

On the netweight of subspaces

by

Krzysztof Ciesielski (Warszawa)

Abstract. In this paper we give a (consistent) solution to a problem of A. Hajnal and I. Juhász [3], namely we show a model of set theory with $2^{\omega} > \omega_1$ in which there exists a regular topological space X with an uncountable netweight and such that every subspace of X of power smaller than that of X has a countable netweight.

Introduction. In [3] A. Hajnal and I. Juhász, in connection with a problem of M. G. Tkačenko, showed that it is consistent with set theory to assume that there exists a Hausdorff space X of power ω_2 with the following properties:

1.
$$nw(X) = \omega_2$$

2. $nw(Y) = \omega$ for every subspace $Y \subset X$ of power ω_1 .

They suggested the natural problem whether an analogous result for regular spaces could be proved. This paper gives a solution to this problem.

We recall that nw(X) is the netweight of X, i. e. the smallest cardinal of a network for X.

Throughout the paper we use the standard set-theoretical notation. We use the forcing technique as described e.g. in [1].

The graph topology. Let $[X]^{\leq 2} = \{y \subset X : |y| = 1 \lor |y| = 2\}.$

We say that the function $f: [X]^{\leq 2} \to 2$ is a graph iff $f(\{x\}) = 0$ for every $x \in X$ (the elements $x, y \in X$ are considered to be connected by an edge in the graph f iff $f(\{x, y\}) = 0$).

For every $x \in X$ and i < 2 we put

$$U_x^i = \{ y \in X : f(\{x, y\}) = i \},$$

in particular $x \in U_x^0$ for every $x \in X$.

We are going to study the topology τ_f on X generated by the subbasis

$$\{U_x^i: x \in X \& i < 2\}.$$

Clearly the space X with the topology τ_f is 0-dimensional.

Let H(X) be the set of all functions from finite subsets of X into 2. For $\varepsilon \in H(X)$ we shall put

$$U_{\varepsilon} = \bigcap_{\mathbf{x} \in \mathrm{dom}(\varepsilon)} U_{\mathbf{x}}^{\varepsilon(\mathbf{x})}.$$

Hence the family $\{U_{\varepsilon}: \varepsilon \in H(X)\}$ is a basis for τ_f .

Let F be a family of sets. We say that the graph $f: [X]^{\leq 2} \to 2$ is ω -full over F if for every infinite $C \in F \cap P(X)$ and every $\varepsilon \in H(X)$ there exists a $c \in C$ such that $f(\{c,y\}) = \varepsilon(y)$ for each $y \in \text{dom}(\varepsilon)$.

Let us note that if $f: [X]^{\leq 2} \to 2$ is ω -full over F then for every infinite subspace $Y \subset X$ such that $Y \in F$ we have the equivalence:

$$U_{\circ} \cap Y \subset U_{\delta} \cap Y$$
 iff $\delta \subset \varepsilon$ for every $\varepsilon, \delta \in H(X)$.

If Y is a subspace of X then we put

$$Q(Y) = \{ \langle A, \varepsilon \rangle \colon A \subset Y \& A \text{ is finite } \& \varepsilon \in H(X) \& A \subset U_{\varepsilon} \}$$

with the ordering relation

$$\langle A, \varepsilon \rangle \leq \langle B, \delta \rangle$$
 iff $A \supset B \& \varepsilon \supset \delta$.

We say that a subset Q of a partially ordered set is *compatible* if every two elements of Q are compatible.

Now we can formulate the following

LEMMA 1. If $f: [X]^{\leq 2} \to 2$ is ω -full over $F, Y \in F$ is an infinite subspace of X and Q(Y) is a union of a countable family of compatible sets then $nw(Y) \leq \omega$.

The proof of the lemma is contained implicitly in [3].

The idea of the proof. In order to construct a model with a regular topological space having the required properties we first add generically a graph $f: [\varkappa]^{\leq 2} \to 2$ for a regular cardinal \varkappa using finite conditions and then add for each $\alpha < \varkappa$ a generic decomposition of $O(\alpha)$ into a countable family of compatible sets.

The ω -fullness of the graph f over the family $\kappa = \{\alpha : \alpha < \kappa\}$ follows by the genericity of f. It easily gives the regularity of $\langle \kappa, \tau_f \rangle$. By Lemma 1 we also get a countable network for each subspace $\alpha \subset \kappa$, where $\alpha < \kappa$.

Since our forcing is ccc, it remains to show that $nw(\varkappa) > \omega$.

It is also very important to mention that in order to define the poset $Q(\alpha)$ for $\alpha < \varkappa$ it suffices to know the values of the graph only for pairs $\{\zeta, \eta\}$ such that $\min \{\zeta, \eta\} < \alpha$.

Now we turn to details.

Construction of the model. Let $\kappa > \omega_1$ be a regular cardinal. We define several posets:

(i)
$$S = \{s \in H([\varkappa]^{\leq 2}) : \forall \{x\} \in \text{dom}(s) [s(\{x\}) = 0]\}$$

ordered by reverse inclusion,

(ii) $B_{\alpha} = \big\{ \langle A, \varepsilon \rangle \colon A \subset \alpha \& A \text{ is finite } \& \varepsilon \in H(\varkappa) \big\} \quad \text{for} \quad \alpha \leqslant \varkappa$ with the ordering relation

$$\langle A, \varepsilon \rangle \leq \langle B, \delta \rangle$$
 iff $A \supset B \& \varepsilon \supset \delta$,

