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Tt is clear that conditions I-VIII give s € S and our proof of Lemma. 7 is complete,

Now we prove Theorem 2. Let {{(sy, ¢;>: (<o) be a sequence of elements
of P. We show that there exist { <#<w, such that {s;, g;> and <s,, ¢,> are com-
patible. By the 4-lemma we may assume that

supp(gp) = y U w; for every {<w,
where

wenw, =0 for every {<n<w;.

Let P, = {<s, g} y>: {s,4> &P} be a poset with the ordering relation
N MASC O ]

Clearly P, and P, are jsomorphic.
Let us consider a set {<s;, g; }¥>: {<aw,} of elements of P,. By Lemma 7 there
exist {<n<w,; and <s, gy € P} such that <s, g><{sy, q; 1 y> and s, > <y, 4, M)
Let ¢' € Q be defined by

so8 & Va,n) eylglx, n)<q'(x, n)] .

q(e,n)  for {a,nyey,
oy = A9l fox Caym) e we,
q'e,n) = gy, m)  for {a,m) e w,,
<0,0> - otherwise.

1t is easy to see that (s,q') &P and <s,q')<{s;, q;» and s, 4D <5y 4
This completes the proof. )
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Topological games and products, II
by

Yukinobu Yajima (Yokohama)

Abstract. The purpose of this paper is to study the topological games (in the sense of
R. Telgdrsky) of product spaces: Assume that Player I has winning strategies in the given topological
games of X and Y. Then we consider the conditions of a product space Xx ¥ under which he has
a winning strategy in a certain topological game of X'x Y. Moreover, we can apply the results ob-
tained from this kind of argument to the product theorem in dimension theory.

Introduction. R. Telgdrsky [14] introduced and studied the topological game
G(K, X). In our previous paper [19], we have used it to study the covering properties
of product spaces. In the present paper, we shall study the topological game on
product spaces. If the above K is the class of all one-point spaces, then the game
G(K, X) is often abbreviated by G(X), which is called the point-open game.
R. Telgdrsky [15] stated the following: If Player J has winning strategies in G(X)
and G(Y), then he has a winning strategy in G(X'x ¥). This gives the positive
answer to [14, Question 14.1]. In this connection, we raise the following natural
question: Assume that Player I has winning strategies in G(Ky, X) and G(K;, T).
What is a topological game of X'x ¥ which is interesting to investigate? What is
a condition on Xx Y under which he has a winning strategy in such a game?
In §2 and § 3, we discuss this question. In §4, using the result of § 2, we give
a product theorem in dimension theory.

Each space considered here is assumed to be a Hausdorff space. N denotes the
set of all natural numbers and in denotes an infinite cardinal number. For a space
or a set X, by x(X) we mean the character of X and by [X] the cardinality of X.
For a collection § of subsets of X, | § denotes J {F: Fe §}.

§ 1. Topological games. R. Telgdrsky [15] has introduced an equivalent form
of the game G(K, X) defined in [14]. The new form of the game we use below.

Let L be a class of spaces and let X be a space. We define the topological game
G(L, X) as follows: There are two players; Player I and Player II. Player I chooses
a closed set E; of X with E; € L, and after that Player IT chooses an open set Uy
of X with E, < U,, Again Player I chooses a closed set E, of X with E,e L and
Player IT chooses an open set U, of X with E,=U,, and so on. Here, the infinite
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sequence <{Ey, Uy, E;, Us, ...y is a play of G(L, X). Player I wins the play
(B, Uy, Ey, Uy, ..y if {U,: ne N} covers X, otherwise Player II wins.

A finite sequence <E,, Uy, ..., E,, U,> of subsets in X is said to be admissible
for G(L, X) if the infinite sequence {E,, Uy, .., E,, U,,d,d,...> is a play of
G(L, X).

A function s is said to be a stmtegy for Player Iin G(L, X) if the domain of s
consists of the void sequence & and the finite sequences {Uy, ..., U,> of open sets
in X and if s(@) and s(Uy, ..., U,) are closed in X and belong to L.

A strategy s for Player I'in G(L, X) is said to be winning if he wins each play
{Ey, Uy, E;, Uy,..> in G(L, X) such that E;, = (&) and E,,., = s(Uy, ..., U)
for each n € N. In this paper, we shall not deal with a winning strategy of Player II
in G(L, X), but only the one of Player I

Here, note that the class L is not assumed to be hereditary with respect to closed
sets. Indeed, we deal with a class which is not hereditary with respect to closed sets,
as below. In such a case, the original topological game in [14] seems to be inappro-
priate. However, it is stated in [15] that the both topological games are equivalent
if the class L-is hereditary with respect to closed sets. The following classes are fre-
quently used in this paper and some other classes will be defined later when they
will be necessary.

For a class L of spaces, we denote by DL (FL) the class of all spaces which have
a discrete (finite) closed cover consisting of members of L. We denote by C (C,)
the class of all (m-)compact spaces.

Throughout this paper, let K, and K, be the arbitrary classes of Spclc% which
are hereditary with respect to closed sets. We define

K xK, = {XxY: XeK; and YeK.,}.

It is clear that the class K x K, of product spaces is not hereditary with respect to
closed sets in general.

