player I has a winning strategy for a certain topological
game (in the sense of R. Telgdrsky).

Introduction. R. Telgdrsky [9] introduced and studied the concept of the topo-
logical game G(K, X). Making use of it, we studied the covering properties; strongly
rectangular etc., of product spaces in [14], and studied the topological game itself
of product spaces in [15]. This paper is a continuation of [14] and [15]. It has 5 sec-
tions. Topological games are dealt with in all sections, and product spaces are dealt
with in Sections 2, 3 and 4. In Section 1, we restate the topological game in [9] and
prepare the common notations and the results quoted in some sections. In Section 2,
we study metacompactness of product spaces. The main theorem of this section gives
an affirmative answer to H. Junnila’s question in [3]. Moreover, we discuss normality
of product spaces with a metric factor. In Section 3, we study subparacompactness
of product spaces. The result here gives a product theorem in dimension theory.
In Section 4, we study submetacompactness (i.e., 0-refinability) of product spaces.
For that, the concept called strong submetacompactness is used. In Section 5, we
discuss in connection with a certain question in [9]. For that, we introduce the
concept of outer-almost §,-expandability.

§ 1. Preliminaries. In this paper, by a space we mean a topological space and
no separation axioms are assumed. However, regular spaces and normal spaces
considered here are always assumed to be Ty. For a space X, 2% denotes the collec-
tion of all closed sets in X. For a collection % of subsets in X, {J % denotes
U {U: Ue%}. For two collections % and @ of subsets in X, %<0 implies that each
member of % is contained in some member of @. For a cover 0 of X, % is a refine-
ment of 0 if % is a cover of X such that #=<0. The set of all natural numbers is de-
noted by N and natural numbers are denoted by n, m, 1, , k, etc. However, we omit N'
without confusion; e.g., N U {0} is denoted by {n: n>0}.
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Now, we restate the topological game in [9]. Here, it contains a few notations
which are different from the previous one. Let K be a non-void class of spaces which
are hereditary with respect to closed sets. Let X be a space. The topological game
G(K, X) is defined as follows: There are two players I and IL They alternatively
choose consecutive terms of a sequence (E;, F, E,, F,, ...> of closed sets in X,
where Player I first choose £;. When each player chooses his term, he knows K, X and
their previous choices.

A sequence {E, Fy, E;, Fy, ...y of closed sets in X is a play of G(K, Xy if
and only if for each ne N

(1) E, is the choice of Player I,

(2) F, is the choice of Player II,

@) E,eKk, ‘

(4) En+1CFn>

(5) Fn+ 1 CFn H

6) E,nF,=@.

Player I wins this play if () {F,: ne N} = @. Otherwise, Player IT wins it,

A finite sequence (E;, Fy, ..., E,, F,> of closed sets in X is said to be admissible
for G(K, X) if each E; and F; satisfy the above conditions (1)~(6).

A function s is said to be a strategy for Player I in G (K, X) if the domain of s
consists of all the finite sequences {(Fy, Fy, ..., F,> of closed sets in X such that
Fy = X and <Ey, Fy, ..., E,, F,> is admissible for G(K, X), where

E; = s5(Fy, oo Froyq)

for 1<i<n, and if each 5(F,, ..., F) belongs to 2¥ A K and is contained in F,.

Let s be a strategy of Player I in G(K, X). A finite sequence {Fy, ..., F,> (';t’
closed sets in X is said to be an admissible choice of Player II for s in G(X, X) ;'F the
sequence <Ey, Fy, .., E,, F,> such that E, = S(Fo, Fyy oy Fioy) for 1<i<gn
where Fy = X, is admissible for G (K, X). ’

A strategy s of Player I in G(K, X) is said to be winning if he wins each play
{Ey, Fy, By, F,, ...) such that E, = §(Fo, ..., F,_y) for each ne N.
) aLet 5be a winning strategy of Player I in G (K, X). It should be noted that each
infinite sequence {Fi, F,,...>, such that {Fi, .., F,> is an admissible choice of
Player 11 fqr s in G(K, X) for each ne N, has the empty intersection.

AAc{cordlng to [11], I(K, X) denotes the following statement: Player I has
a winning strategy in G (K, X).

In Sections 2, 3 and 4, we shall take for K the following class of spaces:

DC — the class of all spaces which can be deco mposed into a discrete collection
by compact closed sets. The quite important roles are played by the qtﬁtemenf
I(DC, X): Player I has a winning strategy in G(DC, X). h

Next, we refer P-spaces which were introduced by K. Morita [5]. In the same
pa;txe.r, he showed that X is a normal P-space if and only if X' Y is normal Iz‘orj any
glel ;L(;i[s]za;zcz’,o}n Rs'eflfggsrikz;ntglgi'P-spaces are required and we make use of the
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ProposITION 1.1, X is a P-space if and only if there exists a function
F: U{@5": neN} 2%

such that

(a) for each (Ey, ..., E)e (2% and nz0,

F(Eg, oy E) 0 (VEy: i<n} = &

and
(b) for each (Ey, Ey,..)eHY with (\{E,: n=0} = @,

U {F(Ey, ..., E): n20} = X.

Concerning both J(DC, X) and P-spaces, we have the following result.

