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That completes the definition. Using the properties of the sequence (C,| «

< w, &lim(x)), it is easy to see that the construction never breaks down, and
that for any o, ‘

yeC, ~(Vn<o)(t, <pt).

The proof that T = () T, is a Souslin ¥,-tree is standard, and <[<r,z,,|v n

a<w

<w)]] ¢« <w,) is clearly an w,-branch of T*. w

Remark. Using observations of Gregory and others (including ourselves),
we see that all that we needed to assume above was GCH -+, (See [2].)

‘ THEOREM 5. Assume V = L. Then there is a Souslin N,~tree, T, such that T*
is Kurepa. |

Proof. (Laver) By.V = L we can pick some Kurepa &,-tree, K. We now
construct a Souslin N,-tree, T, much as above. The only differenvce‘ is that we
embed K into T* as we proceed. That is, instead of simply defining one w,-
branch ([(ta,{| n<o)]| a <w,) of T, we define an entire copy of K Tlie
details are easily worked out by comparison with the proof of Theorem 4 éo
shall not go beyond these few remarks. m | e

Remark. The assumption of V = L ab.
m , = ove can be weakened to
+[0+ “there is a Kurepa N,-tree.” oci
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Topological degree and Sperner’s lemma
by ’
H. Sies (Hamburg)

Abstract, Starting with a combinatorial theorem of Ky Fan on pseudomanifolds we define a
topological degree mod 2 for a certain class of continuous maps from an n-dimensional finite
polyhedron /1" into R** ! — {0}, In case IT" is an n-simplex the strong version of Sperner’s lemma is
used for finding conditions under which the degree of a map does not vanish. In this way we can
gencralize some well-known topological results including the fixed point theorems of Brouwer and
Kakutani.

Introduction. Sperner’s lemma has turned out to be useful in different
mathematical fields. Usually this combinatorial result is applied via the
celebrated covering theorem for simplexes due to B. Knaster, C. Kuratowski, S.
Mazurkiewicz [9]. It is remarkable, however, that the proof of this covering
theorem makes use only of the weak form of Sperner’s lemma, ie. only the
existence of at least one completely labeled subsimplex is needed, whereas
Sperner’s lemma states that the number of completely labeled subsimplexes is
odd, It is the goal of this paper to improve the mentioned covering theorem by
utilizing the strong version of Sperner’s lemma and thus to extend classical
topological results such as the fixed point theorems of L. E. J. Brouwer and S.
Kakutani.

Our approach is closely related to anidea of M. A. Krasnosel'skii [10] who
introduced the Brouwer degree 8( ) of a continuous map fof an n-dimensional
closed finite orientable polyhedron into the n-dimensional unit sphere on a
combinatorial basis. A famous result of K, Borsuk giving a sufficient condition
for B(f) # O s derived there from a combinatorial antipodal point theorem. In
this paper, starting with a combinatorial theorem of Ky Fan [5, Theorem 2] on
pseudomanifolds, we shall assign one of the numbers 0, 1 to each cnntinuous
map F: II" — Ri*! of an n-dimensional finite polyhedron I1" (not necessarily
closed or orientable) into RL"':= R"**—{0} that satisfies a certain boundary
condition; this number y(F) will be called degree of F here. For the sake of
simplicity we shall do without orientation consideration, so y will be a degree
mod 2. Particularly important for the utility of our degree are sufficient
conditions for y(F) = 1. In the most interesting case II" = >" where 2" denotes
the n-dimensional unit simplex, such conditions will be obtained from Sperner’s
lemma. )
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§ 1. Preliminaries. Vector inequalities are to be interpreted in the
component-wise sense. Throughout this paper let n denote an arbitrary positive
integer, I resp. N resp. R the set of integers resp. positive integers resp. real
numbers, (a, b) resp. [a, b] the open resp. closed interval for a, be R, R" the
euclidean n-space, xy,..., X, the components of xeR", xy the usual scalar
product of x, y e R", d the metric of R” defined by d(x, y):= max |x; =y, ||| the

norm of R" defined by ||x||:= x|+ ... +|x,, 0" *:= {xeR" [|x|| = 1} the unit
(n—1)-octahedron, R%:= {xeR™ x 2 0}, Z""*:= 0""' N R the unit (n—1)-
simplex, Z: = {xeZ" x; = 0}, Ri:= R"—{0}, Q"= R} —{xeR" x>0 or x
<0}, I,(0):={i x>0}, Io(x):={ir ,=0}, x+d=x+(@,4,...,4) for
xeR", AeR. For every map F: § — R"(S a topological space) let Fy, ..., F, be
the components of F, and for every real number A let F + 4 stand for the map of §
into R" carrying x into F(x)+4; for every homotopy H: § x[0, 1] — R" and
every te[0, 1] let H: S — R” be defined by H'(x):= H(x, ).