§ 2. D-products. In this section, we first find a condition for a product space
Xx Y under which Player I has a winning strategy in G(D (K, x K,), X% Y) 1f he
has winning strategies in G(X,, X) and G(K,, ¥).

- DEFINITION, A. product space X x ¥ is said to be a D-product if for each closed
set M of X'x Y and each open set O of X'x ¥ with M<O there is a o-discrete
collection § by closed rectangles in X x ¥ such that M ) F=O.

For a closed rectangle R in X x ¥, R’ and R’ denote the projections of R into X’
and Y respectively. So, R is a closed (open) rectangle in X'x ¥ iff R’ and R” are
closed (open) in X and ¥ respectively such that R = R' R".

Our main theorem is as follows.

TrEoREM 2.1. Let X and Y be spaces such that Xx Y is a D- product. If Player 1

has winning strategies in G(K,, X) and G(K,, Y), then he has a winning strategy in
G(D(KyxK,), Xx Y).

Before its proof, we prepare some notations and a lemma, N* denotes the set
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consisting of the void sequence @& and all finite sequences consisting of natural
numbers. For each ee N*\{@}, ¢’ (¢'') denotes the subsequence of e consisting

of all odd (even) numbers. Moreover, let e = (n,, .. > ). We use the following

notations; }:e nytotn, ldl=k (@] =0), (e, n) = (ny,...,n,n) and
enp= s smy) for 0<j<k~1 (e.,=@). For a finite sequence S(R>
=Ry, ees R,;> of sets, (SR>, 4, B) denotes the finite sequence {R,..., R,, A, B).

LeMMA. 2.1. For a class L of spaces, Player I has a winning strategy in G(L, X)
iff he has a winning strategy in G(FL, X).

This is essentially given by R. Telgdrsky. [14, Theorem 4.1].

The proof of Theorem 2.1. Let s and 7 be winning strategies for Player J
in G(K;, X) and G(K,, Y) respectively. It is sufficient from Lemma 2.1 that we
construct his winning strategy p in G(L, Xx Y), where L = F(D (K, x K)).

Now, assume that we have. already constructed an admissible sequence
(P, 05 wes Py Oy in G(L, Xx ¥) such that P, = p(@) and P, = p(Oy, ..., 0))
for 1<i <m——1 and such that there is a family

{(N(e), pp: eeN* and ¥ e_, <m—1}

of the pairs of collections R (e) by closed rectangles in X'x ¥ and the functions ¢,
of MN(e) onto R(e-y), where N(B) = {Xx ¥}, satisfying the following condi-
tions (1)~(4): For each ee N* with ) e_,<m—1,

(1) R(e) is discrete in X x Y,

(2) if (x,»)eReN(e_y) and (x,)) ¢ Oy, y+1, then there are some ne N
and Qe iR('e_l, n) such that (x,y)e Q and ¢_,,(0) = R

Let @) = lyg and ¢f = Py ® 0 Qe 0@, for 1<k<]e|—1.
ce N* with Y e, <m—1 and each Re R(e),

(3) let U, = X\((p'e“\_i"(R))’ for 1<k<q, where ¢’ = (iy, ..., 1), and if we put
E, =s(9) and E,,, = s(Uy,..., Uy for 1<k<g—1, then the finite sequence
E{, Uy, .., E, Up is admissible for G(K,, X),

(@) let Vo= PN\(olfl7=R))" for 1<k<r, where € = (j, ..., i), and if we put
F, = t{@) and Fi.io = 1(Vy, .., Vi) for 1<k<r—1, then the finite sequence
{Fy, Vi, oy Fyy Vo is admissible for G(K,, Y)

In the above (3) and (4), let S(RY = (Eq, Uy, ..., B,
TR = {Fy, Viy s Fyy Vi and T(R) = <V1, s Vi

We pick an ce N* with Y c=m Let |l =¢ and [¢|=r. From
Z e <n, M(e) has been already constructed. So we also pick an R € R(e). From
the assumptions (3) and (4), we can put E,q = s(SCRY) and Fpy = t(T(RY).
Moreover, we put Py, (R) = (Egey X Friq) 0 R Then Py, ((R) belongs to Ky x K,
and P, (R)cR. Note that P, (R) may be empty. Here, we set

I)m+1 = .n(Ol« i Om)
= U {Pys(R): ReR(e

4 — Fundamenta Mathematicae CXVII

For ecach

Up, S<RY = (Uy, s U,

) and Ze—m}
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1t follows from the assumption (1) that P, belongs to L. Next, Player IT chooses
an arbitrary open set 0,4 of Xx ¥ with Py, =0y Again, let R € R(e). Since
Xx Y is a D-product, R is too. Hence there is a collection

QR) = U {QR): neN}

of dlosed rectangles in R such that each Q,(R) is discrete in R and RN\O,,,1 =UQ(R)
< R\P,+,. For each ne N, we put

