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Abstract. In this paper we give a (consistent) solution to a problem of A. Hajnal and
1. Juhdsz [3], namely we show a model of set theory with 29> @, in which there exists a regular topo-~
logical space X with an uncountable netweight and such that every subspace of X of power smaller
than that of X has a countable netweight.

Intreduction. In [3] A. Hajnal and I. Juhdsz, in connection with a problem of
M. G. Tkadenko, showed that it is consistent with set theory to assume that there
exists a Hausdorff' space X of power w, with the following properties:

1. nw(X) = w,,

2. nw(Y) = o for every subspace Y<X of power w,.

They suggested the natural problem whether an analogous result for regular
spaces could be proved. This paper gives a solution to this problem.

We recall that nw(X) is the netweight of X;, i.e. the smallest cardinal of a network
for X.

Throughout the paper we use the standard set-theoretical notation. We use the
forcing technique as described e.g. in [1].

The graph topology. Let [X1%% = {ycX: |y| = 1v|y| = 2}

We say that the function f: [X)%? — 2is a graph iff f ({x}) = O for every xe X
(the elements x, y € X are considered to be connected by an edge in the graph fiff
f({x’ J’}) = 0)

For every xe X and i<2 we put

Up={reX: f{{x, ) =1},

in particular x e U2 for every x e X.

We are going to study the topology t, on X generated by the subbasis

{Ul: xe X &i<2}.
Clearly the space X with the topology ; is 0-dimensional. :
Let H(X) be the set of all functions from finite subsets of X into 2. For

ee H(X) we shall put
U= [} U™,

xedom ()


GUEST


38 K. Ciesielski

Hence the family {U,: e€ H(X)} is a basis for <. :

Let F be a-family of sets. We say that the graph ft [X 152 = 2is co-full over F
if for every infinite Ce F n P(X) and every ¢ € H(X) there exists a ¢ € C such that
f({c,y}) = e(y) for each y e dom(e).

Let us note that if £; [X]5% - 2 is w-full over F then for every infinite sub-
space Y<X such that Ye F we have the equivalence:

UnYcUsn Y iff dce for every e, 0 H(X).
If Y is a subspace of X then we put
O(Y) = {{d,&): A=Y & A is finite & s € H(X) & A= U}
with the ordering relation
{d,ed<(B, 8y iff AoB&e>d.

We say that a subset Q of a partially ordered set is compatible if every two
elements of Q are compatible.

Now we can formulate the following

Lemma 1. If J: (X152 = 2 is w-full over F, Y& F is an infinite subspace of X
and Q(Y) is a union of a countable family of compatible sets then nw(Y)<w.

The proof of the lemma is contained implicitly in [3].

~ The idea of the proof. In order to construct a model with a regular topological
space having the required properties we first add generically a graph f: [#]$2 — 2
for a regular cardinal x using finite conditions and then add for each a<x a generic
decompo’sii:ioh of Q(x) into a countable family of compatible sets.

The o-fullness of the graph f over the family % = {u: a<x} follows by the
genericity of f. Tt easily gives the 1'eg111arity of {x,7,>. By Lemma 1 we also get
a countable network for each subspace o<, where a<x.

Since our forcing is. ccc, it remains to show that nw(x)> .

It is also. very important to mention that in order to define the poset Q(a) for
o<x it suffices to know the values of the graph only for pairs {{, n} such that
min{{, n}<a.

Now we turn to details.

Construction of the model. Let %>, be a regular cardinal. We define several
posets:

@) ! S = {se H([x]%?): V{x} e dom(s)[s({x}) =0}
ordered by reverse inclusion,

(i0) B,={{d,): Aca & d is finite & s € H()} " for a<gx
with the orderiﬁg relation ’ ‘

(A, 85<(B,8> iff A>B&s>5,
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(i) @ = {g: Fne(q) & dom(q)
=xx0 & Va<u¥n<olg(a,n) € B, & lsupp ()| <o}
where supp(q) = {<a, n): q(o, n) # <0, 0)} with the ordering relation
91<q, T gy(e, m)<qy(e,n) for any a<x and n<o,
(i) P={sq>eSxQ: Ya<uVn<oVa¥b[q(x,n)
={4,e)&ac4&bedom(e)
= ({a, 8}, e esv(a = b &ed) = O]}

with the ordering relation

) {51, 41> <s2, 42> iff 5K, and 91549z -

Let us remark that the forcing P can be considered as a product forcing, i.e.
P={s,q>eSxQ: Va<uVn<ols ' g(e, n) e Q()"]} .