(iii) $Q = \{q: \operatorname{Fnc}(q) \& \operatorname{dom}(q)\}$

$$= \varkappa \times \omega \& \forall \alpha < \varkappa \forall n < \omega [q(\alpha, n) \in B_{\alpha}] \& |\operatorname{supp}(q)| < \omega \}$$

where $\operatorname{supp}(q) = \{\langle \alpha, n \rangle : q(\alpha, n) \neq \langle 0, 0 \rangle \}$ with the ordering relation

$$q_1 \leqslant q_2$$
 iff $q_1(\alpha, n) \leqslant q_2(\alpha, n)$ for any $\alpha < \kappa$ and $n < \omega$,

(iv)
$$P = \{ \langle s, q \rangle \in S \times Q \colon \forall \alpha < \varkappa \forall n < \omega \forall \alpha \forall b [q(\alpha, n)] \}$$

$$= \langle A, \varepsilon \rangle \& a \in A \& b \in dom(\varepsilon)$$

$$\rightarrow \big(\langle \{a,b\}, \varepsilon(b)\rangle \in s \vee \big(a=b \& \varepsilon(b)=0\big)\big)\big]\big\}$$

with the ordering relation

$$\langle s_1, q_1 \rangle \leqslant \langle s_2, q_2 \rangle$$
 iff $s_1 \leqslant s_2$ and $q_1 \leqslant q_2$.

Let us remark that the forcing P can be considered as a product forcing, i.e.

$$P = \{ \langle s, q \rangle \in S \times Q \colon \forall \alpha < \varkappa \forall n < \omega [s \Vdash'' q(\alpha, n) \in Q(\alpha)''] \}.$$

THEOREM 2. The forcing P is ccc.

The proof will be postponed until the last section of this paper. Let $\alpha < \kappa$. We fix some notation:

$$D^{\alpha} = [\varkappa \setminus \alpha]^{\leq 2}, \quad D_{\alpha} = [\varkappa]^{\leq 2} \setminus D^{\alpha} = \{\{\zeta, \eta\} \in [\varkappa]^{\leq 2} : \min\{\zeta, \eta\} < \alpha\},$$

$$S_{\alpha} = \{s \in S : \operatorname{dom}(s) \subset D_{\alpha}\} \quad \text{and} \quad S^{\alpha} = \{s \in S : \operatorname{dom}(s) \subset D^{\alpha}\}.$$

The orderings of S_{α} and S^{α} are the reverse inclusion.

Next, let

$$Q_{\alpha} = \{q \mid \alpha \times \omega : q \in Q\}$$
 and $Q^{\alpha} = \{q \mid (\alpha \setminus \alpha) \times \omega : q \in Q\}$

both be ordered by

$$q_1 \leqslant q_2$$
 iff $q_1(\beta, n) \leqslant q_2(\beta, n)$ for every $(\beta, n) \in \text{dom}(q_1)$.

It is clear that $S \simeq S_{\alpha} \times S^{\alpha}$ and $Q \simeq Q_{\alpha} \times Q^{\alpha}$.

Finally, let

$$\begin{split} R_{\alpha} &= \left\{ \left\langle s_{1},\, q_{1},\, s_{2},\, q_{2} \right\rangle \in S_{\alpha} \times \mathcal{Q}_{\alpha} \times S^{\alpha} \times \mathcal{Q}^{\alpha} \colon \, \forall \beta < \alpha \, \forall n < \omega \, \forall a \, \forall b \big[q_{1}(\beta,n) \\ &= \left\langle A,\, \varepsilon \right\rangle \, \& \, a \in A \, \& \, b \in \mathrm{dom}(\varepsilon) \rightarrow \left(\left\langle \left\{ a,\, b \right\},\, \varepsilon(b) \right\rangle \in s_{1} \vee \\ &\vee \left(a = b \, \& \, \varepsilon(b) = 0 \right) \right] \right] \, \& \, \forall \beta \geqslant \alpha \, \forall n < \omega \, \forall a \, \forall b \big[q_{2}(\beta,n) = \left\langle A,\, \varepsilon \right\rangle \, \& \\ &\& \, a \in A \, \& \, b \in \mathrm{dom}(\varepsilon) \rightarrow \left(\left\langle \left\{ a,\, b \right\},\, \varepsilon(b) \right\rangle \in s_{1} \cup s_{2} \vee \left(a = b \, \& \, \varepsilon(b) = 0 \right) \right) \right] \right\} \end{split}$$

be a poset with the ordering relation

$$\langle s_1, q_1, s_2, q_2 \rangle \leqslant \langle s_1', q_1', s_2', q_2' \rangle$$
 iff $s_1 \leqslant s_1' \& q_1 \leqslant q_1' \& s_2 \leqslant s_2' \& q_2 \leqslant q_2'$.

It is easy to see that a mapping $g_{\alpha}: P \to R_{\alpha}$ defined by

$$g_{\alpha}(s,q) = \langle s \mid D_{\alpha}, q \mid \alpha \times \omega, s \mid D^{\alpha}, q \mid (\varkappa \backslash \alpha) \times \omega \rangle \quad \text{ for any } \langle s, q \rangle \in P$$
 is an order isomorphism of P and R_{α} .

From now on we shall identify P with R_{α} .

Let M be a countable transitive model of set theory and let $\varkappa > \omega_1$ be a regular cardinal in M. We consider a forcing P in M defined for \varkappa and let G be an M-generic filter over P.