Qele, 21—1) = [0 eQR): Q' N s(SRY) = B},
Qgle, 2n) = {0 eQR): Q' n s(S(RY) + B} .
Moreover, we here set for each ne N
Rie,n) = | {Qgle, n): Re R}

and define the function @,,: R(e, n) - R(e) such that g (Qule, n)) = {R} for
each R € M(e). We show that the pair (R (e, 1), @ satisfies the conditions (1)-(4).
Since each Q,(R) is discrete in R, it follows from the assumption (1) that each R(e, n)
is discrete in Xx Y. The condition (1) is satisfied. Let (x,))&Re R(e) and
(x,7) ¢ Ops1. Then we can take some ne N and Q€ Q,(R) such that (x,meQ.
Hence we have either Q € R(e, 2n—1) and @, 2,-15(0) = R or Q € R(e, 2n) and
@2 Q) = R. The condition (2) is satisfied. Finally, we pick a Qe J(e, n). Let
‘ell =4, lenl =rand R= (p(e,n)(Q)'

Let n be an odd number. Since (¢, n)’ = (¢, n), we put £, = $(S{RY) and
Uger = X\Q'. Then we have S{Q) = {S{RY, Egyy, Upsrd. In order to show
that S¢Q) is admissible for G(K,, X), it is sufficient from the assumption (3) to
show E,, < Uy Since n is odd and Q is in Qgle, n), we have

QNnE,=6@.

Hence the condition (3) is satisfied. By (e,n)” = ¢”, we have T(Q)> = T{(R).
So the condition (4) is clearly satisfied.

Let # be an even number. By (¢, n)’ = ¢', we have S{(Q) = S(R). So the con-
dition (3) is clearly satisfied. Since (e, )"’ = (", n), we put F,.; = t(T{(RD) and
Vi1 = YNQ". Thenwe have T{(Q) = {T(R), F,; 1, Vysy). From the same reason
as the above, we show F, ;= V,,,. Assume the contrary. We can choose some
Yo € Q" N F.py. Since n is even and Q is in Qy(e, n), we can also choose some
Xp€ Q' N s(SCRY). Thus we have

(x0,70)€Q N S(SCRY) % By =Py (RYS Py -

On the other hand, we have (x,, 7o) € Q<= R\P,,..,. This is a contradiction: Hence
the condition (4) is satisfied.

IfR = Xx Y& R(D), then we set P, = p (D) = s(F) x t(A) and a simple version
of the above argument with no inductive assumptions gives the desired family

{R(n): ne N}. The constructions by induction have been completed with the facts -
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mentioned above. Since the choice of Player I is free, we have defined a strategy p
of Player I in G(L, Xx Y).

The obtained infinite sequence {P;, 0,,P;, 0,,..> such that P, = p(@)
and Pyyq = p(Oy,..., 0,) for each me N is a play of G(L, X). We show that
{0,;: me N} covers Xx Y. Assume (x,3) ¢ O,, for each meN. By the condi-
tion (2) and Xx YeR(D), we can inductively choose some infinite sequence
¢ = (ny,ny,...) consisting of natural numbers and some infinite sequence
{Ry, Ry, ...> by closed rectangles in Xx ¥ such that

(-xa J}) € Rk € gt(‘nl > ey nk) and (P(nx,..»,nk+1)(Rk+1) = Rk
for each ke N. Then we have xe () {R;: ke N} and ye ) {Ry: ke N}. Cleaily,
¢ contains infinitely many odd numbers or infinitely many even ones.

Let (ny,, n,,, ...) be the infinite subsequence of ¢ consisting of all odd numbers.
We put U, = X\Rj, E, = (@) and E,.{ = s(Uy, ..., U for each ge N. Then
it follows from the condition (3) that the infinite sequence {E;, Uy, E,, U, ...>
is a play of G(K;, X). Since s is a winning strategy in G(Xy, X), {U,: g€ N} co-
vers X. Hence we have () {R;: ke N} = . This is a contradiction.

Let (n;,, n;,, ...) be the infinite subsequence of ¢ consisting of all even numbers.
Then, by the condition (4), the infinite sequence {F;, V1, F,, V,, ...> defined by
V,= Y\R}, F; =t(@) and F,,, =t(Vy,..,V,) for each reN is a play of
G(K,, Y). Hence we have () {Ry: ke N} = &, which is a contradiction.

Thus {O,,: me N} covers Xx Y. This implies that p is a winning strategy of
Player I in G(L, Xx Y). The proof of Theorem 2.1 is complete.

Now we consider what kind of product spaces are D-products.

THEOREM 2.2. Let X be a collectionwise normal space and Y a subparacompact
space with y(¥)<m. If Player I has a winning strategy in G(DCy, X), then every
open cover of X x Y with power <m has a o-discrete refinement by closed rectangles
in Xx Y.

Proof. We shall proceed the proof, using the same technique as that of
[19, Theorem 2.1]. Let s be a winning strategy of Player [ in G(DC,, X ). Let &
be an arbitrary open cover of Xx Y with [G]<m.

First, we construct a sequence {&,: n20} of collections of closed rectangles
in Xx Y and a sequence {{R,,q,»: n=0} of the pairs of collections R, by
closed rectangles in X'x Y and the functions ¢, of %, onto R,_4, satisfying the
following conditions (1)-(5):

(1) &, is o-discrete in X'x Y.

(2) M, is o-discrete in X'x Y.

(3) Bach Fe @, is contained in some Ge .