Simplex resp. complex always means closed euclidean simplex without
orientation resp. finite simplicial homogeneously dimensional complex. The
topological space (K> associated with any (n—1)-complex K is called euclidean
(n—1)-polyhedron. Every topological space homeomorphic to an euclidean n-
polyhedron is called n-polyhedron. To every n-complex K" a boundary complex
0K" is assigned consisting of all faces of those (n—1)-simplexes of K" which
belong to the faces of exactly an odd number of n-simplexes of K". For an n-
polyhedron P" the boundary and the interior of P" are defined by dP™: = (0K")
resp. I(P"):= P"—0P", where K" is any complex such that P" and {K") are
homeomorphic.

SPERNER'S LEMMA. Suppose that each vertex x of a simplicial subdivision of the

n-simplex " is labeled by a number contained in I, (x). Then the number of all .

subsimplexes whose vertices are labeled by 1,...,n+1 is odd.

Proof. See Sperner [12]. =

The next two lemmas will later turn out to be useful.

LemMA 1.1. Let f: D ~ O" be a continuous injective map of the closed hull of a
bounded region D < R" into the n-octahedron O". If A is a closed connected subset
of 0" such that Anf(D)s @ but Anf(D~D)= Q, then A =f(D).

Proof. £ D —f(D)is a homeomorphism, hence f (D) is open in O" because
of the invariance of region. f (D) is compact and hence closed in O". Therefore the
nonempty set AN f (D) = A4 N f(D)is open and closed in 4. Since 4 is connected
we have A <f (D). m :

LemMa 1.2. Let C" be a closed n-cell, i.e. a space homeomorphic to the closed
unit n-ball B", and let ce C" be arbitrary. Then dC"—{c} is a strong deformation
retract of C"—{c}.

Proof. Evidently the assertion is true for C* = B", and hence for any n-cell
C'. m
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Starting point for the introduction of our topological degree is a
combinatorial result of Fan [5, Theorem 2]. Its formulation requires some
further terminology.

For any complex K let R denote the set of vertices of K; a map ¢ of K into I
is called labeling of K ; for any n distinct integers jy, ..., j, let ag (jy, - - -, j) denote
the number of all (n—1)-simplexes of K whose vertices carry the ¢-labels

J1s -+ -2 Js if necessary we shall more precisely write ag(jy, ..., Jjn)

A labeling ¢ of an n-complex K" is called admissible, if it has the following
properties:
(1) O0<|p(X) <n+l, VxeK"
(2} @(x)# —o¢(y) for the vertices x, of each 1-simplex of K";
() @(x) <0, VxedK"

We are now in a position to state the announced combinatorial result.
Lemma 1.3. Let o be an admissible labeling of an n-complex K". Then for
every combination (&, ..., 6,4 1) Of the signs & = +1 with at least one &; = 1, the
congruence
agnfer 1, .o, Ep s (1) = on(—1, ..., —(n+ 1))+ aggn(—1, ..., —n) mod 2
holds.
Proof. See [5] or [11]. =

§ 2. A combinatorial degree for admissible labelings of complexes. Lemma
1.3 says that, under the conditions of that lemma, either all the numbers
agn(e1 1, ..o, 8asy (n+ 1)) (6 = £ 1 with at least one ¢; = 1) are odd or all of them
are even. This fact makes it possible to assign to every admissible labeling ¢ of
an n-complex K" a combinatorial degree I'(¢) by the following definition:

I'(@):=je{0,1}, if agn(es 1, ..., &e1(n+1)) =j mod 2,
Vge{—1,1} with at least one ¢ = 1.
The next lemma states that I' is invariant under simplicial subdivision if the
extension of the labeling satisfies a certain condition.

Lemwma 2.1, Let ¢ be an admissible lgbeling of an n-complea'c K;let K be a
simplicial subdivision of K, and let §: K-—1 be an extension of ¢ with the

Jollowing property:

(4) (3 = 5@ for every simplex ceK, where &
subdivision induced on ¢ by K.

denotes the simplicial

Then § is admissible, and I'(¢) = I'(P).

Proof. Obviously @ is admissible. Every n-simplex & of K whose vertices
carry the @-labels 1,...,n+1 is a subsimplex of an n-simplex ¢ of K whose
vertices carty the g-labels 1, ..., n+1 because of (4). Furthermore, by Sperner’s
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lemma such a simplex ¢ contains an odd number of subsimplexes whose vertices
carry the @-labels 1,...,n+1. These two facts yield oaf(1,...,n+1)
=a2(1,...,n+1) mod 2 and thus I'(¢) =I'(p). =

LemMA 2.2. Let ¢, @' be admissible labelings of an n-complex K. If there is a
vertex v of K such that ¢ (x) = ¢'(x), V xe K —{v}, but |p(v)| # |’ (@), then I' ()
= I'(¢).