We define

$$G_{\alpha} = \{ \langle s, q \rangle \in S_{\alpha} \times Q_{\alpha} : \langle s, q, \langle 0, 0 \rangle, 1 \rangle \in G \}$$

where 1 is the maximal element of Q^{α} ,

$$G^{\alpha} = \{ \langle s, q \rangle \in S^{\alpha} \times Q^{\alpha} \colon \exists \langle s_1, q_1 \rangle [\langle s_1, q_1, s, q \rangle \in G] \}.$$

Next,

$$P_{\alpha} = \{ \langle s, q \rangle \in S_{\alpha} \times Q_{\alpha} : \langle s, q, \langle 0, 0 \rangle, 1 \rangle \in P \} \in M,$$

$$P^{\alpha} = \{\langle s, q \rangle \in S^{\alpha} \times O^{\alpha} \colon \exists \langle s_1, q_1 \rangle \in G_{\alpha}[\langle s_1, q_1, s, q \rangle \in P] \} \in M[G_{\alpha}]$$

are the posets ordered by

$$\langle s_1, q_1 \rangle \leqslant \langle s_2, q_2 \rangle$$
 iff $s_1 \leqslant s_2 \& q_1 \leqslant q_2$.

A standard argument shows

PROPOSITION 3. G_{α} is M-generic over P_{α} , G^{α} is $M[G_{\alpha}]$ -generic over P^{α} and $M[G] = M[G_{\alpha}][G^{\alpha}]$.

Let
$$f = \bigcup \{s : \langle s, q \rangle \in G\}$$
 and $X = \langle \varkappa, \tau_f \rangle$.

THEOREM 4. M[G] is a ccc extension of M such that

- (1) X is regular (even hereditarily normal),
- (2) $nw(Y) \leq \omega$ for every subspace Y of X of power smaller than κ ,
- (3) $nw(X) = \varkappa$.

We take $\alpha < \varkappa$ and let

Proof. We begin with the following

Proposition 5. For every $\alpha < \varkappa$ the graph $f \upharpoonright D^{\alpha}$ is ω -full over $M[G_{\alpha}]$. In particular f is ω -full over \varkappa .

For the proof it is enough to show that for every infinite $K \in M[G_{\alpha}] \cap P(\kappa \setminus \alpha)$ and every $\varepsilon \in H(\kappa \setminus \alpha)$ the set

$$D = \{ \langle s, q \rangle \in P^{\alpha} \colon \exists \eta \in K \, \forall \zeta \in \text{dom}(\varepsilon) [s(\{\eta, \zeta\}) = \varepsilon(\zeta)] \} \in M[G_{\alpha}]$$

is dense in P^{α} .

- (1) By Proposition 5 it follows immediately that for every $\zeta < \xi < \varkappa$ there exists $\eta < \varkappa$ such that $\zeta \in U^0_\eta$ and $\xi \in U^1_\eta$, i.e. X is a Hausdorff space. Since X is 0-dimensional, it is also regular.
- (2) From an obvious inequality $nw(Y) \le nw(X)$ for a subspace Y of X and from Proposition 5 and Lemma 1 it follows that it is enough to show that for any infinite $\alpha < \varkappa$ the set $Q(\alpha)$ is a union of a countable family of compatible sets.

$$Q_n^{\alpha} = \{q(\alpha, n) : \langle s, q \rangle \in G\} \quad \text{for} \quad n < \omega.$$

We show that $Q(\alpha) = \bigcup \{Q_n^{\alpha} : n < \omega\}$. If $\langle A, \varepsilon \rangle \in Q_n^{\alpha}$ for some $n < \omega$ then there exists $\langle s, q \rangle \in G$ such that $q(\alpha, n) = \langle A, \varepsilon \rangle$. Hence, by the definition of $f, A \subset U_{\varepsilon}$, i.e. $\langle A, \varepsilon \rangle \in Q(\alpha)$. If $\langle A, \varepsilon \rangle \in Q(\alpha)$ then

$$\forall a \in A \ \forall b \in \text{dom}(\varepsilon) [f(\{a,b\}) = \varepsilon(b)].$$

Hence, by the finiteness of $A \times \text{dom}(\varepsilon)$, there exists $\langle s_0, q_0 \rangle \in G$ such that

$$\forall a \in A \ \forall b \in \mathrm{dom}(\varepsilon) \left[s_0(\{a,b\}) \, = \, \varepsilon(b) \right].$$

It is enough to show that the set

$$\{\langle s, q \rangle \in P \colon \exists n < \omega [q(\alpha, n) = \langle A, \varepsilon \rangle]\}$$

is dense below $\langle s_0, q_0 \rangle$.

Let $\langle s,q\rangle\in P$ and $\langle s,q\rangle\leqslant\langle s_0,q_0\rangle$. There exists an $n<\omega$ such that $\langle \alpha,n\rangle\notin\operatorname{supp}(q)$. Let $q'\in Q$ be defined by

$$q'(\beta, m) = \begin{cases} q(\beta, m) & \text{for } \langle \beta, m \rangle \neq \langle \alpha, n \rangle, \\ \langle A, \varepsilon \rangle & \text{for } \langle \beta, m \rangle = \langle \alpha, n \rangle. \end{cases}$$

It is easy to see that $\langle s, q' \rangle \in P$ and $\langle s, q' \rangle \leq \langle s, q \rangle$.

In order to complete the proof of (2) it is enough to verify that each Q_n^x is compatible.

Let $\langle A_0, \varepsilon_0 \rangle$, $\langle A_1, \varepsilon_1 \rangle \in \mathcal{Q}_n^{\alpha}$. Then there exist $\langle s_0, q_0 \rangle$, $\langle s_1, q_1 \rangle \in G$ such that $q_i(\alpha, n) = \langle A_i, \varepsilon_i \rangle$ for i < 2. Let $\langle s, q \rangle \in G$ be a common extension of $\langle s_0, q_0 \rangle$ and $\langle s_1, q_1 \rangle$. Then $q(\alpha, n)$ extends $\langle A_0, \varepsilon_0 \rangle$ and $\langle A_1, \varepsilon_1 \rangle$, which completes the proof of (2).