@ If (x,»)eR,—q R,y and (x, ) ¢EU T then there is some R,eR,
such that (x, y) € R, and @,(R,) = Ry_1.

(5) For an Re®R,, let U, = X\R aod Uy = X\(@xs1°-° @u(R)) for
1<k<n—1. If we put Ey = s(@) and Epyy = 5(Uy, ..., Uy for 1<k<n—1, then
the finite sequence {Ej, Uy, ..., E,, U,) is admissible for G(DC,,, X).

3
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Let § = {©} and Ry = {Xx ¥}. Assume that we haye already constructed
the above {§;: i<n} and {<R;, ¢;>: i<n}. We pick an Re®,. Let
<Els Ul: ey En7 Cfn)
be the admissible sequence in G(DC,, X) which is described for this R in the as-

sumption (5). So there is a discrete collection {C,: a & Q(R)} by m-compact closed
sets in R’ such that

s(Uy, .. U{C,: ae2(R)}.
We can take a discrete collection {W,: o e Q(R)} of open sets in R’ such that C,= W,

for each o e Q(R). Since C, is m-compact, |&|<m, x(¥)<m and R” is subpara-
compact, there is a collection , ’

LU)AR =

s = {CLUY' xH,: i=1,..,k, and Le A0}

" by closed rectangles in R, satisfying the following:

(i) Each U3” is open in R

() Ce U{Uihi=1,.., kjcW,.

(iii) Bach ClUj3'x H; is contained in some G e ®.

(iv) {H;: Ae A(w)} is a o-discrete closed cover of R'.
Then F,41(R) = U {&rsi: 2 Q(R)} is o-discrete in X'x Y. We put for each
e A(o)

= (CIwWN U {US": 1<igk,)) < H, .
(BN\U {W,: aeQ(R)})xR". Moreover, let us put
R,y (R) = {R} U {R}: LeA(w) and o e Q(R)} .

Then R, ((R) is also a ¢-discrete collection by closed rectangles in R. Here we set

Tpar = U{8us1(R: ReR,} and R,y = U {R,.(R): ReR,}. The function
@pt1t Ry — R, is defined as ¢, (R, 1(R)) = {R} for each Re R,. From the
assumption (1), §,4, and R, , are o-discrete in X'x Y. The conditions (1) and (2)
are satisfied. By (iii), the condition (3) is also satisfied. The verification that the con-
ditions (4) and (5) are satisfied is analogous to that of the cases of (1.5,) and (1.6,)

_ respectively in the proof of [19, Theorem 2.1]. Thus the above constructions by induc-
tion are completed.

Let § = U {&,: ne N}. We can show similarly to our previous proof that §
is a cover of X'x Y. Hence § is a o-discrete refinement of & by closed rectangles
in Xx Y. The proof is complete.

As the immediate consequences of Theorem 2.2, we have

COROLLARY 2.1, Let X be a collectionwise normal space and Y a subparacompact

space with y(Y)<m. If Player I has a winning strategy in G(DC,,, X), then Xx'¥
is a D-product.

Next we put R =

COROLLARY 2.2, Let X be a paracompact space and Y a subparacompact space.
If Player I has a winning strategy in G(DC, X), then Xx Y is subparacompact.
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Let PC,, be the class of all product spaces with the first factor being - compact.
The following corollary is an immediate consequence of Theorem 2.1 and Corol-
lary 2.1 ‘ ;

COROLLARY 2.3, Let X be a collectionwise normal space and Y a subparacompact
space with y(Y)<m. If Player I has a winning strategy in G(DC,, X), then he has
a winning strategy in G(D(PC,), Xx Y).

Moreover, let us give some other typical examples of D-product.

PROPOSITION 2.1. Let X and Y be spaces such that Xx Y is normal. If ¥ is
a o-space or has a o-discrete cover by compact sets, then Xx Y is a D-product.

Proof. Let M be a closed set of Xx ¥ and O an open set of X'x Y with
Mc Q. First, let Y be a o-space. So Y has a ¢-discrete closed net § = {F,: 1e 4}.
Since X x Y is normal, we can take an open set W of Xx Y such that MW
<CIW<O. For each Aed, we put

U,= U {U: Uis open in X with UxF,cW}.

Since & is a net of ¥, we have |J {U;x F;: e A} = W. Hence {ClU,x F;: Ae A}
is a o-discrete collection by closed rectangles in X'x Y such that

McWwel) {ClUx F,: Aed}cClWeO.

Secondly, let ¥ have a o-discrete cover by compact sets. It is easily seen that

" we can assume, without loss of generality, ¥ to be compact. We take a binary cozero

cover {G, H} of XxY such that G=O and HoX\M. By the lemma of
J. Terasawa described in [2], there is a normal cover U = {U;: A€ 4} of X and
a family {®,: Ae A} of the finite open covers of Y such that

{U,xClV: VeB, and L€ 4}

is a refinement of {G, H}. Since 1l is normal, there is a o-discrete closed cover
€ = {E,: Ae A} of X such that E;=U, for each A& A. Then

{E,xClV: VeB, and Ae A}

is a o-discrete closed refinement of {G, H} by closed rectangles in X'x Y. This implies
Xx Y is a D-product. The proof is complete. :

PROPOSITION 2.2. Let X be a subparacompdct P-space and Y a regular sirong
Z-space (ef. [7)). Then every open cover of X x Y has a o-discrete refinement by closed
rectangles in X' x Y. Therefore Xx Y is a D-product.