Proof. Let iy, ..., i, be positive integers such that {i;,..., i} = {1,...,n+
+1}—{lp ®)}. Then

T(Q) =l (iys  » i — @) =l (iy, .o iy —0 @) = T'(¢)). m

§ 3. Definition of a topological degree y. In what follows let II" resp. P"
always denote an arbitrary euclidean n-polyhedron resp. an arbitrary n-

polyhedron; without loss of generality IT" will be assumed to be embedded in a,

euclidean space of sufficiently high dimension.

A map F: P R**! is called positive (-negative) if for each xeP”
(xedP") F(x) has at least one positive (negative) component. Analogously we
define a d-nonpositive map.

Let F: II"—R.*! be continuous and J&-negative. Because of the
compactness of IT" and AI1" there exists an ¢ > 0 such that d(0, F (IT") > ¢ and
d(R%"Y, F(0II") > &. For ¢ there is § > 0 such that x, yeIT", d(x, y) < § always
imply d(F (x), F(y)} < ¢. Let K be a simplicial decomposition of IT" with mesh
< ¢ with respect to d. Then there is an -admissible labeling ¢ of K with the
following property:

(5)  If g assigns the number j to a vertex x of K, then the component Fy; of F
has the same sign as j on the whole star of x, i.e. on all simplexes of K with
the vertex x.

Thus, calling every labeling ¢y of a simplicial decomposition K of 11" which
is admissible and satisfies (5) generated by F, we have proved:

LemMa 3.1. Every continuous 0-negative map F: IT"— RA*! generates a
labeling @g.

LeEMMA 3.2.If @y, @, are labelings generated by a continuous d-negative map
F: II" - Ry*1, then I'(p,) = I'(¢,).

Proof. If @, ¢, are labelings of the same simplicial decomposition K of
IT", then the assertion is proved by successive application of Lemma 2.2. If ¢,,
@, are labelings of different decompositions K, resp. K, of 1", then let K be a
common refinement of K, K,. For i =1, 2 let @, be a labeling of K which
extends ¢; in such a way that it assigns to each vertex x of K the ¢;-label of a
vertex of the carrier of x in K; (i.e. the simplex of least dimension in K; which

includes x); @;, @, are labelings of K generated by F. From Lemma 2.1 and the
first part of this proof we conclude

F(@) =T(3) =T (@) =T(py). m
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If H: P"x[9, 1] — R."! is continuous and if H is d-nonpositive for every
te[0, 17, then H is called d-nonpositive homotopy, and H®, H* are said to be 8-
nonpositively homotopic. In an analogous manner we define a &-negative
homotopy.

LemMa 3.3, If H: II" x[0, 1] - R%"? is a 0-negative homotopy, then I (¢go)
= [(qpy1).

Proof. If K is a sufficiently fine simplicial decomposition of 1" and 6 > Ois
sufficiently small, there exists, for all s, t€[0, 1] such that |s—t| < §, a labeling of
K generated both by H* and by H'. From this we can easily derive the
assertion. m

Let F: II" — R%"* be continuous and d-nonpositive. There is a positive real
number 8 such that (F—¢)(x) 0, Vee(0, 6p), Vxell". The maps F—e,
¢e(0, 8;), are continuous and pairwise J-negatively homotopic, and hence all
Jabelings @y, generated by them have the same combinatorial degree. This
suggests the following

DermniTION 3.4. If F: I1"— R.*! is continuous and é-nonpositive, we put
y(F):=T'(pp-s), £€(0,5p);
y(F) is called degree of F.

§ 4, Properties of the degree y. Lemma 3.3 can evidently be extended in the
following way:
Tueorem 4.1. If H: IT"x [0, 11— R4 is a d-nonpositive homotopy, then

y(H) =y (H").

Let F, G be maps of P" into R"1. We say that F, G are together 0-
nonpositive if all maps sF+tG (s, teR,) are d-nonpositive. If there are AeR,
ae P such that AF (a) = G(a), then 4 is called equilibrium value of (F, G); if P"
= 3" and if F is the inclusion map defined by F(x):=x, then A is called
eigenvalue of *G. '

" Tuporem 4.2. Let F: II"— R4, G: IT" — R"™* 1 be continuous and together
d-nonpositive. If @ is any nonnegative real number such that (F, G) has no
equilibrium value < —g, then y(F) =1 implies

(6) ' p(@F+G) = 1.

Proof.Suppose y(F) = 1 and let g€ R, be such that (6) is false. Then either
y(oF +G) = 0 or 0e(gF + G)(II"). Hence there are x e IT", 1 < 0 such that AF (x)
= (gF + G)(x), and this means that (F, G) has an equilibrium value € —¢. =

Turorem 4.3. Let f2 IT" = O" be a continuous and d-nonpositive map such
that y(f) = 1. Then:

(a) Z" < fUT");

§ - Fundamenta Mathematicae CXVIITL2
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(b) (I(Z") = (I1(IT"), where € (I (=) denotes the connected component of
I(Z") in O"—f (0II™;

(c) f(I(T") is a neighborhood of Z"~f (IT") in O".