THEOREM 2. The forcing P is ccc.

The proof will be postponed until the last section of this paper.
Let a<x. We fix some notation:

D* = [na]¥%, D, = ["N\D* = {{{,n} € ¥]**: min{¢, n}<o},
S, = {se8: dom(s)cD,} and S5*={seS: dom(s)cD}.

The orderings of S, and S* are the reverse inclusion.
Next, let

0, ={qtaxw: ge 0} and O ={g}(@)xw: ge O}
both be ordered by

q1<q, iff g8, mM<q(B,m) for every (B, n)edom(yy).

Tt is clear that S=~S,xS5* and Q~Q,x 0%
Finally, let

R, = {{51, q15 53, 20 € S, x 0, x 8% 0% Vp<aVn<wYaVb[q,(8, n) v
={d,e)&aed&bedom(e) - ({{a,b},e(B)) s, v
via=>b&e®d) = 0))]| &VpzaVn<oVaVb[q,(f,n) ={4,s &
&aeA&bedom(e) = (({a, b}, e(B)> es, Us,v(a=b&e®) =0))]}

be a poset with the ordering rfelation
$S0s 15525 Q2D S50, 40,52, 420 I 51 <5t & g1 <q1 &5,<53 & 4203
It is easy to see that a mapping g,: P — R, defined by
9.5, q) = (s} Dy, qglaxw,st D% gl (e\o) x 0} 'for any <{s,q>e€P

is an order isomorphism of P and R,.
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From now on we shall identify P with R,.

Let M be a countable transitive model of set theory and let %>, be a regular
cardinal in M. We consider a forcing P in M defined for » and let G be an M -generic
filter over P. '

We define

G, = {<s, gy €8, % Qu? <5,¢,¢0,0>,1>€G}

where 1 is the maximal element of QF,

G* = {¢s, q> e 5% Q% A5y, 4> [Cse, 4055, 9 € Gl} -
Next,
P, ={ds,q> €S, x 0y <5,4,¢0,0),1>eP}eM,
P = {(s, g e STx Q% Alsy, qi)> € Goldses qus 5, ) € Pl e MG,
are the posets ordered by

1, 0S8, gy M < & 9159z -
A standard argument shows
PROPOSITION 3. G, is M-generic over P,, G* is M|G,]-generic over P* and
MGl = M[G,]IG"].
Let f= U {s: <5, ¢) € G} and X = (x,1,).
THEOREM 4. M[G] is a ccc extension of M such that
() X is regular (even hereditarily normal),

2) nw(Y)<w for every subspace Y of X of power smaller than x,
3) nw(X) = x.

Proof. We begin with the following

PROPOSITION 5. For every a<x the graph f} D* is w-full over M[G,]. In par-
ticular f is w-full over .

For the proof it is enough to show that for every infinite Ke M[G,] n P (3\®)
and every ¢ € H(3\o) the set '

D= {{s, ¢y e P Ane KV edom(e) [s({n, () = (0]} € MIG.]
is dense in P%

(1) By Proposition 5 it follows immediately that for every { <& < there exists
n<x such that { e U,‘,’ and £ e U,}, i.e. X is a Hausdorff space. Since X is 0-dimen-
sional, it is also regular.

(2) From ‘an obvious inequality nw(¥)<nw(X) for a subspace ¥ of X and
from Proposition 5 and Lemma 1 it follows that it is enough to show that for any

infinite @< the set Q(x) is a union of a countable family of compatible sets.
We take o<y and let

0n={g,n: s, > Gl for n<o.
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We show that Q&) = {J {Qﬁ:‘ n<w}. If {4,e> e Q% for some n<w then there
exists {s, ¢) € G such that g(«, n) = (4, &). Hence, by the definition of f, A< U,,
ie. (4,e>e Q). If {4, &)e Q(c) then

Vae AYbedom(e)[f({a, b)) = &(b)].
Hence, by the finiteness of Axdom(e), there exists <s,,q,> € G such that
Vae AVbedom(e)[sy({a, b)) = &(d)].
It is enough to show that the set

{Ks, gy eP: An<wlgle, n) = (4, ]}

is dense below {sg, gop.