Proof. We modify the proof of [7, Theorem 4.1]. Let @ be an open cover
of Xx ¥, Let & = {F(oty, s )7 Qg5 ee ,u;€Q}, ie N, be a spectral Z-net of ¥
(cf. 17, Definition 1.5]). Let BB(xy, ..., o) = {Uzx Va: A€ A(oy, ..., @)} be the
maximal collection by open rectangles in X'x Y, satisfying ‘

@) Flog, oo 2= V3, -
“(i) ¥, is a finite union of open sets ¥34,... Vit of ¥ such thateach U, x CLV;;
is contained in some Ge®, for each AeAd(ay,.. o).
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Put Uloy, ..., o) = U {Ust AeA(ay, ..., a)}. Then we have U(ay, ..., o)<

C Uty s o gy 0y 1) TOT €ACH 0y 5 vy 04 g € 2. So there is a collection {Cloyy oy aty):
Oy, oy ;€ Q) of closed sets of X such that C(oy, v a)cU(y, ..., o) for each
Oy ey 0 € 2 and

U{U(oy,...,0): ieN} =X
implies

U{Cly, ., a): i€eN} = X .
Since {U,: A€ A0y, .. )} U {X\C (&g, ..., @)} is an open cover of X, we can
take a o-discrete collection {E;: A& A(ey, ..., &)} of closed sets of X such that
Clety, o, )=l {Ey: A€ d(ay, ..., u)} and E,cU, for each AeA(x,..,a).
Since each §; is locally finite in' ¥ and ¥ is subparacompact (cf. [6, Theorem 1]),
there is a o-discrete closed cover §; of Y such that each H €9, intersects at most
finite many Fe §;. Let us put for each ie N

Ry = {Ex(F(og, ., 2) N C1Vy; 0 H): He$y,
j=1,0,n), Ae Ay, ...,x) and o, ..., ;€ Q} .

Then we can see that each R, is o-discrete in X'x Y. So it is verified that
U {®:: ie N} is a o-discrete refinement of ® by closed rectangles in X'x Y. The
proof is complete.

Remark. Under the assumption of Proposition 2.2, D.J. Lutzer [5] and
T. Mizokami [6] essentially showed that every open cover of X'x ¥ has a o-locally
finite refinement by closed rectangles in X x ¥. It can be also shown that the product
of a metacompact P-space and a metacompact X-space is metacompact. This is an
improvement of [6, Theorem 3]. Indeed, from [6, Lemma 6], the proof is obtained
by the modification of the above one. :

PROPOSITION 2.3. If a product space XxY is a paracompact (normal)
D-product, then every (finite) open cover of Xx Y has a o-discrete refinement by
closed rectangles in Xx Y. . '

- The proof is left to the reader as an exercise.

§ 3. C-products. In this section, modifying the concept. of D-product, we give
a condition for a product space X x ¥ under which Player I has a winning strategy
in G(K; xK,, XxY) if he has winning strategies in G(K,, X) and G(K;, Y).

DEFINITION. A product space X'x Y is said to be a C-product if for each closed
set M of X'x Y and each open set of XX ¥ with M< O there is a countable collec-
tion § by closed rectangles in Xx ¥ such that M=) §<O.

"As an apalogy of Theorem 2.1, we obtain the following:

THEOREM 3.1. Let X and Y be spaces such that X Y is a C-product. If Player I
has winning strategies in G(Ky, X) and G(K,, Y), then he has a winning strategy
in G(KyxK,, Xx Y).

.+ . Theproof is quite parallel to that of Theorem 2.1. So the detail of it is left to
the reader. ‘
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PROPOSITION 3.1. A product space which is regular and has the Lindelof property
is a C-product.

The proof is almost obvious.

Remark. From Theorem 3.1, Proposition 3.1 and [14, Corollary 14.14], we
can obtain the result of R. Telgdrsky [15] concerning the point-open games of product
spaces, which is mentioned in our Introduction.

ExampLE 3.1. Let S be the Sorgenfrey line. Its product §2 = Sx.Sis a D-prod-
uct which is not a C-product.

Let M be a closed set of S* and O an open set of S? with Mc<O. Let
W = {W,: Ae A} be a collection by open rectangles in S? such that M UWB=o
and W, = [x;, x))x[p;, %) for ecach led. Put W= wW{x;} xS and
Wi = W,\Sx{y,}. BEach W} is open in Rx S and each W3 is so in SX R, where R
is the real-line with the usual topology. Put

G=U{Wi:led} and H={W} ied}.