ProprosrTioN 1.2, If a space X has a o-closure-preserving closed cover by compact
sets, then I(DC, X) and X is a P-space.

The first half of Proposition 1.2 is given in [9, Corollary 10.2], which is essen-
tially due to H. B. Potoczny [8]. The latter half of it follows from [13, Theorem 2].

A subset of a product space X'x Y of the form A4 x B is called a rectangle. For
arectangle EinX'x Y, E’ and E" denote the projections of E into X and ¥, respect-
ively. So we have E = E'x E". A rectangle E in X'x Y is said to be an open (closed
and cozero) rectangle if E' and £’ are open (closed and cozero, respectively) in X
and ¥, respectively. Moreover, a rectangle Ein X'x ¥ is said to be a closed x open
rectangle if E' is closed in X and E' is open in Y.

§ 2. Metacompactness of product spaces. This section contains several results
concerning metacompactness of product spaces and concerning P-spaces. First,
we give the following main theorem.

TaeoreM 2.1. Let X be a regular metacompact P-space and Y a metacompact
space. If I(DC, X), then the product space XX Y is metaconpact.

Proof. Let s be a winning strategy of Player I in G(DC, X) and

F: U{@%: neN} - 2¥
a function described in Proposition 1.1. Their existences are assured by the assump-
tions. Let @ be any monotone open cover of X'x Y. It suffices to show that @ has
a point-finite open refinement (cf. [3, Theorem 3.2]).

First, we shall construct three sequences {%,: n>0}, {#,: n>0} and
{o#,: n20} of collections by rectangles in X'x Y and construct two functions.
@t By Ry .y and 2 > A,y for each me N, satisfying the following con-
ditions (1.1)~(1.11) for each ne N:

(1.1) 9, = {@} and &y = {Xx ¥} = (HXx Y)} = #o.

(1.2) ¢, is a point-finite collection by open rectangles.

(1.3) &, is a collection by closed x open rectangles.

(1.4) o, = {H(R): Re®,} and it is a point-finite collection by open rectangles.
such that Rc H(R) for each Re,.

5 — Fundamenta Mathematicae CXVIX
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(1.5) %,<0.

(1.6) U%,cU #,ey.

(L.7) H(p,(R)) = ¥,(H(R)) for each Re,.

(1.8) H(R)<y,(H(R)) for each Re,.

AN If peR,_1€R,-y and p¢ ) ¥F,, then there exists some R, e, such
that pe R, and ¢,(R,) = R,_;. ‘

n

,R,,)eiﬂ.d/zl such that @R, = R,—; for 2<i<n,
E¥

, R,> is an admissible choice of Player IT for s in

(1.10) For each (R, ...

the finite sequence (R, ...
G(DC, X).

(1.11) For each (R, ...,R)e[]#; such that ¢(R) = R,_, for 1<i<n,
i=0 )

F(Rg, ..., R) 0 HR) = @.

Let Gy = {@}, B = {Xx Y}, #o= {HXxY) and H(XxY)= Xx Y.
Assume that {%;: i<n}, {4;: i<n}, {#: i<a), {p: i<n}and {Y;: in} satisfying
the above conditions have been already constructed. Now, fix an R e#,. We take

n
(Ros Rys ..., R el_—[o% such that R, = R and ¢(R)) = R,_, for 1<i<n. Tt follows

from the assumption (1.10) that there exists a discrete collection {Cy: ueQ(R)}
by compact sets in R’ such that '

5(Ro;y Ry, .o, B = U {C,: e Q(R)} .

Since X is regular metacompact, there exist two point-finite  collections
{Ver 0 Q(R)} and {W,: 2 e Q(R)} of open sets in X such that
Cos W, CIW, = V,c HR'ONU {C;: B € Q(RN{a}}

for eachf;c € Q(R). Here, by metacompactness of Y, for each o & Q(R) we can choose
a collection %(R) = {G;: Le A(x)} by open rectangles such that

(i) Ce=Gi=W, for each Le A(w),

() {G}: AeA(w)} is a point-finite collection of open sets in ¥ and its union
is R,

(iii) 9, (R)<0.
We put

R=(RNU{W,: acQ®))xR"

and

R{a, 2) = (CIW, n RNGD %Gy for each A €A(0) and aeQ(R).
Moreover, we put

H(R) = (H(RYNF(R, ..., R}, Ry)x H(RY"
and

H(R(o, D) = (VNF(R;, .., Ry, R, 2Y))x G
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Here, running' Re #,, we set
Gorr = U {%(R): 2eQ(R) and Re )

and
Rysy = R Re®,} 0 {R(a, D de A(0),xeQ(R) and Re,}.

Moreover, we set Ay = {H(Q): Qe#,.(}. The function @,.;: Bypq - &, is .
defined by

(f)rw‘l(R) =R and (/711+1(-R(“: /l)) =R

for each A& A(), x & Q(R) and Re#,. Next, the function V4,2 I, — 3£, is
defined by Y. (H(Q)) = H(p,4,(Q)) for each Q e, . It is obvious from the
constructions that the conditions (1.1), (1.3), (1.5)~(1.8) and (L.11) are satisfied.
It is edsily checked from the constructions and the inductive assumptions that the
conditions (1.2) and (1.4) are satisfied. The verifications that the conditions (1.9)
and (1.10) are satisfied are similar to that of the conditions (1.5,,,) and (1.6,,,)
in the proof of [14, Theorem 2.1], respectively. From the facts mentioned above,
the desired constructions have been completed by induction.