Let us note that the space fulfilling condition (2) (where x is a power of X) is hereditarily Lindelöf. Hence (see [2]) X is hereditarily normal.

(3) To the contrary, let us assume that $nw(X) < \kappa$. So there exists a network

$$\{F_r: \zeta < \gamma\}$$
 where $\gamma < \varkappa$.

By the regularity of X we can assume that all F_{ζ} are closed for $\zeta < \gamma$. Hence, by hereditary Lindelöfness, we can assume that

$$F_{\zeta} = \varkappa \bigvee_{n < \omega} U_{\varepsilon_{\zeta}^n}$$
 for any $\zeta < \gamma$.

Let $E: \gamma \times \omega \to H(\varkappa)$ be a mapping defined by

$$E(\zeta, n) = \varepsilon_r^n$$
 for any $\zeta < \gamma$ and $n < \omega$.

A standard argument shows that there exists an $\alpha < \varkappa$ such that

(i) $E \in M[G_{\alpha}].$

We can also assume that

(ii)
$$\bigcup \{\operatorname{dom}(\varepsilon_{\zeta}^{n}) \colon \zeta < \gamma \& n < \omega\} \subset \alpha,$$

(iii)
$$\bigcup \{F_{\zeta}: \zeta < \gamma \& |F_{\zeta}| < \kappa\} \subset \alpha.$$

Since $f \upharpoonright D_{\alpha} \in M[G_{\alpha}]$ and the fact that for the definition of U_{ϵ} , where $\epsilon \in H(\alpha)$, the knowledge of $f \upharpoonright D_{\alpha}$ is sufficient, we have

$$F_{\zeta} \in M[G_{\alpha}]$$
 for each $\zeta < \gamma$.

Let $\beta \geqslant \alpha$. We show that

$$\forall \zeta < \gamma [\beta \notin F_{\zeta} \vee F_{\zeta} \not\subset U_{\beta}^{0}],$$

which contradicts the assumption that $\{F_{\zeta}: \zeta < \gamma\}$ is a network.

Let $\zeta < \gamma$. If $|F_{\zeta}| < \varkappa$ then, by (iii), $\beta \notin F_{\zeta}$. If $|F_{\zeta}| = \varkappa$ then $F_{\zeta} \setminus \alpha \in M[G_{\alpha}]$ is an infinite subset of $\varkappa \setminus \alpha$. Hence, by Proposition 5, there exists an $\eta \in F_{\zeta}$ such that $f(\{\eta, \beta\}) = 1$. So $\eta \notin U_{\beta}^{0}$, i.e. $F_{\zeta} \not\subset U_{\beta}^{0}$.

This completes the proof of Theorem 4.

Proof of Theorem 2. Let $y = \{\langle \alpha_0, m_0 \rangle, ..., \langle \alpha_{n-1}, m_{n-1} \rangle\}$ be a subset of $\varkappa \times \omega$. We define the posets:

$$Q_y = \{q: \operatorname{Fnc}(q) \& \operatorname{dom}(q) = n \& \forall i < n[q(i) \in B_a]\}$$

with ordering relation

$$q_1 \leqslant q_2$$
 iff $q_1(i) \leqslant q_2(i)$ for every $i < n$,

$$P_{y} = \left\{ \langle s, q \rangle \in S \times Q_{y} : \forall i < n \, \forall a \, \forall b \, [q(i) = \langle A, \varepsilon \rangle \, \& \, a \in A \, \& \, b \in \text{dom}(\varepsilon) \right.$$
$$\left. \rightarrow \left(\langle \{a, b\}, \varepsilon(b) \rangle \in s \vee (a = b \, \& \varepsilon(b) = 0) \right] \right\}$$

with the ordering relation

$$\langle s_1, q_1 \rangle \leqslant \langle s_2, q_2 \rangle$$
 iff $s_1 \leqslant s_2$ and $q_1 \leqslant q_2$.

We shall repeatedly use the following simple combinatorial

Proposition 6. If B is finite, C is countable and $h_{\zeta}\colon B\to C$ for $\zeta<\omega_1$, then there exists an uncountable subset K of ω_1 such that $h_{\zeta}=h_{\xi}$ for every $\zeta,\zeta\in K$.

LEMMA 7. P_y is ccc.

Proof. Let $\langle\langle s_{\zeta}, q_{\zeta} \rangle$: $\zeta < \omega_1 \rangle$ be a sequence of elements of P_{γ} and let

$$q_{\zeta}(i) = \langle A_{\zeta}^{i}, \varepsilon_{\zeta}^{i} \rangle$$
 for each $i < n$ and $\zeta < \omega_{1}$.

We will show that there exist $\xi < \eta < \omega_1$ such that $\langle s_\xi, q_\xi \rangle$ and $\langle s_\eta, q_\eta \rangle$ are compatible.

Without limiting generality we may assume that for every $\zeta < \omega_1$

(1)
$$\operatorname{dom}(s_{\zeta}) = [d_{\zeta}]^{\leq 2}$$
 for a certain finite $d_{\zeta} \subset \kappa$,

$$(2) \qquad \bigcup_{i \leq n} \operatorname{dom}(\varepsilon_{\zeta}^{i}) \subset d_{\zeta},$$

$$\bigcup_{i < n} A_{\xi}^{i} \subset d_{\zeta}.$$

By the A-lemma we may assume that

(4)
$$d_{\zeta} = a_{\zeta} \cup b \quad \text{for any } \zeta < \omega_1,$$

where

(5)
$$a_{\zeta} \cap a_{\eta} = 0$$
 for any $\zeta < \eta < \omega_1$.