Moreover, put D = M\(G L H). Since M=) M and |W; n D|<1 for each 1€ 4,
D is a discrete closed set of S2. Since Rx.S is perfectly normal and G is open in
RxS, G is an F,-set of RxS. So, put G = ) {E,: ne N}, where each E, is closed
in RxS. Similarly, put H = |) {F,: ne N}, where each F, is closed in S xR.
Since R xS is a D-product, there is a g-discrete collection €, by closed rectangles
in Rx S such that E,cl) €, G for each ne N. Then each &, is also a o-discrete
(in $7) collection by closed rectangles in S2. Similarly, there is a ¢-discrete (in S%)
collection &, by closed rectangles in S? such that F,c{J §,<H for each ne N.
Here we set

A= {{p}: pe D} U (U{E,, §.: neN}).

Then 20 is a o-discrete collection by closed rectangles in S? such that Mc | A<O.
Hence S?* is a D-product.

Next, let M = {(x,y)eS*: x+y>0}. Then M is a clopen set of S Let
4 ={(x,p)eS?* x+y = 0}, Let § be an arbitrary collection by closed rectangles
in 82 such that M = |) §. For each (x, ) € 4, we choose an F,,€ § containing
(x, »). Note that F, =[x, 00)x[p, o) for each (x,y)e 4. So F,, and F,, are
distinet for each distinct (x, ), (%', ) € 4. Hence we have |F| > c. Thus there is no
countable collection by closed rectangles in S* whose union is M. This implies S is
not a C-product,

Remark. Besides, it is verified that S? is not a F-product (in the sense of
J. Nagata [8]).

A product X% ¥ of Tychonoff spaces X and Y is said to be rectangular [10] if
every finite cozero cover of X'x ¥ has a ¢-locally finite refinement by cozero rec-
tangles in X'x Y.

Examere 3.2, There are Tychonoff spaces X and ¥ such that Xx Y is
a C-product which is not rectangular. ' DS
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Let ¥ = Nu{p}and ¥ = BN\{p}, where p e BN\N. Since X is countable,
Xx Y is a C-product. It is pointed out in [4] that X'x ¥ is not rectangular.

§ 4. Closure-preserving collections by m-compact sets. In this section, we mainly
deal with' spaces which have a ¢-closure-preserving closed cover by mi-compact
sets. - C
Levva 4.1, Let X be a space which has a closure-preserving closed cover § by
tn-compact sets: Then fo each closed set E of X one can-assign a discrete collection
D(E) by m-compact closed subsets of E, satisfying the following conditions:

(1) Each.D e D(E) is contuined in some Fe§.

@) If {Ei,E,,..> is a decreasing sequence of closed sets of X such that
B, A (UDX)) = @ and E,yy 0 (U D(E,) = @ for each neN, then

o N{E:neN}=0. ‘ ,

This is essentially proved in {16, Lemma 5] and yields the following result which
is stated in [19, Proposition 1.1}

_ ProposiTion 4.1. If a space X has a o-closure-preserving closed cover by
wm-compact. sets, then Player I has a winning strategy in G(DCy, X). ‘

Let Dim, = {Z: Z is a space with dimZ<n} and Ind, = {Z: Z is a normal
space with IndZ<n}.

. LeMMA 4.2.. Let X be a normal space. If Player I has a winning strategy in
G(Dim,, X), then dim X<n. ‘ .
. LemMA-4.3. Let X be a totally normal space. If Player I has a winning strategy in
G(Ind,, X); then Tnd X<n. ‘ o

Lemma 4.2 is proved in [16] and Lemma 4.3 is in [18]. Now, using these Jemmas;
we obtain the following product theorem in dimension theor}lf as an application of
the result in § 2. ‘

Trorem 4.1. Let X be a collectionwise normal space which has a o-closure-
preserving closed cover by m-compact sets and Y a subparacompact space with
x(Y)<m. Assuming either X or Y is non-empty, we have the following:

‘ (1) If Xx Y is normal, then dim(X x Y)<dim X+dim Y.

) If Xx Y is totally normal, then Tnd(Xx ¥)<Tnd X+Ind Y.

) Proof. Let-Xx ¥ be a normal space with dim X'<m and dim Y<n. Let AxB
be a product space such that A is m-compact and y(B)<m. Since the projection
of Ax B onto B is a closed map, 4 x B is rectangular (cf. [10, Proposition 1]). It
follows from the product theorem of B, A. Pasynkov [10] that dim (4 x B)<dimA +
+dim B holds. So, for each closed rectangle R in X'x ¥ with R & PC,,, we bave

. o dimR<dimR +dimR"<m-+n ..
Hence for each closed sets P of X'x ¥ with P e D(PC,,) we have dimP<ni-+n. This
implies from Corollary 2.3 and Proposition 4.1 that Player I has a winning strategy

in G(Dim,,.,, XxY). Since Xx ¥ is normal, it follows from Lemma 4.2 that
dim(X % Y)<m+n holds. :
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Let X'x ¥ be a totally normal space with Ind X<m and Ind Y<n. Let R be
a closed rectangle in X'x Y with R e PC,,. Since R is totally normal and rectangular
{equivalently, F-product), it follows from the product theorem of J. Nagata [8]
that Ind R<m+n holds. So Player I has a winning strategy in G(Ind, 4, X< Y)
similar to the above case. Since X'x Y is totally normal, it follows from Lemma 4.3
that Ind(X'x ¥Y)<m-+n holds. The proof is complete.