Now, we set & = (J {#,: n=0}. By (1.5), % is a collection of open sets in X'x ¥
such that ¥<0. We shall show that ¢ is a point-finite cover of X'x Y. For each
m,ne N with m<n, We put ¢n = Qg ® . Oy W= Wps1 00y, Op= 1z,
and Yy = 1,p,. Then {%,, on} and {o,, ¥y} are inverse systems. From (1.10), note
the following fact.

CLaM 1. For each {R,: nz0)elim{4,, ¢}, we have (\{R,: n>0} = @.

1t follows from (1.1), (1.9) and Claim 1 that & is a cover of X'x Y. The similar
arguments are found in the proof of [14, Theorem 2.1]. The detail can be seen in it,

CLAM 2. For cach (H(R,): nz0) elim{#,, ¥}, we have
N{HEY: n>0} = &

Proof. By (1.7), we have (R,: n=0) elim{#,, ¢,,}. Moreover, by Claim 1,
we have () {Ry: n20} = @ So {F(Ry, ..., R): n=>0} covers X. Hence it follows
from (1.11) that {H(R,): n0} has the empty intersection.

CLam 3. N{U o, n20} = 2.

"This follows from (1.4), (1.8) and Claim 2. The proof is similar to that of Claim 2
in the proof of [14, Theorem 2.1].

Let p be any point of Xx Y. By Claim 3, we can take some no € N such. that
p U H#,,. It follows from (1.8) that we have ., <, for each n=0. Hence
pe¢U {U o#,: n=ny}. Moreover, by (1.6), we have p ¢ U {U %,: n>no}. Therefore,
it follows from (1.2) that % is point-finite at p. Thus, we have shown that ¢ is a point-
finite open refinement of @. The proof of Theorem 2.1 is complete.

R. Telgdrsky [9] proved the following: If a paracompact T,-space X has
a g-closure-preserving cover by compact sets, then X x V" is paracompact for every
paracompact T,-space Y. H, Junnila has stated in [3, p. 234] that it is not known

5%
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whether the above result remains valid if “paracompact” is replaced by “regular
metacompact”. From Proposition 1.2 and Theorem 2.1, we obtain the following
affirmative answer to this question.

COROLLARY 2.1. If a regular metacompact space X has a o—closure—praserving
cover by compact sets, then X x Y is metacompact for every metacompact space Y,

Before the next argument, we need some notations. N* denotes the set of the
void sequence & and all finite sequences consisting of natural numbers. Let
e=(ny,...m)eN* We use the following notations; le| =4k (|@]= 0),
ey = (g, i, M) for 0 j<he—1 (ey = D), e@n = (ny, ..., m, 1) for cach n e N,
Se = ny+...4+n and I(e) = n,. The notations of Ze and I(e) are not used in this
section but in the proof of Theorem 5.1 below.

Concerning Proposition 1.2 and Theorem 2.1, it is a natural question to ask
whether each metacompact space X such that I(DC, X) is a P-space. The following
result gives an affirmative answer to this question under the assumption of X being
normal.

THEOREM 2.2. Let X be a normal submetacompact (i.c., 0-refinable) space. If
I(DC, X), then X is a P-space.

Proof. Let ¥ be any metric space. It suffices to show from [5, Theorem 4.1]
that X'x ¥ is normal. We can consider ¥ as a subspace of the Baire space indexed
by a set A such that the cardinality of 4 is equal to the weight of ¥ which is infinite
(cf. [S, Theorem 2.1]). For each ie N we put

Vo= {V s A)r Ay, My A},
where V(A ..., 4) = {(w)e ¥: py = Ay, .., gy = Ay} for each A, ..., Ared and
put ¥ = ) {#;: ie N}. Here, note that each 7’1 is a discrete cover of Y consisting
of closed-open sets and %" is an open basis of Y.

Let 0 = {0,, O,} be any binary open cover of X x Y. It suffices to show that @
is a normal cover. Let s be a winning strategy of Player I in G(DC, X).

First, we shall construct two families {&(¢): ¢ & N*} and {#(e): ee N*} of
collections by rectangles in X'x ¥ and a fanction ¢, A(e) = A(e~y) for each
ee N¥\{@}, satisfying the following conditions (2.1)-(2.7) for each ¢e N*:

1) 2(@) = {Xxx T}

(2.2) g(e) is a o-discrete collection by cozero rectangles.

@.3) #(e). is a collection by closed rectangles such that R e % for cach
ReR(e). : :

(24) Foreach Ve ¥, {Re#(¢): R = V} consists of at most finite members.

(2.5) 9(e)<0.

(26) If peReZ(e) and p¢l) F(e), then there exist some neN and
Qe%(e@®n) such that pe Q and @,q,(Q) = R.

