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contains an arc. Since H,,(X) is locally homeomorphic to X™, this implies that X
contains an arc. m '

5.7. Remark. Let X < Q be a free pseudo-arc. Then X is a boundary set
for ¥ ~ Q containing no arcs. It might be interesting to point out that X is
countable dimensional, i.e. a union of countable many zero-dimensional subsets.

It is also easy to construct a boundary set containing no arcs which is strongly

infinite dimensional. Let X = Q be a free strongly infinite dimensional
continuum containing no arcs. Then X < X is as required. We do not have an
example of a boundary set B = Q so that either dim 4 = 0 or dim 4 = oo for all
A < B. If there is a continuum X with the property that for any ne N and
A < X" either dimA4 =0 or dimA = oo then it is possible to construct a
“hereditary infinite dimensional” boundary set. It is unknown whether such
a continuum exists. Notice however that there is a continuum with no
n-dimensional (n > 1) subsets, [11].

Let M be a Q-manifold. Using the fact that M x [0, 1) embeds in Q as'an
open subset, it is easy to show that M contains a g-compact o-Z-set B such that
B contains no arcs and M—B is an l,-manifold.
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Zero-dimensional countable dense unions
of Z-sets in the Hilbert cube

by
D. W. Curtis (Baton Rouge, La) and J. van Mill (Amsterdam)

Abstract. We show that every o-compact, nowhere locally compact, zero-dimensional metric
space can be imbedded in the Hilbert cube as a countable dense union of Z-sets, and that there are
exactly three such spaces for which all such imbeddings are topologically equivalent.

§ 0. Introduetion. It is well know that the Hilbert cube I* is countable dense
homogeneous: for any two countable dense subsets D and E, there exists a
homeomorphism h: I —I™ with h(D) = E. Thus, all dense imbeddings of the
space Q of rationals into I are topologically equivalent. It seems natural to ask
which other o-compact, O-dimensional metric spaces share this property. It is
easily shown that such a space X admits a dense imbedding into I ® if and only if
it is nowhere locally compact. Furthermore, to obtain positive results in the
general case when X is uncountable, we consider only imbeddings as countable
unions of Z-sets (see § 1). Thus, the question we ask is: which o-compact,
nowhere locally compact, 0-dimensional metric spaces X have the property that
all imbeddings of X into the Hilbert cube as countable dense unions of Z-sets
are topologically equivalent? In this note we show that there are exactly three
such spaces: the space of rationals, the product of the rationals and the Cantor
set, and the space which is the union of a copy of the rationals and a nowhere
dense Cantor set.

Actually, the question of equivalence of imbeddings fi: X —I* and
fa: X = I* of a 0-dimensional space X reduces to the question of whether the
complements ™\ f; (X) and I\ f(X) are homeomorphic (see § 4). This rather
curious result is of course strictly limited to the O-dimensional case (compare for
instance with Chapman’s complement theorem for Z-sets in I* [3], or with the
fact that the complements of both capsets and fd-capsets in I* are
homeomorphic to * [1]).

§ 1. Preliminaires. All spaces considered are separable metric. We shall
frequently use the following classical characterizations for certain 0-dimensional
spaces (for techniques of proof and references, see [6]):

1.1. LEMMA. X ~ Q, the space of rationals, if and only if X is countable and
has no isolated points.
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1.2. LemMa. X = Q x C, the product of the rationals and the Cantor set, if and
only if X is o-compact, nowhere locally compact, nowhere locally countable, and
0-dimensional.

A 0-dimensional space is called strongly homogeneous if it is homeomorphic
to every nonempty clopen subspace. By the above characterizations, both Q and
Q xC are strongly homogeneous. ‘

1.3. LemMA. Let A and B be homeomor phic, closed, nowhere dense subspaces
of X and Y respectively, such that X\ 4 and Y \B are homeomorphic, strongly
homogeneous, O-dimensional spaces. Then every homeomorphism f: A — B
extends to a homeomorphism f: X — Y.

Proof. The technique is similar to that used in [4]. In brief, one constructs
covers { ¥}/ and {W;}{" of X\ 4 and Y \ B by disjoint clopen subsets of X and ¥,
respectively, such that:

1) diam ¥, < d(¥;, A) and diam W, < d(W,, B) for each i;

2) there exist sequences {¢;} and {b;} in 4 and B, respectively, with f (a;)
= b;, such that

limd(a;, V) =0 = limd(b;, W).
i—+o0 i—rom
For each i, choose an arbitrary homeomorphism f;: ¥;— W,. Then f: X
— Y, defined by fi, = f and_ﬁyi = f; for each i, is a homeomorphism extending f.