Comparing Theorem 4.1 with [19, Theorem 2.1], we need to pay attention to
the examples below, "

Exampry 4.1, There ‘are a paracompact space X with a closure-preserving
cover by compact sets and a subparacompact space ¥ such that X x ¥ is normal and
non-paracompact.

Let Y be a subparacompact and normal space which is not paracompact. As
such a space ¥, we may consider the space described in [1, Example H]. Let n be
a regular cardinal number with n>|Y|. Let w, be the initial ordinal of n. Note
w,> 0. Let X = [0, w,]. The topology for X is defined as follows; the neighborhood
base at w, is {(x, 0,]: x<w,} and each x, x<w,, is an isolated point. The space X’
is a paracompact space with a closure-preserving cover by two-point sets. We show
that X'x ¥ is normal. Let M be a closed set of Xx ¥ with H n {0,} x ¥ = @. For
each ye Y, Let Hy = {x e X: (x,y) e H v Xx{y}}. We can choose some x () <cw,
such that I, n (x(y), w,] = @ for each pe Y. Let x, = sup{x(»): ye ¥}. Since
| Y]<u and 1 is regular, we have xy<wo,. Let U = [0, xo]x Yand V = (x,, 0,] x Y.
Then U and V are disjoint open sets of X'x ¥ such that HeU and {w,}x Y V.
Hence it follows from [12, Lemma 2.9a] that X'x Y is normal.

ExAmpPLE 4.2. There are a paracompact space X with a closure-preserving
cover by compact sets and a subparacompact Tychonoff space ¥ such that X x ¥
is not rectangular. ‘

Let X be the space [0, w,] which is described in Example 4.1. Then X is the desired
space with |X|>x,. Herc, note that X is not locally compact, For the space X,
it follows from [9, Theorem 5.1] that there is a subparacompact Tychonoff space ¥
such that w(¥)<u and v(Xx Y) # vXxoY(= XxvY). So we have u(Xx7Y)
# uX % pY. Hence it follows from [4, Theorem 4] that X'x Y is not rectangular.

" In connection with Theorem 4.1, we remain the following two problems:

ProsuiM 4.1, Assume that X is a paracompact space which has a closure-
preserving cover by compact sets and Y is a subparacompact normal space.
Is dim(X'x Y)ssdim X --dim ¥?

ProOBLEM 4.2, Are there a paracompact space X which has a 6losure—preserving
cover by compact sets and a subparacompact space ¥ such that X x ¥ is normal and
but not rectangular? : :

Remark. An affirmative answer of Problem 4.2 would give a class of product
spaces which. essentially contains at least one non-rectangular product, however, in
which the product theorem for .covering dimension holds.
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The following result is a generalization of [11, Theorem 1]. Besides, the proof
seems to be simpler.

THEOREM 4.2, Let § be a closure-preserving collection by m-compact closed sets
of a space X, and let W be an open cover of X with || <nt. Then W has an open re-
finement B such that {V'eB: V 0 F # @} is finite for each Fe §.

Proof. We may assume without loss of generality that § is a closure-preserving
cover by m-compact closed sets of X. For each closed set £ of X, let D(E) be the
discrete collection described in Lemma 4.1. We construct a sequence {®,: n320}
of collections of open sets in X, satisfying the following conditions:

(1) &, covers |) D(E,), where E, = XNU{UG;: i=1,..,n—1}

(2) Each Ge ®, is contained in some Ue .

() {Ge®,: GnF+# B} is finite for each Fe §.

Let G, = {@}. Assume that the collections {®,;: i<xn—1} have been constructed.
Let E, = X\U {U &;: i<n—1}. Since each D & D(E,) is m-compact and |U|<m,
there is a finite subcollection (D) of A covering D. For each Ue U(D), we put

GD,U)y= U\ {Fe§: FnD =@},
which is an open set of X. Here we set

®, = {G(D,U):. Uc W(D) and DeD(E)}.

It is clear that ®, satisfies (1) and (2). We pick an Fe §. Let

D(E)y = {DeDE): DAF#a}.
Since D(E,) is discrete and F is countably compact, D(E,) is finite. Pick a G e 6,
with G N F # @. Then we can easily verify G = G(D, U) for some D e D(E)yp
and Ue U (D). Hence {G e B,: G n F 5 @} is finite, so that &, satisfies (3). Thus &,
satisfies the conditions (1)~(3). It follows from Lemma 4.1 and (1) that {J {®,: ne N}
is a cover of X. For each ne N, let L, = | {Fe®: FeU {U 6;: i<n—1}}. For
each Ge'®,, let Vi = G\L,. Here we set B, = {Vs: Ge6,} and B = () {B,:

ne N}. One can show similarly to the proof of [11, Theorem 1] that B is the
desired open refinement of U. The proof is complete.

§ 5. Total paracompactness. A space X is said to be totally paracompact if each
open basis of X contains a locally finite cover of X.The following result is a general-
ization of [17, Theorem 1] and gives an affirmative answer to [13, Problem 5.11].

THEOREM 5.1. Let X be a paracompact space. If Player I has a winning strategy
in G(DC, X), then X is totally paracompact.