: ¢

le]
(2.7) For each (R, ..., Ry E:E'%(EH’[) such that ¢, (R) = R, for

2<i<]e], the finite sequence (R, ..., Ri> is an admissible choice of Player II for s
in G(DC, X).
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Let (@) = {XxY}. Assume that {%(¢): ceN* with le|<m~1},
{#(e): ee N* with |e|<m} and {p.: ¢ e N*\{@} with |e|<m} satisfying the above:
conditions have been already constructed. Let us take any e e N* with |e] = m.
Here we construct ¥(e) and {#(c®n), ¢.p,: neN) satisfying the conditions.

m
(2.1)-2.7). Now, fix an Re#(c). We take (R, Ry, ..., R,)e[]%(e;-,) such
i=0
that R, = Rand ¢, (R) = R;_, for I<i<m. It follows from the assumption. (2.7)
that there cxists a discrete collection {C,: & € 2(R)} by compact sets in R’ such that

8(Ry, Ry iy Ry) = U {Cyr ¢ & Q(R)}.
For each o e Q(R), we can choose a collection
{GulAgs s A0t Ay, s A) e A(e) and k= 1,2}

of open sets in X, where A(@)= ) {4": ne N}, such that

() CozGylly, s A 0) U Go(Ay, oy A3 ),

(i) Gyldys ey A3 )XV (A, 0y ) Oy for k= 1,2,

(i) {V(Aqs s A (A, o, 4) € A(9)} is discrete in ¥ and its umion is R
Moreover, for cach «eQ(R) we can choose a collection E

{Culhs ey Az ) (Ay, o, A) e A(@) and k = 1,2}

of compact sets in X such that

(iv) Cyldq, vy Ay o) U Cylhy,s v, A3 ) = Gy,

W) Gy, vy A3 )= G(Ayy o, Ay ) for k=1, 2.
We put A(R) = |) {A(x): «eQ(R)}. Since X is normal, for each (1y, ..., 1) € A(R) -
and k = 1,2, there exists a cozero-set Uy(Ay, ..., 4;) of X such that

(vi) U {Cdy, oo, A3 @) e Q(R) such that (A, , ..., A) e A (@)} < Ulhyy e A) <
U {Gi(ys ooy A; @) ¢ @ Q(R) such that (A, ..., 1) € A(@)}. So, we put

G(e, R) = {Up(dgy cour A X V(gy ey A (Mg oev
Since X is 0-expandable (cf. [4, Theorem 2.3]), there exists a sequence
{#(R) = (W, ¢€Q(R)}: neN}

of collections of open sets in X, such that for each o€ Q(R) and neN C,is contaipcd
in W,, and for cach x € X one can choose some n& N such that #,(R) is point-
finite at x. For each (A, .., A) e A(R) and ne N we put

R,,(/h, ey /1!) = R:;(;Lm (5] }'1) XR;I('%! FRNE] )“l) 2

,A) € A(R) and k = 1,2},

where
R::(M: oy )
= RN(U {UlAys oo &) Qys s W) e A(R), j<iand k=1,2} 0
O U {W,,: aeQ(R) such that (4y,...; 4;) ¢ A(x) for each j<i}) and

R:n'(/h: vy }vi) = V(}-n s A
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Moreover, let us put
Re®n, R) = {R(Ay, wos 4): (A1, .o, A) € A(R)} .
Here, running R e Z(¢), we sect
G(e) = {%(e,R): ReA(e)} and A(e@dn) =) {#(e@n, R): R € #(e)}

for each #ne N. The function @.g,: Z(e@n) — #(e) is defined by ¢,q,(0) = R
for each Q € Z(c@n, R) and R € % (e). Now, we verify that the above constructions
satisfy the conditions (2.1)~(2.7). It is obvious from the constructions that the con-
ditions (2.1), (2.3) and (2.5) are satisfied. It follows from the assumption (2.4) that
{R": ReR(e)} is o-discrete in Y, where note that RY = R} can occur even if
Ry # R,. Since each V(2 .., 4), (A¢,...,2)e A(R), is contained in R,
{V(dgs ey 4): gy ooy ) € A(R) and Reg(e)} is o-discrete in ¥, where it also
allows the repetition. Hence, {G"': G € @ (¢)} is so. Thus ¥ (e) is o-discrete in X'x Y.
Since each member of #(e) is a cozero rectangle, the condition (2.2) is satisfied.
Pick any Ve ¥ and neN. Since {We¥": Vo W} is finite, it follows from the
assumption (24) that {ReZ(e): V=R"} is also finite. For cach Re% (e),
{Qe@(e@n, R): Q" = V) consists of at most one member. For each
0 e Z(e@n, R)such that V¢ R", we have Q" # V. Hence, {Oed(edn): Q" = Vi
is finite. The condition (2.4) is satisfied. Assume p=(x,eRe(e) and
pelU%(e). Let y = (A4, 4,,..) € ¥. We can choose some ne N such that Wo(R)
is point-finite at x. In case of xe& (J % (R): Let {ae Q(R): xe Wand = {oty, e, g}
For each j<I, it follows from (iii) and y & R” that there cxists some i; € N such that
(Ays s A € A(ey). Let us put iy = max{i;: j<I}. In case of x¢ () W (R): Take
any oy € 2(R). As the above, we can take some ip € N such that (A, ..., 1,)) € 4(ay).
In both cases, note that we have (i, ..., Li) € A(R). 8o R,(Ly, ..., Ay) € R (e®n)
and @,gu(Ri(Ay, ..., Ay)) = R are clear. We show P ER(A(, ey Aip). Tt suffices to
show x& Ri(Ay, ..., 4;). Assume xe W, and aeQ(R). Since o coincides with
some o, where k</ we have (A5 ey &) € A(w) and i.sip. Hence we obtain

xé U {Wp,: BeQ(R) such that (Aes ey A ¢ A(B) for each J<io) .