Proof. (a) If g*: IT" — 0" denotes the constant map defined by g*(x): = q,
then y(g) = 0, Vae — Z". Application of Theorem 4.2 with ¢ = 0, F =, G = ¢*
yields =" < f (IT"). o

(b) Let % denote the set of all continuous d-nonpositive maps g: II" — 0"

such that y(g) =1 and ¢(0II") = f (II"). Consider the set M:= { g ()
' yed

—f (8I1"). Part (a) of this theorem yields I(2") = M. Now we show that M is
open and closed in 0"~ (0I1"). If p is any point of M, there is a closed n-cell
C = 0"—f (oII") such that peI(C). If g: II" — 0" is a continuous d-nonpositive
map such that g (8II") = f (0I1") and I (C) ¢ g (IT") — g (9IT"), then, by Lemma 1.2,
there is a map g": IT" — O" such that ¢’ (8IT") = f (I1") and pég (1" —g' (21"
and such that g and ¢’ are d-nonpositively homotopic; this means v{(9) = v(g)
= 0, thus g ¢ %, and hence C = M; therefore M is open in 0"~ (91T "). Evidently
ng g(I") is closed in O consequently M is closed in O"—f (o).

{c) The assertion follows from (b). w

For the application of our degree y we must provide sufficient conditions
for y(F) = 1. In the remainder of this section we shall therefore be concerned
with the problem of finding such conditions, To this end, we shall first introduce
a degree 7 for a new class of maps.

Let 4"~ * always be a euclidean (n— 1)-polyhedron with 94"~ ! = (. In case
n=1 let us make the following conventions:

04° = @ means that 4° consists of an even number of points.

‘For any map F: 4° > R,, y(F) is equal to zero or one according to
whether the set {xeA4°: F(x) <0} (and hence the set {xed F(x)> 0}
consists of an even or an odd number of points.

We shall now assign to each continuous map F: 4"~ - Qn+1 4 degree
F(F).

Choose § > 0 such that max |F(x)| > 26, Vxed""!. For ¢e(0,6) let
0°: 4" > R be defined by l

£—max Fi(x), if max Fi(x) < e,

a o (x): =

-—a—miin Fi(x), if min Fy(x) = —s,
0, otht;rwise,
and F°: 4""! - Qntl py H° (x):=F(x)+0°(x). Now we put:
FE):=7(F),  z€00,9),

where F? stands for the map (F§,..., Fy): 4" S R1,

e _®
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From Theorem 4.1 it follows that 7 is well-defined and, moreover, invariant
under homotopy, i.e.
Lemma 44. Every homotopy H: A" ' x[0,1]-Q"*! satisfies F(H®)

= j(H").
Lemma 4.5. Let F: A" * — Q"% be a continuous map and K a simplicial
decomposition of A" * such that there are labelings ¢: K —{—1,..., —(n+1)},

v: R {1,...,n+1} satisfying (5). Then ¥(F) = af(—1,..., —n) mod 2.

Proof. Let & be a labeling of K generated by (Fy, ..., F, such that
Fx)>0 if @(x)=—(n+1), and H(x)= p(x) otherwise. Then F(F)=
=al(~1,...,—m=af(~1,..., —n) mod 2. =

The next theorem reveals the reason for introducing .

THEOREM 4.6. Let F: II"— Ri* be continuous such that F(0I17%) < Q"**.
Suppose the restriction F|3II" satisfies §(F|0I" = 1. Then y(F) # y(—F).

"Proof. Choose ¢ >0, §>0 such that max|F;(x)| >3z Vxell", and
d(F (x), F(y)) < & Vx,yell” such that d(x, y) < 6. Define ¢°: II" = R by .
Let t: R—[0,1] be a continuous map such that t(0)=1 and
1(x) = 0, Vx > 8. Define a homotopy H: IT"x[0, 1] —RL"* by (x, 1) — F (x)+
+17(d(x, OIT") o* (x). Then H(8II"x[0,1]) = Q"**, H® = F, and H', —H" are
d-negative. Therefore F and — F can be assumed to be d-negative without loss of
generality, There exists a simplicial decomposition K of II” such that there are
labelings @, ¥ of K, generated by F resp. by —F, such that

)= -0, VxeK—0K.

Lemma 4.5 yields
 w(~1,...,—n)=1 mod 2.
By Lemma 1.3 we obtain
wg(l,..,n+)=ag(~1,..., —(n+1)+afg(~1,..., —n) mod 2.