0

We consider the Hilbert cube I = [T [—1, 1]; with the metric d ((x,), )
1

0
= 3 27 x;—yi|. A closed subset F < I is a Z-set in I* if there exist maps
1

n: I = I*\F arbitrarily close to the identity map. Note that every endface
of I (a subset of the form =, *(—1) or #; !(1), where m,: I — [—1,1]; is the
projection map) is a Z-set. A countable union of Z-sets is called a o-Z-set. An
imbedding h: X ~I® is called a Z-imbedding if h(X) is a Z-set; similarly
for a ¢-Z-imbedding. For a discussion of Z-sets, and proofs of the following
basic results of Anderson, see [3].

14. HomeomorpHisM ExTeNsION THEOREM. Let h: A — B be homeo-
morphism betweein Z-sets in I*, with d(h,id) <e. Then h extends to a
homeomorphism h: 1* — 1™ with d(,id) <. .

L.5. INpucTive CONVERGENCE CRITERION. Suppose a sequence {h,};" of
homeomorphisms of I* is chosen inductively so that each h, is sufficiently close
to the identity. Then lim h,0...0h, exists and is a homeomorphism of I*.

n— o -

1.6. LemMaA. Every a-compact, nowhere locally compact, O-dimensional space

X admits a dense, o-Z-imbedding into I*,

Note. We do not know whether the O-dimensional hypothesis can be
omitted.
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Proof. We first consider the special case X ~ Q xC. Let {K;I{" be a
sequence of Z-set Cantor setsin I*™ such that Y = U K;isdensein I*. Then Y is
i

nowhere dense, hence nowhere locally compact, and it follows from the
characterization Lemma 1.2 that Y =~ Q xC.

In the general case, let X be a O-dimensional compactification of X. Since X
has no isolated points, neither does X, and therefore X is a Cantor set. Let {Cy
be a sequence of nowhere dense Cantor sets in X whose union is dense. Since X

is nowhere locally compact, X is also nowhere dense in X. Thus ¥ = U CuX

1
is a o-compact, nowhere locally compact, nowhere locally countable, O-
dimensional space, and again by Lemma 1.2, ¥ =~ Q x C. Since X is dense in Y,
the general result follows from the special case. .

The reason for considerings only o-Z-imbedding in I is now apparent.
Since the Cantor set can be imbedded in I*™ as a non-Z-set [7], there exists, for
every uncountable O-dimensional space as above, both a dense o-Z-imbedding
and a dense non-o-Z-imbedding, which obviously are not equivalent in I**; for
details see [S].

§ 2. A O-dimensional capset. The idea of a capset (abbreviation for set with
the compact absorption property) for a given topological class .#" of compacta is
due independently to Anderson [1] and Bessaga—Pelczynski [2]. Let " be a
topological class of Z-sets in I A dense o-Z-set K < I is called a capset for 4~

o0

if K={)K;, for some tower K, = K, <... of members of J# with the
; :

following property:

for each &>0, each integer m, and each Fe.J, there exists a
homeomorphism A: I¥ —I* with d(h,id) <e¢, hlg,, =id, and h(F) < K,
for some n > m. ‘

Examples of capsets for various classes of compacta are well-known. These
include: the class of all compacta, with a capset £ = {(x)el*: sup|x| < 1}; the
class of finite-dimensional compacta, with a capset ¢ = {(x)elI™: x; =0 for
almost all i}; and the class of {inite spaces, with every countable dense set a
capset. We show here that every dense g-Z-set copy in I* of the space @ x C is a
capset for the class of 0O-dimensional compacta.

An elementary argument using the Inductive Convergence Criterion 1.5
shows that capsets are topologically unique and in fact, for any two capsets K
and M in I"™ (for the same class #’), and & > 0, there exists a homeomorphism
h: 1™ —I* with d(h,id) <¢ and h(K)= M. Thus, the above capset
characterizations show that the Hilbert cube is “dense homogeneous” with
respect to the spaces Q and Q xC. .
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2.1. TueoreM. Let K < I be a dense o-Z-set homeomorphic to Q x C. The
K is a capset for the class of 0-dimensional compacta.