Assume x e U(),, s A, where (A, ..., A)e A(R), j<iy, and k = 1, 2. Then we
have

PEULigs s I X V(hy, oo, ) € B (e, YD (e)
which contradicts to p¢ (J @ (e). Hence we obtain
¢ U{UAL L 2D gy e, A e A(R), j<iy and k = 1, 2} .

Thus it follows from x & R’ that x is in Ry(Ay, .oy Ayp). The condition (2.6) is satisfied.
‘Pick any ReZ(e) and neN. Let (Ag, s A) € A(R) and « € Q(R). In case of
g/’.l, wies }f") ¢ A (o) for each j<i: Since Ri(Ay, oy A)) 15 disjoint from Wons it has no
mterseftmn with C,. In case of (A4, ..., %) € A(w) for some j<i: From (iv) and (vi),
-the union of Uy(4, ..., 4 and Uy(d, ..., ;) contains C,. Moreover, it is disjoint
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from Ryfly, .oy A S0 Ri(Ay, ..., ) and C, have no intersection. Hence we have
Rifdgy s i) n U {Cpt 0 Q(R)) = @

for each (A1, ..., &) & A(R). One can see from the assumption (2.7) that the con-
dition (2.7) is satisfied. From the facts mentioned above, the desired constructions
are completed by induction,

Now, we set @ = | {#(¢): e N*}. Assume peXx \U¥. From .0
and (2.6), we can inductively choose some infinite sequences (1, n,, .)eNY and
(Ryy Ry, oy such that pe ReeB(ng, .om) and @, 0(RY = R, for each
keN. Then (\{Ri: ke N} # @ follows. However, from (2.7) and the definition
of 5, we have (Y {Ri: ke N} = @, This is a contradiction. Hence 4 is a cover of
Xx Y. It follows from (2.2) and (2.5) that % is a ¢-discrete cozero-set refinement
of 0. Since ¢ is a normal cover of X'x ¥ (cf. [5, Theorem 1.2]), 0 is so0. The proof of
Theorem 2.2 is complete.

CoroLLARY 2.2. Each normal subparacompact C-scattered space is a P-space.

CoroLLARY 2.3, Let X be a normal metacompact space and Y a metacompact
space, If I{DC, X), then the product space Xx Y is metacompact.

Corollary 2.2 follows from [9, Theorem 9.7] and Theorem 2.2. Corollary 2.3
follows from Theorems 2.1 and 2.2.

§ 3. gubparacompactness of product spaces. We introduced the concept of
D-product in [15], which is restated here,

DermvrioN. A product space X'x Y is said to be a D-product if for each closed
set M and open set O in X'x ' with M <O there exists a ¢-discrete collection %
by closed rectangles such that M=) F<O.

The following result has been stated in “Added in proof” of [15]. However,
for the accuracy, we restate it with the proof.

Treorem 3.1, Let X be a regular subparacompact space and Y a subparacompact
space. If {(DC, X), then the product space X x Y is subparacompact and is a D-product.

Proof. The proof is obtained by modifying that of [15, Theorem 2.2]. Let @ be
any open cover of X'x Y. 1t suffices to show that @ has a ¢-discrete refinement by
closed rectangles, Let s be a winning strategy of Player I in G(DC, X).

First, we shall construct two sequences {#,: n20} and {#,: n=0} of collec-
tions by closed rectangles and a function ¢,: &, — #,.., for each n € N, satisfying
the following conditions (3.1)~(3.6) for each ne N:

B.1) Fy = {&)} and By = {Xx Y}

(3.2) F, is o-discrete.

(3.3) &, is o-discrete,

(3.4) 7 ,<0.

(B5 If peR,_ye,., and p ¢l F,, then there exists some R, e, such
that. p e R, and ¢(R,) = R,_. )
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n
(3.6) For each (R, ..., R,) si]']l:% such that ¢(Ry) = R,y for 2<i<n, the

- finite sequence {Rj, ..., R,> is an admissible choice of Player II for s in G(DC, x).
Let #, = {@} and %, = {Xx Y}. Assume that {7 : isn}, {A,: i<n} and

{p;: i<n} satisfying the above conditions have been already constructed. Now.
’

n
fixan Re &,. We take (Ry, Ry, ..., R,) € TT 4, such that R, = R and PR = R, |
i=0 o

for 1<ixn. It follows from the assumption (3.6) that there exists a discrete collection
{C.t @ eQ(R)} by compact sets in R’ whose union is s(R), R, ..., R;). Since R’ is
subparacompact and {R'\U{Cj: Be Q(RN{o}}: 0 e Q(R)} is an open  cover
of R', there exists a closed cover {F,,: a&Q(R) and keN} of R such that
{Fuu: 0 €Q(R)} is discrete in X for each k ¢ N and Foe RN {Cy: pe QRN\{e}}
for each «eQ(R) and keN. By subparacompactness of R", for each oceQ(]J?)
we can choose a collection v

FYR) = {CLUE x H,: i<m, and e Ao}

by closed rectangles such that
i) U,'{’i is open in F,
(i) Con FopeU {Uls: ism,),
(i) FER)<0,
(iv) {H,: Ae @)} is o-discrete in ¥ and its union is R,
Por each A e 4,(0), 2 € Q(R) and ke N we put

Re(or, 2) = (F\U {U%: i<}y % H,.