From
ag(l,...,n+1)=y(F) mod 2

and ‘
af(—1,..., —(n+1)) =ok(l,...,n+1) = y(~F) mod 2

the assertion follows. m
Because of the foregoing theorem we now focus our attention to sufficient
conditions for F(F) = 1.
At first we shall turn to the case IT" = {xeR" ||x|| < 1}; note that oII"
— -1
OTl—IEOREM 47. Let F: 0" ' — Q"' be continuous. Suppose the map F:
= (Fy, ..., F.,) of 0" % into R" satisfies at least one of the following conditions:
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(8) F has no nonnegative or no nonpositive eigenvalue; N
(9)  There is no antipodal pair x, —x and no A€ R . such that F(x) = AF(—x).

Then 5(F) = 1.

Proof. Weshall prove y(F) = 1. From this the assertion follows because of
Theorem 4.1. Il F(x) = —F(—x), Vxe0"!, then p(F)=y(—F)=1; this
follows from well-known combinatorial results (see, for example, Fan [2] or
Sperner [137). So it suffices to show that, if F satisfies (8) or (9), there exists a
homotopy H: 0"~ % x [0, 1]~ R} such that H® = F and H(x) = —H'(~x),
VxeO" !

Case (8). We can assume that F has no nonnegative eigenvalue; otherwise
consider —F. The desired homotopy can be defined by H(x, t):= F(x)~
—t (x4 F(x)).

Case (9). The homotopy H can be defined by H(x, t):= F (x)—
+F(- x)). m

Most important with respect to applications is the case II" = X", which will
now be studied in detail. We begin with some terminology.

A map F: 82" - R"*! is called Sperner-map (strong Sperner-map), if, for
every x € AX", at least one of the values F; (x), il (x), is nonpositive (negative);
F is said to be a Fan-map, if, for every xe 02", at least one of the values F,(x),
iely(x), is nonpositive. If the restriction G|8Z" of a map G: X" — R"" is a
Sperner-map (Fan-map), then G is called Sperner-map (Fan-map) too.

The main tool for the investigation of the case II" = X" will be Sperner’s
lemma. From this we obtain

3t (F(x)+

Lemma 4.8. If F: 02" — Q"+1 is a continuous, positive, strong Sperner-map,

then §(F) = 1.

Proof. There exist a simplicial subdivision K of " and labelings o,y of K
that both satisfy (5} and are such that — g (x)el, (x) and Y (x)e{l,...,n+1},
VxeK. By Sperner’s lemma we have ak(=1,..., = =1 mod 2, and
consequently by Lemma 4.5 5(F)=1.

DerFiniTiON 49. A map F: X" — Q""" is called S-map, if there is a
homotopy H: 02"x[0,1] - @""! such that H* = F or H° = —F and such

that H* is a positive, strong Sperner-map. A continuous map F: Z" — Ri*! is
said to be an S-map, if F|02" is an S-map.

From Theorem 4.6, Lemma 4.8 and Lemma 4.4 we derive

THEOREM 4.10. If F: Z"—Ry** is an S-map, then y(F) s y(~F).

In the next theorem we present several conditions which are sufficient for a
map to be an S-map

THeoreM 4.11. If a contmuous map F: 05" - Q"*! satisfies at least one of
the following conditions, then F is an S-map:
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(10)  F is a Sperner-map, and there is no xe 0Z" such that F(x) < 0 and xF (x)

(11)  There is a continuous map G: dZ" — R*** such that F (x)+tG(x)eQ"",
VxedZ" Vte[0,1], and such that F+G satisfies (10);
(12) F is a Fan-map without any negative eigenvalue;

(13)  There are no xedZ” AeR+ such that F(x) < Ax and F;(x) = Ax,,
Yiel, (x);

(14)  Thereis ael (=" such that there are no x€ 0Z", A€ R . with F (x)
Fi(x) = Aa;, Viel, (x);

(15)  There is no x € 0X" such that F;(x) = 0,Viel, (x), or such that F;(x) > 0
forajel, (x), F;(x) =0, Viel, (x)—{j} and F,(x) <0, Vk with k <j;

(16)  There is no xe 92" such that F;(x) > 0, Viel, (x), Fi(x) =0, Viel, (x)
with x; < mgx x;, and Fi(x) <0, Vielp(x);

< Aaand

(17)  There is ael (5") such that there is no x€dZ" with F;(x) 2 0, Viel, (x),
Fi(x) =0, Viel,(x) with x; < a;, and F; (x)<Q Viely(x);

(18) There are no xedZ", A, peR, such that F(x)+4 = ux;

(19)  There are no xedZ", A R, such that F(x)+1 > 0and F;(x)+4 =0, Vi
with x, < mjax X
Proof Case (10). Choose ¢ > 0 such that for every xedZ" there is
ie{l,...,n+1} with x; > 0 and F;(x) < —2& or with F;(x) > 2¢. Then define a
continuous map ¢: dX" —» R by
—g, - if max F;(x) = 2
o(x):= {