Let {s,g>eP and <s,q9><{sy,qoy. There exists an n<w such that
o, n> ¢ supp(q). Let ¢’ e Q be defined by

: q(B,m) for (B, my # La,mp,
76 m) = {(A,s) for (B, m) = {u,my.
It is easy to see that <s, ¢'> e P and <s, ¢')<<s, g). )

In order to complete the proof of (2) it is enough to verify that each @y is
compatible.

Let (Ay, 8, {4y, &, € Q. Then there exist {so, g0y, {51, 41> € G such that
g, m) = {A;, &) for i<2. Let {s,¢>€C be a common extension of {sg, qoy
and. (s, ¢;)>. Then g(a, n) extends (4o, &) and {4;, &>, which completes the
proof of (2).

Let us note that the space fulfilling condition (2) (where x is a power of X’ )
is hereditarily Lindeldf. Hence (see [2]) X is hereditarily normal.

(3) To the contrary, let us assume that nw(X)<x. So there exists a network
{Fp: {<y} where y<ux.

By the regularity of X we can assume that all Fy are closed for {<y. Hence,
by hereditary Lindelofness, we can assume that

Fp=u\ U Uevé for any {<y.

n<o

Let E: yx o — H(x) be a mapping defined by

E(,n) = ¢ for any {<y and n<o.

A standard argument shows that there exists an o<x such that
@) Ee M[G,].

We can also assume that
(i) . U {dom(ep): {<y &n<owjcw,
(iti) U {Fp <y &R <)o
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Since '} D, € M[G,] and the fact that for the definition of U,. where ¢ e H (o),
the knowledge of f} D, is sufficient, we have

F,e M[G,] for each {<y.
Let fza. We show that
Yi<y[f ¢ Fyv FyeUpl,

which contradicts the assumption that {F: {<y} is a network.

Let {<y. If || <x then, by (iii), B ¢ Fy. If |Fy| = % then F\ee M[G,] is an
infinite subset of »\«. Hence, by Proposition 5, there exists an 1 € Iy, such that
Sn. B = 1. So n¢ U, i.e. Fyt U,

This completes the proof of Theorem 4.

Proof of Theorem 2. Let y = {{ag, Mo, ..., {&y—1, 1,_;>} be a subset
of % xw. We define the posets:

9, = {q: Fuc(g) &dom(q) = n & Yi<nlq(i) € B, ]}
with ordering relation
7152 It g (D<q,(0)
Py={{s,q>eS% 0, Vi<nVaVb[g() = (4, &> &acd &be dom(s)
> (e, b}, e(®)> esv(a = b &e(b) = )]}

for every i<n,

with the ordering relation

1 1<, 40> T

We shall repeatedly use the following simple combinatorial

PROPOSITION 6. If B is finite, C is countable and hg: B— C for {<w,, then
there exists an uncountable subset K of wy such that hy = hy for every {, ek
LemMmA 7. P, is cce.

515, and ¢, <q, .

Proof. Let Kspgy: {<w,)> bea sequence of elements of Py and let
@) = {44, &y

We will show that there exist & <n<w; such that (s, ¢,
compatible.

for each i<n and {<w, .
> and (s, ¢, are

Without limiting generality we may assume that for every {<cw,

6)) dom(s) = [d]%* for a certain finite de<x,
)] U dom(eh=d;,
i<n
3) ‘ U Aicd,.
i<n

By the 4-lemma we may assume that

@ ' d=aub for any {<w,,
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where .
®) agna, =0 for any [<n<w;.

By applying Proposition 6 to the functions s b [6]%%, we can assume that
s b [b]sz = st [b]%? for every {,n<w,. So

©) s usy,esS  for every { <oy .

. . .

By applying Proposition 6 to the functions /,: # — o defined by h;(l) = |4y
for i<n, we can assume that for any i<n there exists a #; such that |4 = #; for
any {<w;. Hence we may assume that

(7)  there exist Zo, ..

Ay = {ogs, s i "}

, t,—1 € @ such that
for any {<w; and i<n,
and by the same argument

(8) there exist rg, ..., Iy—; € @ such that

and  dom(ef) = {8, .., st

(dom(s))] = r; for any (<@, and i<n.