By applying Proposition 6 to the functions $s_{\zeta} \upharpoonright [b]^{\leq 2}$, we can assume that $s_{\zeta} \upharpoonright [b]^{\leq 2} = s_n \upharpoonright [b]^{\leq 2}$ for every $\zeta, \eta < \omega_1$. So

(6)
$$s_{\zeta} \cup s_{\eta} \in S$$
 for every $\zeta, \eta < \omega_1$.

By applying Proposition 6 to the functions $h_{\xi}\colon n\to\omega$ defined by $h_{\xi}(i)=|A_{\xi}^i|$ for i< n, we can assume that for any i< n there exists a t_i such that $|A_{\xi}^i|=t_i$ for any $\zeta<\omega_1$. Hence we may assume that

(7) there exist $t_0, ..., t_{n-1} \in \omega$ such that

$$A_{\zeta}^{i} = \left\{\alpha_{\zeta,i}^{0}, \ldots, \alpha_{\zeta,i}^{t_{i}-1}\right\} \quad \text{ for any } \zeta \!<\! \omega_{1} \text{ and } i \!<\! n \,,$$

and by the same argument

(8) there exist $r_0, ..., r_{n-1} \in \omega$ such that

$$|\mathrm{dom}(\epsilon_{\zeta}^i)| = r_i \quad \text{ and } \quad \mathrm{dom}(\epsilon_{\zeta}^i) = \{\delta_{\zeta,i}^0,...,\delta_{\zeta,i}^{r_i-1}\} \quad \text{ for any } \zeta < \omega_1 \text{ and } i < n \text{ .}$$

By applying the same argument to the functions

$$h'_{\zeta}: \bigcup_{i < n} (\{i\} \times r_i) \to 2$$

defined by

$$h'_{\zeta}(i,j) = \varepsilon^{i}_{\zeta}(\delta^{j}_{\zeta,i})$$
 for each $i < n$ and $j < t_{i}$,

we may assume that

(9)
$$\varepsilon_{\zeta}^{i}(\delta_{\zeta,i}^{j}) = \varepsilon_{\eta}^{i}(\delta_{\eta,i}^{j}) \quad \text{for every } \zeta, \eta < \omega_{1}.$$

The same argument applied to the functions

$$h''_{\zeta}: b \to P(n \times \bigcup_{i < n} t_i)$$

defined by

$$h_r''(\alpha) = \{\langle i, j \rangle : \alpha = \alpha_{\zeta,i}^j \}$$
 for any $\alpha \in b$

allows us to assume that

(10) for every $\alpha \in b$

if
$$\alpha = \alpha_{\xi,i}^{J}$$
 then $\alpha = \alpha_{\eta,i}^{J}$ for every $\eta < \omega_1$

and similarly

(11) for every $\alpha \in b$

if
$$\alpha = \delta^{j}_{i,i}$$
 then $\alpha = \delta^{j}_{\eta,i}$ for every $\eta < \omega_1$.

Finally, by applying Proposition 6 to suitable functions we may assume that

(12) if
$$\delta_{\zeta,i}^{J} = \alpha_{\zeta,k}^{I}$$
 then $\delta_{\eta,i}^{J} = \alpha_{\eta,k}^{I}$ for every $\eta < \omega_1$,

and

(13) if
$$\alpha_{\zeta,i}^k = \alpha_{\zeta,j}^m$$
 then $\alpha_{\eta,i}^k = \alpha_{\eta,j}^m$ for every $\eta < \omega_1$.

After having done all these restrictions we show that any $\langle s_{\ell}, q_{\ell} \rangle$ and $\langle s_{n}, q_{n} \rangle$ are compatible.

Let $\zeta, \eta \in \omega_1$. Since $q_{\zeta}, q_{\eta} \in Q_{\eta}$, we have $q_{\zeta}(i), q_{\eta}(i) \in B_{\alpha_i}$ for i < n. Hence $A_{\zeta}^i \subset \alpha_i$ and $A_n^i \subset \alpha_i$, i.e. $A_t^i \cup A_n^i \subset \alpha_i$. Moreover, $\operatorname{dom}(\varepsilon_t^i) \cap \operatorname{dom}(\varepsilon_n^i) \subset b$. Hence, if $\alpha \in \text{dom}(\varepsilon_r^i) \cap \text{dom}(\varepsilon_n^i)$ and $\alpha = \delta_{n,i}^j$ then (by (11)) $\alpha = \delta_{r,i}^j$. So, by (9)

$$\varepsilon_{\zeta}^{i}(\alpha) = \varepsilon_{\zeta}^{i}(\delta_{\zeta,i}^{j}) = \varepsilon_{\eta}^{i}(\delta_{\eta,i}^{j}) = \varepsilon_{\eta}^{i}(\alpha)$$

i.e. $\varepsilon_r^i \cup \varepsilon_n^i \in H(\varkappa)$.

Let us put for i < n

$$A^{i} = A^{i}_{\zeta} \cup A^{i}_{\eta}, \quad \varepsilon^{i} = \varepsilon^{i}_{\zeta} \cup \varepsilon^{i}_{\eta}, \quad q(i) = \langle A^{i}, \varepsilon^{i} \rangle.$$

We have $q \in Q_v$ and $q \leqslant q_{\zeta}$, $q \leqslant q_{\eta}$.