&—max {F;(x), 0}, otherwise.
i

Now consider the homotopy H: dZ"x [0, 1] — Q"** carrying (x, t) into F(x)+
+to(x). Then H® = F, and H* is a positive, strong Sperner-map.
Case (11) is reduced to case (10) by considering the homotopy H: 02" x
x[0, 11— Q™! defined by (x, 1) = F (x)+tG (x).
Cases (12)—(17) follow from case (11) by putting in cases (12), (13)
G(x):= —min{seR,: x(F(x)—sx) <0} x,

in case (14)
G(x):= —min{seR,: x(F(x)—sa) < 0} a,

in case (15)

G(x):= —min{seR: x(F(x)—sE(x)) < 0} E(x),
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where E: 85" — R"" ! is defined by E; (x): = imax {0, F;(x)},i=1,...,n+1,in
case (16)

),0}, i=1,. +1,

X;
(h(x)p: -~———~L——;TDJRXLF¥

max 7l
1€j€n+1

in case (17)

G;(x):= —-mm{a— ]}max {F;(x),0},i=1,...,n+1.

Cases (18), (19). Define a homotopy H: 42"x [0, 11— Q""! by (x,1)
— F(x)-+t max 1seR F(x)+seQ" };then H® = F, and H' satisfies (13) resp.
(16). w

§ 5. Some topological consequences. Let F: P" — R.L*! be continnous and d-

F(
V xeP" Then F is
NECE

said to be ppositive-covering, if f (I(P") is a neighborhood of £"—f (4P") in 0"
(this implies X" < f (P").

By Theorem 4.3, each continuous d-nonpositive map F of II" into Ri4*?
with y(F) =1 is positive-covering.

For every S-map F: Z"— R let ?/’(F) denote the class of maps G: 3"
—~ R3*! such that F and G are d-nonpositively homotopic.

In the next theorem we shall refer to the following sentence:

& (F). If G: 2" — R™ ! is a continuous map such that F and G are together
J-nonpositive and if g € R, 1s arbitrary, then oF + G is positive-covering and has
a positive eigenvalue, or (F, G) has an equilibrium value < —p.

Tueorem 5.1. Let E: 3" — Ri™! be an S-map such that there is Fex'(—E)
violating 7 (F). Then < (F) holds for every map F € A’ (E); in particular, all maps
in' #'(E) are positive-covering and have a positive eigenvalue.

Proof. The assertion follows from Theorems 4.1, 4.2, 4.3, 4.10. =

Essential for the application of Theorem 5.1 is the knowledge of sufficient
conditions under which two d-nonpositive maps F, G: X" -+ R"*! are together

.0-nonpositive. We present here two such conditions each of which is
immediately seen to be sufficient:

nonpositive, and let f; P" — 0" be defined by f (x):

(20) For every xedZ" there is AeR, such that AF (x) 2 G(x).
(21) 'F and G are Fan-maps. ‘

Notice that two Sperner-maps F,G: Z"—R"*! are not necessarily
together d-nonpositive.

Using condition (21) we can derive from Theorem 5.1:
TueorEM 5.2. Let F: Z"— Ri*' be continuous. Suppose there are
&,y 8apy Such that {gzi=1,...,n+1} ={—1,1} and such thar F':=
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(&4 Fq, ...
umdmons
(22)  F' has no negative eigenvalue

e+t Furq) is a Fan- map satisfying at least one of the followmg two

(23)  —F'is d-nonpositive and not positive-covering, and F'|3Z" has no negative
eigenvalue.

Then F has a positive and a negative eigenvalue.

Proof. Suppose F satisfies the conditions of the theorem with certain &;.
Define G: 2" — Ri*1 by x = (81 Xy, ..., 41 Xns1). By Theorem 5.1, (F’, G) and
(F/, —G), and hence (F, i) and (F, —i) (i: Z"— R"*! the inclusion map) have
negative equilibrium values. =

Observe that Theorem 5.1 includes Brouwer’s fixed point theorem: If f X"
-+ X" is any continuous map, take F:= i (inclusion map), G:= ~f, ¢:= 0 and
apply Theorem 5.1; hence there are xe X", 1 < 0 such that —f (x) = Ax, and as
f(x)eZ" implies A = —1, x is a fixed point of f.

Moreover, Theorem 5.1 generalizes Corollary 2 of [4] and a well-known
result (see [3, Theorem 3]) of G. Frobenius on real »nxn-matrices with
nonnegative elements.

The next theorem also extends Brouwer’s fixed point theorem and the
mentioned result of Frobenius. The proof will heavily rely on Sperner’s lemma.