Proof. Clearly, Q may be written as the union of a tower of compacta
F{ © F, —...such that each F, is nowhere dense in F;, . Taking products with

o0
C, we obtain K = |J K, with each K; a Cantor set which is nowhere dense in

1

K;;i. Let a O-dimensional Z-set 4 = I*, >0, and an integer m be given,
Choose n > m such that d(x, K,) < }¢ for each xe 4. Let & be an open cover of
A\K,, by disjoint, compact subsets such that for each De%, diamD
< min {d(D, K,,), }¢}. For each D pick a. point x(D)eK,\K,, such that
d(x(D), D) < min {2d(D, K,,), +¢}, and with x(D)  x(D") if D s D'. This is
possible since K,, is nowhere dense in K,. For each D, choose a Cantor set
C(D) = K,\K,, containing x (D) such that diam C(D) < min {d (x(D), K,,), }¢},
and such that C(D) n €(D) = Q if D # D'. For each D € &, choose an arbitréry
imbedding fp: D — C(D). Define an imbedding f: 4 UK, — K, by

 (fold) i xeDed;
f(x)_{x if xek,.

Clearly, f is an imbedding, f|x, =id, and d(f,id) < }¢+4e+4e =¢. By the
Homeomorphism Extension Theorem 14, f extends to a homeomorphism
h: I* = I* with d(h,id) <e.

§ 3. Dense homogeneity of the Hilbert cube. If X is a o-compact, nowhere
loca_tlly compact space which admits a dense o-Z-imbedding into I®, we say that
I* is dense homogeneous with respect to X, if, for any two dense g-Z-set copies
X, and X, of X in I, there exists a homeomorphism h: I® — I with h(X)
= X,. (Of course, this does not require that every homeomorphism £ X, — X
extend to a homeomorphism h: I® — [*®), ' ’

By Lemma 1.3, the space which is the union of a copy of the rationals and a
nowhere dense Cantor set is topologically unique. We denote this space by L.

3.1. THEOREM. The O-dimensional spaces with respect to which I is dense
homogeneous are Q, Q xC, and L. ‘

Proof. As previously noted, the dense homogeneity of I* with respect to Q
and @ x C follows from the fact that all dense o-Z-set copies of these spaces in J*
are capsets, for the class of finite compacta and the class of 0»dimensi6na1
compacta, respectively. :

Let L; and L, be dense o-Z-set copies in I® of the space L. We may
suppose that L; = C; U Q;, where C; is a nowhere dense Cantor set in L;,Q;isa

copy of @, and C;nQ; =0, i=1,2. By the Hbmeomorphism Ex,tenlsion
Thfaorem 14, there exists a homeomorphism f: I® — I with fCy)=cC
Using 1.4 again, we may construct a sequence {h,} of homeomorphisnlls of Iz“;
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such that hy|c, = id for each n, h = lim (h,0 ...0hy) is @ homeomorphism by

the Inductive Convergence Criterion 1.5, and h{f(Q;)) =Q,. Then hofis a
homeomorphism of I taking L, onto L, (this technique of proof is known of
course, see e.g. [2], pp. 123 and 139).

We now consider a o-compact, nowhere locally compact, 0-dimensional
space X which is not homeomorphic to @, @ xC, or L. Let V = {xeX: Xis
locally countable at x}. Since X # QxC, V % 0, and since X #Q, V # X.

Suppose first that V= X. Then B = ¥\ Vcan have no isolated points. If Bis
compact, then B =~ C and X ~ L. Thus B is non-compact. Consider two non-
homeomorphic compactifications B; and B, of B (for instance, let B, be a
Cantor set compactification and B, an infinite-dimensional compactification
containing a copy of I*). Let f;: B; — I’ be Z-imbeddings, and Q; = I \f;(B)
countable dense sets, i = 1, 2. By Lemma 1.3, f; (B)uQ; ~fo(ByuQ, = BUV
= X, and the sets X; =f;,(B)u Q;,i = 1, 2, are dense o-Z-set copies of X in I™. If
there exists a homeomorphism h: I* — I” taking X, onto X5, then h(fi(B))
f2(B), and since f; (B)) = (B), we must have hf; (By) = f,(B,), impossible since
1 # B,. ‘

Now suppose that ¥ # X, and set W= X\V. By Lemma 1.2, W= Q@ xC.
Let m,: I »[—1,1] be the projection onto the first coordinate factor. Let
fi V—I* be a o-Z-imbedding such that FVA\V)=n;({0}) and f(V) is a
dense subset of mi!([—1,0). Let g: W—1I" be a o-Z-imbedding such
that gl =/ lww and g(W) is a dense subset of 77 *((0, 17). These imbed-
dings, taken together, give a dense ¢-Z-imbedding hy: X —1 “ such that
By (V) =n{'([—1,0]) is connected. Similarly, we may construct a dense
o-Z-imbedding h,: X —I” such that hz(V\V‘]_clr{’ ({0}),  hy(V)
e ([—1.0)u(d, 1], and hy(W) = ry (0, 1) Then hy(V) = i ([=1,0]u
w1, 1]) is not connected. Thus there is no homeomorphism of I taking h; (X)
onto h,(X). This completes the proof of the theorem.