In order to complete the proof it suffices to show that there exists an $s \in S$ such that

$$(a) s_{\ell} \cup s_{n} \subset s,$$

(b)
$$\langle s, q \rangle \in P_v$$
.

In order to show (b) it is enough to show

(c)
$$\forall i < n \ \forall a \in A^i \ \forall b \in \text{dom}(\varepsilon^i) [s(\{a,b\}) = \varepsilon^i(b)].$$

If $a \in A_{\zeta}^{i}$ and $b \in \text{dom}(\varepsilon_{\zeta}^{i})$ then, by (2) and (3), $\{a, b\} \in \text{dom}(s_{\zeta})$. So, by (a)

$$s(\lbrace a,b\rbrace) = s_{t}(\lbrace a,b\rbrace) = \varepsilon_{t}^{i}(b) = \varepsilon^{i}(b).$$

Similarly for $a \in A_n^i$ and $b \in \text{dom}(\varepsilon_n^i)$.

So it is enough to find $s \in S$ such that

$$(i) s_{\zeta} \cup s_{\eta} \subset s,$$

(ii)
$$\forall i < n \ \forall a \in A_{\zeta}^{i} \ \forall b \in \text{dom}(\varepsilon_{n}^{i})[s(\{a,b\}) = \varepsilon_{n}^{i}(b)],$$

(iii)
$$\forall i < n \ \forall a \in A_{\eta}^{i} \ \forall b \in \text{dom}(\varepsilon_{t}^{i})[s(\{a,b\}) = \varepsilon_{t}^{i}(b)].$$

Let us define the following functions for i < n

$$\begin{split} s_i'(\{\alpha_{\zeta_i}^j,\,\delta_{\eta,i}^k\}) &= s_\eta^i(\delta_{\eta,i}^k) &\quad \text{for } j\!<\!t_i \text{ and } k\!<\!r_i\,,\\ s_i''(\{\alpha_{\eta,i}^j,\,\delta_{\zeta_i,i}^k\}) &= s_\xi^i(\delta_{\zeta_i,i}^k) &\quad \text{for } j\!<\!t_i \text{ and } k\!<\!r_i\,. \end{split}$$

Let

$$s = s_{\zeta} \cup s_{\eta} \cup \bigcup_{i < n} (s'_i \cup s''_i).$$

Since clearly s satisfies (i), (ii) and (iii), it suffices to show that $s \in S$.

I.
$$s_{\zeta} \cup s_{\eta} \in S$$
 (by (6)).

II. $s_i' \in S$ for any i < n.

Let $\{\alpha_{i,j}^{j}, \delta_{n,i}^{k}\} = \{\alpha_{i,j}^{l}, \delta_{n,i}^{m}\}$. If $\alpha_{i,j}^{j} = \alpha_{i,j}^{l}$ and $\delta_{n,i}^{k} = \delta_{n,i}^{m}$ then

$$s_i'(\{\alpha_{\zeta,i}^j,\delta_{\eta,i}^k\}) = \varepsilon_{\eta}^i(\delta_{\eta,i}^k) = \varepsilon_{\eta}^i(\delta_{\eta,i}^m) = s_i'(\{\alpha_{\zeta,i}^l,\delta_{\eta,i}^m\}).$$

If $\alpha_{\zeta,i}^j = \delta_{\eta,i}^m$ and $\alpha_{\zeta,i}^l = \delta_{\eta,i}^k$ then $\alpha_{\zeta,i}^l \in d_{\zeta} \cap d_{\eta} = b$. Hence, by [10], $\alpha_{\zeta,i}^l = \alpha_{\eta,i}^l$. So $\alpha_{n,i}^l = \delta_{n,i}^k$ and

$$s_i'(\{\alpha_{\eta,i}^j,\,\delta_{\eta,i}^k\}) = \varepsilon_\eta^i(\delta_{\eta,i}^k) = s_\eta(\{\alpha_{\eta,i}^l,\,\delta_{\eta,i}^k\}) = s_\eta(\{\delta_{\eta,i}^k,\,\delta_{\eta,i}^k\}) = 0\;.$$

Similarly we show that $s_i'(\{\alpha_{i,i}^l, \delta_{n,i}^m\}) = 0$, i.e. s_i' is a function.

Moreover if $\alpha_{i,i}^j = \delta_{n,i}^k$ then we also have $s_i'(\{\alpha_{i,i}^j, \delta_{n,i}^k\}) = 0$, i.e. $s_i' \in S$.

III. $s_i'' \in S$ for any i < n.

The proof is similar.

IV. $s'_i \cup s_i \cup s_n$ is a function for any i < n.

Let $\{\alpha_{\zeta,i}^j, \delta_{\eta,i}^k\} \in \text{dom}(s_{\zeta} \cup s_{\eta})$. If $\{\alpha_{\zeta,i}^j, \delta_{\eta,i}^k\} \in \text{dom}(s_{\zeta})$ then $\delta_{\eta,i}^k \in b$ and hence, by (11), $\delta_{n,i}^{k} = \delta_{r,i}^{k}$. So, by (9),

$$s_i'(\{\alpha_{\zeta,i}^j,\,\delta_{n,i}^k\}) = \varepsilon_n^i(\delta_{n,i}^k) = \varepsilon_r^i(\delta_{\zeta,i}^k) = s_r(\{\alpha_{\zeta,i}^j,\,\delta_{\zeta,i}^k\}) = (s_\zeta \cup s_\eta)(\{\alpha_{\zeta,i}^j,\,\delta_{n,i}^k\}).$$

If $\{\alpha_{t,i}^j, \delta_{n,i}^k\} \in \text{dom}(s_n)$ then $\alpha_{t,i}^j \in b$ and, by (10), $\alpha_{n,i}^j = \alpha_{n,t}^j$. So

$$s_{i}'(\{\alpha_{\ell,i}^{j}, \delta_{\eta,i}^{k}\}) = \varepsilon_{\eta}^{i}(\delta_{\eta,i}^{k}) = s_{\eta}(\{\alpha_{\eta,i}^{j}, \delta_{\eta,i}^{k}\}) = (s_{\zeta} \cup s_{\eta}) (\{\alpha_{\zeta,i}^{j}, \delta_{\eta,i}^{k}\}).$$

V. $s_i'' \cup s_r \cup s_n$ is a function for any i < n.

The proof is similar.