TurorEM 5.3. Let F be a continuous map of a closed n-cell C" into R%"* such
that F(x) % AF () for all distinct x, yeC" and all A€ R... Suppose there is ce C"
such that F(¢) > 0. If H: C"x[0, 1] — RL"! is any 8-nonpositive homotopy such
that H® = F, then H* is positive-covering.

Proof. Without loss of generality we can assume that H is a d-negative
homotopy.

F(x)

Let f C"— O" be defined by f (x):= IF Gl

assumption of the theorem, f is injective, hence f: C"—f(C") is topological.
Therefore we may assume C" < O" and f = inclusion map. By assumption we
have C" A 2" # (O, hence by Lemma 1.1 2" = I(C"). For ie N let K; denote the
ith barycentric subdivision of the natural simplicial decomposition of O". To
each complex K; we associate an n-dimensional subcomplex L; consisting of the
faces of all n-simplexes 0" €K, such that ¢" = C*. Let II;:= <L >, and let Fi, [,
HY' be the restrictions of F resp. fresp. H* to IT;, Vie N. Since H is a d-negative
homotopy, there is IQEN such that " ~ H (01T, x [0, 1]) = O, Vi > i, Ifi > iy,
then, for every xe L, » 02" and every labeling ¢ of L, generated by S, we have
@(x)el (x); from Sperner's lemma we infer y(F) =y(fH = af (1, ..., n+1)
=1 mod 2, hence p(H") = 1, Vi > iy. Application of Theorem 4 3 compleles
our proof. m
In the next part of this section we shall use our degree y as a tool for
establishing some theorems for set-vdlued mappings, which extend the classical

V xeC". According to the
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fixed point theorem of Kakutani [8]. We start with some terminology.

For every subset 4 of R" let " (A4) denote the set of all nonempty compact
convex subsets of 4. For any maps @, ¥ of 2" into A (R""1) let AP (e R)
and @+ ¥ be defined by x - Ad(x) resp. x — #(x)+ ¥(x); obviously A¢ and
@+ ¥ are maps of Z" into A (R™Y);

® is called upper semicontinuous, if limxi =x° (xX'eX", ieN), yeP(x),
limy = y° always imply y°e®(x%);

@ is called bounded, if |J ®(x) is bounded;

xeLh
& is called d-positive, if thé set @(x)n —R% ! is empty for every xedZ";
@ is called Fan-map, if for every x € X" there is y e ® (x) such that y, <0,
Viely(x);
¢ is called positive-covering, if for every xeRY! there are Ae R, and
ye Q; & (z) such that x = Ay;
zeZl
if there are x€ X", ye @(x), ze ¥ (x), A€ R such that Ay = z, then A is called
equilibrium value of (®, 'P); in the special case (x) = {x}, VxeZ" 1is called
eigenvalue of V.
Throughout the remaining part of this paper it will tacitly be understood
that all set-valued maps @, ¥ are bounded and upper semicontinuous.
Essential for our next theorems are the following two sentences:
A ((D,“I’). If geR, is arbitrary, then g@+ ¥ is positive-covering and
has a positive eigenvalue, or (&, ¥) has an equilibrium value < —g.
B(P). o (®,%) holds for every map ¥: 2I"~— A (R"™1Y such that
Y(x)n —RT £ Q, Vxedz"
THEOREM 54. Let &: 3" — A (RLTY) be a 0-positive Fan-map. Then
(@, V) holds for every Fan-map ¥: I"— A (R"), or #(—P) holds.
Proof. Our proof will be much along the lines of Kakutani’s proof of his
fixed point theorem; his way of reasoning in [8] will here be assumed as known.
. Let K; be the ith barycentric subdivision of Z" (ieN). For every ie N we
assign to each vertex xeK; a ye @ (x) in such a way that the linear extension of
this map inside each simplex of X; yields a continnous Fan-map F': " — R"*!
in thp sense of our definition in § 4. Let i;eN be such that, for all i >
O¢F (2") holds and —F! is 0-negative. From Theorems 4.10 and 4.11 we illf(;)l:
y(FY) # y(—FY), Vi> iy. Suppose |{ieN: i > iy and y(F) = 1} = c0; to each
Fan-map ¥: =" — o (R"*!) we can associate, for every ie N, a Fan—me;p G "
— R'_’“. in the way described above; application of Theorem 5.1 and passing to
the limit yield < (&, ¥). Similarly we conclude that |{ie N: i > iy and y(—F?)
=1)| = co implies B(— ). » ( oy
We obtain Kakutani’s theorem from Theorem 5.4 by taking & (x):= {x}
V xeZ"; then —@ is not positivecovering, and therefore, for each given r;w;
v Z’;; Jf(—f["), ;here is xeZ" such that xe — ¥ (x). ‘
e proofs of the next two results wi i : ‘
analegous to the proof of Theorem SWZH 7ot be given ere, beoavas they ate
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THroREM 5.5. Let &: E"— A (Ry*1) be d-positive and such that, for each
xedE" there is ye®(x) with xy < 0. Then #(®) or #(—P).