Here, running Re4,, we set

Forr = U (FUR): 0eQR), Redt, and ke N},
Rysy = {Rifer, 2): he Ay(o), e€Q(R), Red, and ke N}.

Moreover, @,.,: &, — &, is defined by ¢ ‘
, ‘ i ( Pus1(Relar, 1)) = R for each Ae A (a),
«eQ(R), ReZ, and ke N. We can similarly cheek that ., ,, #,., and (/’; ‘
satisfy the conditions (3.1)-(3.6). e o
Now, we set F = (J {#,: n20}. Then it follows similarly £
3 . : . f s similarly from (3.1), (3.5
alnd §.6)ﬁthat # is a cover of Xx ¥. Hence, by (3.2) and (3.4), # is a a»cﬁqcmte)
closed refinement of 0. Morcover, each member of F s g ssed 1 \
oot 1 oo : 1 closed rectangle, The
THEOREM 3.2(. Let Xx Y be a D-product such that either X
and let I(DC, X). Then we have the Sfollowing:
@) If Xx Y is normal, then dim(X x Y)<dim X4 dim ¥,
®) If XxY is totally normal, then Ind(X'x Y)<Ind X++Ind V.
This result has been essentially proved in [15]. In £ ing [15,
; has bee - In fact, using [15, TI ]
the proof is quite similar to that of [15, Theorem 4.1].’ B 115, Thoorem 211
From Theorems 3.1 and 3.2, it follows

or Y is non-empty
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COROLLARY 3.1. Let X be a subparacompact space which has a o- closure-preserving
cover by compact sets and Y a subparacompact space. Assuming that either X or Y is
non-empty, we have the following:

(@) If Xx Y is normal, then dim(X x Y)<dim X+ dim ¥,

(b) If Xx Y is totally normal, then Ind(Xx Y)<Ind X+Ind Y.

Remark. H, Ohta [6] has shown the existences of two spaces X and Y described
in Corollary 3.1 such that X'x ¥ is perfectly normal but not rectangular. So, our
Corollary 3.1 cannot be reduced to Pasynkov’s product theorems [7, Theorems 1
and 21.

§ 4. Submetacompactness of product spaces. We use the name “submetacompact”
instead of *“0-refinable” as in [3], A 0-sequence is defined in, for example, [3, Defi-
nition 1.2]. Moreover, we need the following definition.

DEFINITION. A sequence {#°,: ne N} of covers of X is said to be a strong
0-sequence if for cach x e X there exists some n.e N such that ¥, is point finite
at x for cach nzn,.

A space X is said to be strongly submetacompact if every open cover of X has
a.strong 0-sequence of open refinements,

Tt seems that this definition was first introduced by Y, Uemura [12], and he
showed in it that each product space of a locally compact submetacompact space
and a strongly submetacompact space is submetacornpact, Note that a locally compact
submetacompact space has a o-closure-preserving closed cover by compact sets
(cf. [2, Corollary 3.17]). So, we shall extend this result in terms of a topological
game.

Before the arguments, we need the following notations. For each n e N, M(2 xn)
denotes the set of all 2xn matrices consisting of natural numbers, and M(2x0)
denotes {@}. Let M* = |) {M(2xn): nz0}, When

ky o k
A= {1 "eM@xn),

My . My
we use the following notation;

Ay (1‘" k"“‘«’) for O<j€n~1 (A, = D).
Ny v Tl

For o subset £ of o spuce X and a collection % of subsets in X, #|E denotes
(U~ Ue,
Tagorem 4.1, Lot X be d regular submetacompact P-space and Y a strongly sub-
metacompact space. If I(DC, X), then the product space XX Y is submetacompact.
Proof. Let s be a winning strategy of Player I in G(DC, X) and

F:U{e%" ne N}y - 2¥

a function described in Proposition 1.1. Let @ be any monotone open cover of X'x Y.
1t suffices to show that @ has a 0-sequence of open refinements (cf. [3, Theorem 1.6]).
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First, we shall construct three families {#(4): A e M*}, {B(A): Ae M*}
and {5 (4): A e M*} of collections by rectangles in X'x ¥ and construct two func-
tions @, : RZ(A) > R(A-,) and Y, H(A) — #(A.,) for each A e M*\{g},
satisfying the following conditions (4.1)~(4.11) for each 4 € M*\{@}:

(4.1) 9(9) = {0} and Z(0) = {Xx Y} = {H(Xx Y)} = # (D).

(4.2) 9(4) is a collection by open rectangles.

(4.3) #(4) is a collection by closed x open rectangles.

(4.4) #(4) = {H(R): ReZ(4)} and it is a collection by open rectangles
such that Rc H(R) for each R e %(A).

(4.5) If o (A) is point-finite at p, where 4 € M*, then there exists some B e M*
such that B_; = 4 and both #(B) and 5 (B) are point-finite at p.

4.6) (4)=<0.