VI. $s'_i \cup s'_j$ is a function for any i, j < n.

 $\text{Let } \{\alpha_{\zeta,l}^k, \delta_{\eta,i}^l\} = \{\alpha_{\zeta,l}^m, \delta_{\eta,j}^s\}. \text{ If } \alpha_{\zeta,i}^k = \alpha_{\zeta,j}^m \text{ and } \delta_{\eta,i}^l = \delta_{\eta,j}^s \text{ then, by (13), } \alpha_{\eta,i}^k = \alpha_{\eta,j}^m \}$ and $s'_i(\{\alpha_{i,i}^k, \delta_{\eta,i}^l\}) = \epsilon_{\eta}^l(\delta_{\eta,i}^l) = s_{\eta}(\{\alpha_{\eta,i}^k, \delta_{\eta,i}^l\}) = s_{\eta}(\{\alpha_{\eta,i}^m, \delta_{\eta,j}^s\}) = s_{\eta}'(\{\alpha_{\eta,j}^m, \delta_{\eta,j}^s\}\}) = s_{\eta}'(\{\alpha_{\eta,j}^m, \delta_{\eta,j}^s\}\}).$ If $\alpha_{\xi,i}^k = \delta_{\eta,j}^s$ and $\alpha_{\eta,j}^m = \delta_{\eta,i}^l$ then $\alpha_{\xi,i}^k, \alpha_{\eta,j}^m \in b$ and by (10)

$$\alpha_{n,i}^k = \alpha_{\zeta,i}^k = \delta_{n,j}^s$$
 and $\delta_{\eta,i}^l = \alpha_{\zeta,j}^m = \alpha_{\eta,j}^m$.

Hence

$$s_{i}'(\{\alpha_{\zeta_{i}^{k}}^{k},\delta_{\eta_{i}^{k}i^{j}}^{l})=\varepsilon_{\eta}^{l}(\delta_{\eta_{i}^{l}}^{l})=s_{\eta}(\{\alpha_{\eta_{i}^{k}}^{k},\delta_{\eta_{i}^{l}}^{l}\})=s_{\eta}(\{\delta_{\eta_{i}^{n}}^{s},\alpha_{\eta_{i}^{m}j}^{m}\})=\varepsilon_{\eta}^{l}(\delta_{\eta_{i}^{n}}^{s})=s_{j}'(\{\alpha_{\zeta_{i}^{n}}^{m},\delta_{\eta_{i}^{n}j}^{s}\})\;.$$

VII. $s_i'' \cup s_i''$ is a function for any i, j < n.

The proof is similar.

VIII. $s'_i \cup s''_i$ is a function for any i, j < n.

 $\text{Let } \{\alpha_{\zeta,l}^k, \delta_{\eta,l}^l\} = \{\alpha_{\eta,l}^m, \delta_{\zeta,l}^s\}. \text{ If } \alpha_{\zeta,l}^k = \alpha_{\eta,l}^m \text{ and } \delta_{\eta,l}^l = \delta_{\zeta,l}^s \text{ then } \alpha_{\eta,l}^m, \delta_{\eta,i}^l \in b. \text{ So,}$ by (10) and (11)

$$lpha_{\zeta,i}^k = lpha_{\eta,j}^m = lpha_{\zeta,j}^m \quad ext{ and } \quad \delta_{\zeta,i}^l = \delta_{\eta,i}^l = \delta_{\zeta,j}^s \,.$$

Hence, by (9)

$$\begin{split} s_i'(\{\alpha_{\zeta,i}^k,\,\delta_{\eta,i}^l\}) &= \varepsilon_\eta^i/\delta_{\eta,i}^l) = \varepsilon_\xi^i(\delta_{\zeta,i}^l) = s_\xi(\{\alpha_{\zeta,i}^k,\,\delta_{\zeta,i}^l\}) = s_\xi(\{\alpha_{\zeta,j}^m,\,\delta_{\zeta,j}^s\}) \\ &= \varepsilon_\xi^l,\delta_{\zeta,j}^s) = s_j''(\{\alpha_{\eta,j}^m,\,\delta_{\zeta,j}^s\}) \;. \end{split}$$

If
$$\alpha_{\xi,i}^{k} = \delta_{\xi,j}^{s}$$
 and $\alpha_{\eta,j}^{m} = \delta_{\eta,i}^{l}$ then, by (12), $\alpha_{\xi,j}^{m} = \delta_{\xi,i}^{l}$. Hence, by (9) $s'_{i}(\{\alpha_{\xi,i}^{k}, \delta_{\eta,i}^{l}\})$ = $\varepsilon_{\eta}^{l}(\delta_{\eta,i}^{l}) = \varepsilon_{\xi}^{l}(\delta_{\xi,i}^{l}) = s_{\xi}(\{\alpha_{\xi,i}^{k}, \delta_{\xi,i}^{l}\}) = s_{\xi}(\{\delta_{\xi,j}^{k}, \alpha_{\xi,j}^{m}\}) = \varepsilon_{\xi}^{l}(\delta_{\xi,j}^{k}) = s'_{j}'(\{\alpha_{\eta,j}^{m}, \delta_{\xi,j}^{k}\}).$

46

icm[©]

It is clear that conditions I-VIII give $s \in S$ and our proof of Lemma 7 is complete.