Theorem 5.5 includes a result of D. Gale [7, Principal Lemma].

TuroreM 5.6, Let @, ¥ " — A (R""') be Fan-maps; suppose & has no
nonpositive eigenvalue. Then .o/ (@, V).

As an easy consequence of Theorem 5.6 we receive

CoRroLLARY 5.7. Every Fan-map ®: 57— A (R™Y) has an eigenvalue.

Now we turn to a fundamental technique developed by Fan (see, for
example, [6]), which extends the covering theorem of Knaster-Kuratowski—
Mazurkiewicz to the infinite-dimensional case and has been used by Fan and
other mathematicians, for example H. Brézis, L. Nirenberg, G. Stampacchia [1],
for deriving many interesting minimax and fixed point theorems.

Throughout the remaining part of this paper, V denotes a real Hausdorff
topological vector space. Note that every n-dimensional subspace of V is
isomorphic to the euclidean n-space R". For any da',...,a'eV let
conv(a!, ..., a") denote the convex hull of a*,...,d"

Here we shall establish a theorem which should be compared with Theorem -

1 of Brézis—Nirenberg-Stampacchia [11; in [1] both the assumptions and the
conclusion of the theorem are weaker than ours.

Tirorem 5.8. Let K be a convex subset of V, and let p: K x K — R be a map

with the properties:

N .
(24)  For every fixed yeK, @(x,y) is a continuous function of x on the
intersection of K with any finite-dimensional subspace of V;

(25) Theset{xeK: ¢(x,)) = 0} is closed in K for all ye K and compact for at
least one y;

(26) o(x,x) <0, VxekK;

(27)  For every xeK, the set {yeK: o(x,y)> 0} is convex;

(28) * For every xekK, a least one of the sets {yeK: @(x,y)= 0},
fyeK: @(x,y) = 0} is convex;

(29)  For every xeK, ¢ (x, x) = 0 implies o(x,y) =0, Vyek;

(30)  For every finite subset X of K there is a compact convex subset Kgq,
X < K, < K, with the following property: For every zeK, there is a
neighborhood "N (z2) of z in Ko and a yeK, such that @(x,y) = 0,
¥ xeN(z).

Then there is x°eK such that e(x%y) =0, Vyek.

Proof. If K contains only one vector, the assertion is trivial. Therefore we
can assume that K is an infinite set. Jf we associate to every yeK the set

S(y):=i{xeK: ¢(x,5)= 0}, then we can prove the assertion N S # @ in

yeK .
the following way: Because of the compactness of at least one S(y), it is enough
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to show that, for any given finite subset X of K, the intersection () S(x) is
xeX

nonempty. Choose x'eK—X and put X:= X u {x'}. For X’ there exists a
compact convex subset K, of K with the property mentioned in (30). Because of
the compactness of K, there exists a finite set Y = {y*, ..., )"}, X =« Y < K,,
with the following property:

(31) For every xeK, there is yeY such that ¢(x,y)>0.

Now consider the continuous maps F: conv(y!,...,y")—R"™ and T ym~!
—conv(yl,...,y"), defined by Fi(x):=0(x,y), i=1,...,m resp.
T(x):=xy y*+ ... +x,y™ By Theorem 5.1, it suffices to show that the com-
posed map FoT: ™' — R™ has a zero or is an S-map. We shall do so by
applying Theorem 4.11 with condition (10). Because of conv(y!,..., y") = K 0
and (31), we have (FoT)(x) 4«0, VxedZ™ ' From (26), (27) we infer

conv(a',...,a" = {J {xeK: ¢(x,d) <0} for all a',...,a"eK; this means

i=1
that Fo T is a Sperner-map. Let x be any given vector of 85™ ! such that
(FioT)(x) =0, Viel,(x). Then ¢(T(x),y)=0, Viel,(x). From (28) it
follows ¢ (T (x), T(x)) = 0. (29) yields ¢(T(x),")> 0, ie. F(T(x) >0 for i
=1,...,m, and hence (FoT)(x)>=0. m
The following result, which is an easy consequence of the preceding
theorem, should be compared with Application 1 in [1].

CoRrOLLARY 5.9. Let K be a nonempty compact convex subset of V, and let @:
K xK — R be a map such that (26), (29) are satisfied, and, for every fixed xeK,
@ (x, y) is a concave function of y on K, and, for every fixed ye K, o(x,y)is a
continuous function of x on K. Suppose that, for every zeK, there is a
neighborhood N (2) of z in K and a y €K such that ¢ (x, y) > 0, V xeN(z). Then
there is x° K such that p(x° y) =0, VyeKk.
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