Proof. Let B be an open basis of X. Let s be a winning strategy of Player I
in G(DC, X). Since DC is hereditary with respect to closed sets, we may assume
without loss of generality that each s(Uy, ..., U,) is digjoint from U, U ... v U,.
Let E, = s(&). Since the closed set E, of X belongs to DC, we can choose a sub-
collection B, of B such that B, is locally finite in X and E, =) 8,. Take a cozero-
set Uy of X with E, cU, <) B;. Let {U7: ne N} be a sequence of open sets of X
such that U; = | {U]j: ne N} and ClUj= U}** for each ne N. Let E, = s(Uy)
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eDC. We can also choose a subcollection B, of B such that B, is locally finite
in X and E,<) SBzc:X\ClUi. Take a cozero-set U, of X with E,c U, B,.
Let {U3: ne N} be a'sequence of open sets of X such that U, = (J {Us: ne N}
and ClUI=US* for each ne N. Let E, = s(Uy, U,). Moreover, we can choose
a subcollection B; of B such that B; is locally finite in X and E;cl B,
c X\Cl{(U 2o U%). Continuing in that manner, we get the three sequences
(8,: neN}, {Uy: ne N} and {U): n,me N}, satisfying the following conditions
(1)-4):

(1) B, is a locally finite subcollection of B.

(2) U, is a cozero-sct of X such that s(@)cU;<{) B, and s(Uy,
clU,=UB,.

(3) Each Uy is an open set of X such that U, = J{Uy: me N} and C1U; < Up™*?
for each me N,

@ UB,cX\CHUT UL 0 UIZD.

Here we set % = |J {B,: ne N}. Then A is a subcollection of B. It follows
from (2) that {U,: ne N} covers X, so that % is a cover of X. Let x € X. We can
choose some i,je N such that xe Ul. Let ny = max{i,j}. By (3) and (4), we
have for each n>n, ‘

(U %Il) n U{C(U )Bn) al Ulmic(U SBn) a} (U {Ul'cl_]: ISkSﬂ—]}) =0.

Since, by (1), U {B,: a<ny} is locally finite in X, 2 is locally finite at x. Hence % is
a locally finite subcover of 8. The proof is complete,

Finally, let us remark that we cannot expand the arguments in § 2 and § 3 to
infinite products. It is clear that Player I has a winning strategy in G(N). However,
he has no winning strategy in G(N®), where N denotes the product of countable
many copies of N. Indeed, this fact is derived from

ExAmpLE 5.1, Player I has no winning strategy in G(DC, N®).

Since N is the irrational space, it is a metric space. But it is known that N®
is not totally paracompact (cf. [3, Theorem 1]). So Example 5.1 follows from
Theorem 5.1.

s Upsy)

Added in proof.

1. Recently, the author has proved that we can replace, in Theorem 2.2, the collectionwise
normality of X with the condition X is subparacompact and regular. In fact, the proof is obtained
by the modification of that of Theorem 2.2. So, we can also replace the collectionwise normality
of .Y in Coroltaries 2.1, 2.3 and Theorem 4.1 and the paracompactness of X in Corollary 2.2 with
the condition X is subparacompact and regular, respectively. Here, note that nt is meaningless.

2. After this version, ., Ohta has kindly informed the author that he gave an affirmative
answer 1o Problem 4.2,
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Periodic points of symmetric product mappings *
by

Nancy Rallis (Boston)

Abstract. We study questions concerning periodic points of symmetric product mappings.
By means of the Maxwell trace homomorphism we define the notion of the mth Lefschetz number
of a symmetric product mapping of a compact polyhedron. We show that the nonvanishing of this
mth Lefschetz number is a sufficient condition for the existence of a periodic point of period <m.
Next we relate that mth Lefschetz numbers of a symmetric product mappingto a certain character-
istic function and obtain further results concerning periodic points.

1. Introduction. Let X be a topological space and X" the cartesian product.
Let G be a group of permutations of the numbers 1, 2, ..., n. The orbit space of X"
under the action of G (with the identification topology) is called the n-th symmetric
product of X and is denoted by X"/G. A continuous map of the form i X - X"G
is called a symmetric product mapping. :

For symmetric product mappings of compact polyhedra, C. N. Maxwell defined
the notion of a Lefschetz number [4]. He showed that a nonzero Lefschetz number
implies the existence of 4 fixed point. This extension of the Lefschetz fixed point
theorem also holds for symmetric product mappings of metric ANR’s provided the
mapping is compact [3].

Tn the present paper we define the notion of a periodic point of period <m for
fi X - X"/G. In the caso that X is a compact polyhedron, we define the mth
Lefschetz number of f by appealing to the simplicial machinery developed in
Maxwell [4]. We show that the nonvanishing of this number is a suft ficient condition
for the existence of periodic points of period <m. Further results concerning periodic
points are obtained upon relating the mth Lefschetz numbers to a certain charac-
teristic function. For instance, we show that if X is a compact polyhedron such that
H(X) = 0 for i odd, where H is the homology functor with coefﬁ.cients in the ra-
tional field, then any map fi X - X"/G has a periodic point of period < the Buler
characteristic of X. ‘ :

* This papet is based in part on the author's dissertation at Indiana University under- the
direction of Professor Jan Jaworowski. '
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