Now we prove Theorem 2. Let $\langle\langle s_{\zeta},q_{\zeta}\rangle:\zeta<\omega_{1}\rangle$ be a sequence of elements of P. We show that there exist $\zeta<\eta<\omega_{1}$ such that $\langle s_{\zeta},q_{\zeta}\rangle$ and $\langle s_{\eta},q_{\eta}\rangle$ are compatible. By the Δ -lemma we may assume that

$$\operatorname{supp}(q_{\zeta}) = y \cup w_{\zeta} \quad \text{for every } \zeta < \omega_1$$

where

$$w_r \cap w_n = 0$$
 for every $\zeta < \eta < \omega_1$.

Let $P'_{\mathbf{v}} = \{\langle s, q \mid y \rangle : \langle s, q \rangle \in P\}$ be a poset with the ordering relation

$$\langle s, q \rangle \leq \langle s', q' \rangle$$
 iff $s \supset s' \& \forall \langle \alpha, n \rangle \in y[q(\alpha, n) \leq q'(\alpha, n)]$.

Clearly P_{ν} and P'_{ν} are isomorphic.

Let us consider a set $\{\langle s_{\zeta}, q_{\zeta} | y \rangle \colon \zeta < \omega_1 \}$ of elements of P'_y . By Lemma 7 there exist $\zeta < \eta < \omega_1$ and $\langle s, q \rangle \in P'_y$ such that $\langle s, q \rangle \leqslant \langle s_{\zeta}, q_{\zeta} | y \rangle$ and $\langle s, q \rangle \leqslant s_{\eta}, q_{\eta} | y \rangle$. Let $q' \in O$ be defined by

$$q'(\alpha, n) = \begin{cases} q(\alpha, n) & \text{for } \langle \alpha, n \rangle \in \mathcal{Y}, \\ q_{\ell}(\alpha, n) & \text{for } \langle \alpha, n \rangle \in w_{\ell}, \\ q_{\eta}(\alpha, n) & \text{for } \langle \alpha, n \rangle \in w_{\eta}, \\ \langle 0, 0 \rangle & \text{otherwise.} \end{cases}$$

It is easy to see that $\langle s,q'\rangle \in P$ and $\langle s,q'\rangle \leqslant \langle s_{\zeta},q_{\zeta}\rangle$ and $\langle s,q'\rangle \leqslant \langle s_{\eta},q_{\eta}\rangle$. This completes the proof.

References

- [11] J. P. Burgess, Forcing, Handbook of Mathematical Logic, North Holland 1977.
- [2] R. Engelking, General Topology, PWN, Warszawa 1977.
- [3] A. Hajnal and I. Juhász, Weakly separated subspaces and networks, Logic Colloquium 1978, North Holland 1979.

INSTITUTE OF MATHEMATICS UNIVERSITY OF WARSAW

Accepté par la Rédaction le 22. 9. 1980

Topological games and products, II

by

Yukinobu Yajima (Yokohama)

Abstract. The purpose of this paper is to study the topological games (in the sense of R. Telgársky) of product spaces: Assume that Player I has winning strategies in the given topological games of X and Y. Then we consider the conditions of a product space $X \times Y$ under which he has a winning strategy in a certain topological game of $X \times Y$. Moreover, we can apply the results obtained from this kind of argument to the product theorem in dimension theory.

Introduction. R. Telgársky [14] introduced and studied the topological game G(K, X). In our previous paper [19], we have used it to study the covering properties of product spaces. In the present paper, we shall study the topological game on product spaces. If the above K is the class of all one-point spaces, then the game G(K, X) is often abbreviated by G(X), which is called the point-open game. R. Telgársky [15] stated the following: If Player I has winning strategies in G(X) and G(Y), then he has a winning strategy in $G(X \times Y)$. This gives the positive answer to [14, Question 14.1]. In this connection, we raise the following natural question: Assume that Player I has winning strategies in $G(K_1, X)$ and $G(K_2, Y)$. What is a topological game of $X \times Y$ which is interesting to investigate? What is a condition on $X \times Y$ under which he has a winning strategy in such a game? In § 2 and § 3, we discuss this question. In § 4, using the result of § 2, we give a product theorem in dimension theory.

Each space considered here is assumed to be a Hausdorff space. N denotes the set of all natural numbers and m denotes an infinite cardinal number. For a space or a set X, by $\chi(X)$ we mean the character of X and by |X| the cardinality of X. For a collection $\mathfrak F$ of subsets of X, $\bigcup \mathfrak F$ denotes $\bigcup \{F\colon F\in \mathfrak F\}$.

§ 1. Topological games. R. Telgársky [15] has introduced an equivalent form of the game G(K, X) defined in [14]. The new form of the game we use below.

Let L be a class of spaces and let X be a space. We define the topological game G(L,X) as follows: There are two players; Player I and Player II. Player I chooses a closed set E_1 of X with $E_1 \in L$, and after that Player II chooses an open set U_1 of X with $E_1 \subset U_1$. Again Player I chooses a closed set E_2 of X with $E_2 \subset L$ and Player II chooses an open set U_2 of X with $X_1 \subset II$ chooses an open set $X_2 \subset II$ and so on. Here, the infinite