(47) H(p(R)) = Y 4(FH(R)) for each R e Z(A).

(4.8) H(R)=y (H(R)) for each Re % (4). :

(49) If peReR(A.;) and p¢ ) (4), then there exists some Qe (4)
such that p e O and ¢,(Q) = R.

n "
(4.10) For each (Ry, ..., R,)e[][#(4;.,), where 4e&M(2 xn), such that
i=1

®4,.,(R) = Ry for 2<i<n, the finite sequence (R}, ..
choice of Player II for s in G(DC, X).

(4.11) For each (R,, ..‘,R,,)en%(AiN,,), where 4e M(2xn), such that
i=0

a4, (R) = R, for 1<i<n,
F(Ry, ..., R)NHR) =@,
These constructions are similar to ones in the proof of Theorem 2.1 and can be

obtained by their modifications. The detail is left to the reader.
For each 4 e M(2xn) and nx0, we set
UA) = U {%(4;-,): 0<i<n} v 0[(U #(4)).
Then we show that {#%(4): deM ’ﬁ} is a 0-sequence of open refinements of 0.
Pick any deM* and pe Xx Y. Let 4 € M@2xn). Assume p ¢ |) %(4,_,) for
0<i<n. From (4.1) and (4.9), we can choose some R e (A) containing p. By
R< H(R), we have p e ) #(A). Hence each %(A) is a cover of X x ¥. Moreover,

by (4.2) and (4.6), each % (4) is an open refinement of @, Again, pick any pe Xx Y.
By (4.1) and (4.5), we can inductively choose some

7= (kl kz...)

., Ry> is an admissible

Mgy ...
such that both #(T,) and #(T,) are point-finite at p for each n e N, where
T, = (kl k”) eM@2xn).
My o m,
Going through the processes similar to ones of Claims 1-3 in the proof of The-
orem‘2,1, we obtain p ¢ ) {U #(T}): n>0}. So we can choose some 7, € N such

icm
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that p ¢ U #'(T,,). Let 4 = T,.. Since A e M(2xn,) and %(4,_,,) is point-finite
at p for 0<i<n,, %(A) is point-finite at p. The proof is complete.

Next, we consider what kinds of submetacompact spaces are strongly sub-
metacompact.

ProPOSITION 4.1. Spaces which are the countable union of closed metacompact
subspaces are strongly submetacompact,

Proof. Let X be a space which has a countable closed cover {X,: 1 e N} such
that each X, is metacompact. Since () {X;: i<n} is metacompact for each ne N,
we can assume Xy X, ... Let @ be any open cover of X. For each ne N, there
exists a collection #7, of open sets in X such that #,<0, |) ¥°, 5 X, and it is point-
finite in X,,. Let us put %, = #", v O[(X\X,) for each neN. Then the sequence
{%,: ne N} of open covers is a strong 0-sequence of open refinements of @.

PROPOSITION 4.2. Subparacompact spaces are strongly submetacompact.

Proof. Let X be a subparacompact space. Let 0 be any open cover of X. There
exists a closed refinement & = |J {#;: ie N} of 0 such that &, = {F;: Le 4}
is discrete in X for each i e N. For each A& A; and i € N, we choose an O, e ¢ con-
taining F,. Since X is discretely subexpandable (cf. [4, Theorem 3.2]), for each ie N'
there exists a sequence {¥",, = {V,,: Aed;}: ne N} of collections of open sets
in X, satisfying -

() P Vi< Vi1 @ Vi = O, for cach Aed, and ne N, and

(ii) for each x € X we can choose some # & N such that x is contained in at most
one member of #7,.

Let £y =@ and E; =) {U #,;: j<i} for ecach ieN. Then {E;: ie N} is
amonotone closed cover of X. For each i, n &€ N, we put W, = {Vi,NEi-qthe A}
Moreover, for each i,ne N we set

Uiy = U {00 J<i} U O[(X\E) .

Now, we show that {%,,: i,ne N} is a strong 0-sequence of open refinements
of 0. Tt is easy to check that each %, , is a cover of X. So each %, , is an open refine-
ment of @. Let x ¢ X. We take some /y € N such that x & £,\E, . For each j<i,
we choose some #; € N such that x is contained in at most one member of ¥, ..
Here we put ny = max{n;: j<iz}. Let us pick any /,neN such that i>i and
nzngy. 1t follows from the choice of ny and (i) that x is contained in at most i, mem-
bers of U {#"),: j<iy}. For each j>iy, U #';, and £, are digjoint. So x is con-
tained in no member of () {#",: j>iy}. Clearly, we have x ¢ X\E;. Hence x is
contained in at most i, members of %,,. Therefore, %;, is point-finite at x for
each iz, and nzn,. This implies that {#,,: i, ne N} is a strong 0-sequence of
open refinements of @. The proof is complete.

§ 5. Outer-almost ¥, -expandability. Tn this section, Jet X and L be non-void
classes of spaces ‘which are hereditary with. respect to closed sets. According to [9],
we denote by oK the class of all spaces X = (J {X,: neN} such that

{X,: neN}c2*n K,
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and by FK the class of all spaces X = {J {X;: i<n} such that {X;: i<n}c2¥n K
and n e N. Moreover, we denote by DK the class of all spaces which have a discrete
cover consisting of members of K. .