By applying the same argument to the functions

e U ({i}xr) =2

i<n
defined by
i, J) = e(8f)  for each i<n and j<i;,
we may assume that
) 32(5'1,0 = 55(%0
The same argument applied to the functions

B:b—Plx Uty
4 i<n

for every {,n<aw, .

defined by
(@) = {<,j>: a = o)} for any aeb
allows us to assume that

(10) for every ueb

il o= ot{, then o= oz,J,,i for. every n<my
and similacly
1) for every aeb

it a=0l

Finally, by applying Proposition 6 to suitable functions we may assume that

then o =0}, for every n<w;.

(12) if &, =0z then 81, =oh, for every n<oy,
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and
(13) if of;=0p; then of,=o0a; forevery n<o,.

After having done all these restrictions we show that any {s;, ¢,> and <s,, iy
are compatible.

Let{,new,. Sinc_e Qgs Gy € Q,, we have g(i), q,(i) € B, for i<n. Hence Aécocl
and Adjce;, ie 4iuAico, Moreover, dom(s)) ndom(chcb, Hence, if
o edom(sﬁ) ndom(e,) and o = é,j,,, then (by (11)) o = 5{‘1. So, by (9)

6(0) = 8(81) = &y(65) = ey(®)
ice. g U she HOO.
Let us put for i<n
Ad=diudl, d=dud, qi)= .

We have g€ Q, and g<¢q;, ¢<gq,.
In order to complete the proof it suffices to show that there exists an se S
such that

(@) s U s,Cs,
®) {8, g0 Py,
In order to show (b) it is emough to show
© Yi<nVae A'Ybedom(e[s({a, b)) = £(b)].
If a€ 4; and b e dom(s}) then, by (2) and (3), {a, b} e dom(sy). So, by (a)
s({a, B}) = s({a, b}) = &j(b) = &'(b).

Similarly for ae A,", and b e dom(e,).
So it is enough to find s&.S such that

@ Sp U s,es,
(i) Vi<nVae 4;Vbedom(e})[s({a, b}) = &(B)],
(iif) Vi<nVae 4,¥bedom(e))[s({a, b)) = &(b)].

Let us define the following functions for i<n
S;({“g,i, 55,1}) = 6},(5,,;,1)
51’({“5,» 5?,:}) = 62(5’5,0

for j<t, and k<r;,

for j<t; and k<r,.
Let ’

s=sus0 U Grus.
i<n
Since clearly s satisfies (i), (i) and (iii), it suffices to show that se S.

L sy us,eS (by (6).
IL sie S for any i<n.

icm
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Let {of;, 0k} = {ofs, 80} If of; = of; and 65, = 87, then

si{ods O5}) = (0% = ei(om) = sil{urti o)) .
If af; = o and of, = Op; then oj;ed;nd, =b. Hence, by [10], oz; = o
So a); = &y, and
g;({“i“ 55:1}) = Erii(é";,i) = Sn({“'ll.i’ 5§,i}) = Sn({ak,b 5:,1}) =0.
Similarly we show that si({of;, S"}) = 0, i.e. s is a function.
Morecover if ocg,l = 5};'1- then we also have sQ({ocg,i, 55_1}) =0, i.e. sjes.
1. si" €S for any i<n. .
The proof is similar.
IV. s} L s U s, is a function for any i<n. ]
Let {ocg,“ ﬁij,,} e dom(s; v s,). If {ocg_i, 5’,;,1} edom(s) then J,,€b and hence,
by (11), 8%, = &, So, by (9,
LA . .
S;({“g,w 5:;,1}) = 611,(55,1) = Eé(élg‘,i) = S{({aé.i» 5’;‘,i}) = (s S,,)({“E,i, 5;,.:}) -
If {af,, 8"} e dom(s,) then af;eb and, by (10), ay; = aj.. So
S;({“l;’i,h 5:;}) = 3},(5:,1) = Sn({“z,h 5:,1'}) = (spUs,) ({“’Z,s, 5’;;}) .
V. s’ U U s, is a function for any i<n.
The proof is similar.
VI. s U s} is a function for any i,j<n. . ;
Let {of;, 8hib={of ons} I of; = af;and Oyi= S thjen, by (13), o'c",,,i = o
and si({o}, 84} = ehtoh) = s,({ohi, 31,0 = sy({eins 63.5) = &) = EACEAN
If afi = &y ; and of; = 55,,¢ then oc'E,,, af;eb and by (10)
o = of; =6;; and Sy = oy =op;.
Hence }
» m e WJI85 N — o m . sS .
S’i({“é‘,h“sfbi}) = 5;(‘351,!) = Sn({“’r;,h 55].1}) ‘= Sq({érsl,j’ “mj}) = s’l(aﬂJ . J({“Z,J’ 611,.7})
VIL s U s} is a function for any #,j<n. .
The proof is similar.
VIIL s} u s} is a function for any i,_z;<n. 1 o
Let {of), &)} = {ogny, Ok 10 o = oy amd Oy = 8%, then af;, Sye€b. So,
by (10) and (11) 1
5
oy = oy =afy and  0Li=0n =0
Hence, by (9)
k 1 - m s
si{ods, 8.0 = 6,6, = a6k = s{aks, 84 = se{elss 0
= g8} = 57 ({on 0011 -
] ! k 1 !
If of = &}, and op; = 8,1 then, by (12), a’;’f{n = 6;,¢.jHence, by’r {(9) sls(x{a?)b Si})
¥ LA " ’ 5 - 8 = ¢ m i
= 6l(6),) = eidh) = s{eda o) = sl af ) = ellor,) = S5 Qo> O