Remark. The inequivalent imbeddings fi: X — 17 constructed in the
above proof clearly do not have the property that, for arbitrary ¢ > 0, there
exists a homeomorphism g: f;(X)—f2(X) with d(g,id) <& One might
conjecture that two dense o-Z-imbeddings with this property would necessarily
be equivalent. The following example shows the conjecture to be false.

Let J be a Z-set arc in £, let K be a countable dense union of Cantor sets in
J\dJ, and let E be a countable dense subset of I* \J.Set X; = KUEand X,

=K ud))UE.Since K ~ QxC ~ KU dJ, we have X; = X,, and each X;is a
dense o-Z-set in I*. Moreover, for arbitrary ¢ >0, there exists a
homeomorphism y: K — K U aJ withd(y, id) < & By the proof of Lemma 1.3, y
extends to a homeomorphism g: X; — X, with d(g,id) <& However, there
does not exist a homeomorphism h: I” — I“ with h(X;) = X, since then h(J)
= h(R) =h(K) =K UdJ =J, and h(dJ) = aJ, impossible.

L=l
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§ 4. Complements of O-dimensional sets in I*. As remarked in the
introduction, the question of equivalence of imbeddings of a 0-dimensional
space into I reduces to the question of homeomorphism of their complements,

4.1. TueoreM. Let X, Y < I® be O-dimensional, and f: I\ X - I*\Y q
homeomorphism. Then f extends to a homeomorphism f: 1® — I*.

Proof. For each xe X and i > 1, let N;(x) be the open 1/i-neighborhood of
x in I®. We claim that f(x) = _Q £ (N;(x)\ X) defines an extension of f. Since

_each N;(x) is open and connected, and X is O-dimensional, N;(x)\X is
nonempty and connected. Thus f(x) is the intersection of a decreasing sequeﬁce
of gontinua, and is therefore a continuum which must lie in Y. Since Y is
0-dimensional, F(x) is a point. Clearly, this defines a continuous extension
f: I® - I% of f. Similarly, one defines a continuous extension g: I* — I* of
g=f""' Since X and Y are nowhere dense in I, each of the compositions
jog and gof is the identity map, and fis a homeomorphism.

Remark. It is clear from the proof that this theorem can be generalized, by
substituting for I any locally connected continuum Z, and requiring only t,hat
X and Y be totally disconnected and locally non-separating in Z.
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Chains in Ehrenfeucht-Mostowski models
‘ by
C. Charretton and M. Pouzet (Lyon)

Abstract. We study the relationship between the chain of indiscernibles in an Ehrenfeucht-
Mostowski model and the subchains of the model. As an application we construct large families of
almost disjoint models for some theories.

Introduction. This work arises from the following considerations: by means

of Ehrenfeucht—Mostowski models, the class of chains can be represented in the

class of models of any theory. In some cases, especially unstable theories this
method allows the construction of a large number of models (see S. Shelah [10]).
However the sort of relationship between these models seems to be interesting,
also. And this representation of classes of chains in classes of models allows one
to think, in particular, that the complexity of comparing models is as high as the
complexity of comparing chains. This paper is an attempt to work out this idea.

There is one basic question: if for a theory T two Ehrenfeucht—~Mostowski
models M (C), M (C') are comparable in some sense (by extension or elementary
extension), what is the relationship between the chains C and C’ which generated
them? the same question arises when C' is a subchain of M (C). Here we give a

" partial answer to this question, assuming that M (C) is partially ordered by a

formula ¢, we prove: if C' is a chain of regular power x in this partial order then
there is some subchain C” of C', with power x, which is isomorphic to a subchain of
C or its converse C* (Theorem IT-1). This is not the best possible result, however,
as we get that C' is a countable union of chains, each of them being isomorphic
to a subchain of some finite lexicographical product of copies of C or C*.

Nevertheless this result is enough to transfer some properties of chains to

‘models. Let (P) be the following property of two chains C and C': “C and C’ are

of same power » and there is no chain of power x order or antiorder isomorphic
to subchains in both C and C'”. If we take two chains € and C’ with the property
(P), then the two Ehrenfeucht—Mostowski models generated by them also have
'the corresponding property for models. So if the orderings on C and C’ are
definable in the Ehrenfeucht—Mostowski models to which they give rise, these
models are uncomparable. The situation occurs when the theory T has some
model containing an infinite chain; in this case large families of chains satisfying
pairwise the property (P) give rise to large families of uncomparable models with
the corresponding property. We can get such families of chains by using the
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