It was asked in [9, Question 4.10] whether I(cX, X) implies I(K, X). Professor
Telgarsky and the referee of this paper have kindly informed the author that this
question is negative under the continuum hypothesis. Indeed, the author has been
pointed out the following.

ExampLe 5.1. Assuming CH, there exists a Tychonoff space X such that
I(e1, X) but not I(Z, X) where I denotes the class of all one-point spaces.

Let ¥ be a Lusin set such that G(I, X) is undetermined. Under CH, the existence
of Yis guaranteed in [1, Corollary 4]. Let D be a countable dense subset of ¥, Put
X = Y, which is defined as follows; neighborhood base of each x e D is the same
as in ¥ and {x} is open in X for each x € X\D. It is easily verified that X'is a desired

- space.

Now, take a class L such that, for a space X, Kn2¥cL n 2¥ceK n 27,
Here, we consider when I(L, X) implies I(K, X).

DEFINITION. A class L is said to be outer-almost 8y-expandable in a space X
with respect to K if each Fe2* n L is a union of {F,: ne N}=2¥ A K such that
there exists a collection {W,: ne N} of open sets in X, satisfying the following;

(i) it is point-finite at each point of X\F,

(ii) F,= W, for each ne N.

Note that the condition (i) can be replaced by

(@) Wy oW, for each ne N and {W,: ne N\F = @.

THEOREM 5.1. If a class L is outer-almost xo-expandable in a space X with respect
to K, then I(L, X) implies I(K, X).

Proof. Let t be a winning strategy of Player I in G(L, X). We use the notations
of N*, e®n, e_;, le|, e and /(e), which have been explained before Theorem 2.2.

Now, assume that we have already constructed an admissible sequence
<Ey, Hy, ., B,y Hyy in G(FK, X) such that E;.; = s(H,, Hy, ..., H,) for
0<igm~1, where H, = X, and such that there exist two families

{7 (¢): ee N* with STem—1}

and {#°(¢): ee N* with Ze<m~1} of collections of subsets in X and a collection
{R(e): e e N* with Zesm—1} of closed sefs in X, satisfying the following con-
ditions (5.1)~(5.9) for each ee N* with Ze<m—1:

(5.1) F(e) = {Fle®n): ne N}c2* n K.

(5.2) W' (e) = {W(e®n): ne N} consists of open sets in X,

(5.3) W(edn+1)<=W(e®n) for each ne N.

(54 N{W(edn): ne NNU F(e) = @.

(5.5) F(e@n)=W(e®n) for cach ne N.

(5.6) B = U {F(e): Te = k} for each k<m.

(5.7 R(®) = X and R(e) = Rle~y) n H,\W(e).
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(5.8) {R(eg~pep)s --er Rle-y), R(e)) is an admissible choice of Player II for ¢
in G(L, X).

(5.9) t(R(B), R(ey~(eps .-» Rley), R(e)) = U Z (o).

We pick any e e N* with e = m. We put R(e) = R(e—() n H,\W(e). For
each n<l(e), we have Fle_,@n)cEy,  .ncX\H,. For cach n>I(¢), we have
Fle_,®n)= W(). These follows from the incfuctive assumptions. Since

t(.R(g), .R(e‘[_',,l\), iy R(_C’..]))

is represented by U #(e~y) = U {Fle-;®n): ne N}, it is disjoipt from R(e).
BY R(c-.) 2 R(€), {R(egie))s s Rle~q), R(€)> is an admissible choice of Player Il
for ¢ in G(L, X). So there exist two collections & (e) = {F(e@®n): ne N} and
W (e) = {W(e®n): ne N} of subsets of X, satisfying the conditions (5.1)-(5.5)
and (5.9). Let us put
Epuy = U {F(e): Ze = m+1} = s(Hp, ..., H,) .

Clearly, E,,.., € FK. Thus the conditions (5.1)-(5.9) are satisfied. Finally, Player II
choose any closed set H,, ., in X such that H,.,<H, and E, . 0 H,y = .
The desired constructions are finished.

In order to show that s is a winning strategy of Player I in G(FK, X)), it suffices
to show (\{H,: meN}=@. Assume x,€()[H,: meN} Then we ha‘{e
%o ¢ U {U #(e): e e N*}. Indeed, assume X, € U & (e,) for some e, € N*. So, x4 18

'in some Fleo®ny). By (5.6), Feo®ny) is contained in Ejg+ 55, Which is disjoint

from Hyg, 4n,- This contradicts to xo-€ H geg4ne+ Hence, by (5.4), one can inductively
choose some infinite sequence (ry, 7, ..)eN" such that xo¢ W(ny, ..., m) for
each keN. Let e(k) = (ny,...,n) for each keN. Then it is easily seen
%o € () {R(e(k)): k & N}. However, by (5.8), we can obtain {R(e(®)): keN} = @.
This is a contradiction. Hence we have I(FK, X). By [9, Theorem 4.1], I(K, X)
is true. The proof is complete.

For a regular Lindeldf space X, DK is outer-almost No-expandable in X w.ith
respect to K. So we obtain, by Theorem 5.1, the following Telgdrsky’s result, which
follows from [L1, Theorem 3.4].

COROLLARY 5.1. For a regular Lindeldf space X, I(DK, X) implies I(K, X).
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