GUEST


46 K. Ciesielski

Tt is clear that conditions I-VIII give s € S and our proof of Lemma. 7 is complete,

Now we prove Theorem 2. Let {{(sy, ¢;>: (<o) be a sequence of elements
of P. We show that there exist { <#<w, such that {s;, g;> and <s,, ¢,> are com-
patible. By the 4-lemma we may assume that

supp(gp) = y U w; for every {<w,
where

wenw, =0 for every {<n<w;.

Let P, = {<s, g} y>: {s,4> &P} be a poset with the ordering relation
N MASC O ]

Clearly P, and P, are jsomorphic.
Let us consider a set {<s;, g; }¥>: {<aw,} of elements of P,. By Lemma 7 there
exist {<n<w,; and <s, gy € P} such that <s, g><{sy, q; 1 y> and s, > <y, 4, M)
Let ¢' € Q be defined by

so8 & Va,n) eylglx, n)<q'(x, n)] .

q(e,n)  for {a,nyey,
oy = A9l fox Caym) e we,
q'e,n) = gy, m)  for {a,m) e w,,
<0,0> - otherwise.

1t is easy to see that (s,q') &P and <s,q')<{s;, q;» and s, 4D <5y 4
This completes the proof. )
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Topological games and products, II
by

Yukinobu Yajima (Yokohama)

Abstract. The purpose of this paper is to study the topological games (in the sense of
R. Telgdrsky) of product spaces: Assume that Player I has winning strategies in the given topological
games of X and Y. Then we consider the conditions of a product space Xx ¥ under which he has
a winning strategy in a certain topological game of X'x Y. Moreover, we can apply the results ob-
tained from this kind of argument to the product theorem in dimension theory.

Introduction. R. Telgdrsky [14] introduced and studied the topological game
G(K, X). In our previous paper [19], we have used it to study the covering properties
of product spaces. In the present paper, we shall study the topological game on
product spaces. If the above K is the class of all one-point spaces, then the game
G(K, X) is often abbreviated by G(X), which is called the point-open game.
R. Telgdrsky [15] stated the following: If Player J has winning strategies in G(X)
and G(Y), then he has a winning strategy in G(X'x ¥). This gives the positive
answer to [14, Question 14.1]. In this connection, we raise the following natural
question: Assume that Player I has winning strategies in G(Ky, X) and G(K;, T).
What is a topological game of X'x ¥ which is interesting to investigate? What is
a condition on Xx Y under which he has a winning strategy in such a game?
In §2 and § 3, we discuss this question. In §4, using the result of § 2, we give
a product theorem in dimension theory.

Each space considered here is assumed to be a Hausdorff space. N denotes the
set of all natural numbers and in denotes an infinite cardinal number. For a space
or a set X, by x(X) we mean the character of X and by [X] the cardinality of X.
For a collection § of subsets of X, | § denotes J {F: Fe §}.

§ 1. Topological games. R. Telgdrsky [15] has introduced an equivalent form
of the game G(K, X) defined in [14]. The new form of the game we use below.

Let L be a class of spaces and let X be a space. We define the topological game
G(L, X) as follows: There are two players; Player I and Player II. Player I chooses
a closed set E; of X with E; € L, and after that Player IT chooses an open set Uy
of X with E, < U,, Again Player I chooses a closed set E, of X with E,e L and
Player IT chooses an open set U, of X with E,=U,, and so on. Here, the infinite
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