

Approximating homotopy equivalences of surfaces by homeomorphisms

h

W. Jakobsche (Warszawa)

Abstract. We prove the 2 and 3-dimensional version of the "Splitting Theorem" of Chapman and Ferry [2]. The consequence of this is the 2-dimensional analogue of the α -approximation theorem [2], and the equivalence of the 3-dimensional α -approximation theorem and of the Poincaré conjecture.

1. Introduction. The aim of this note is to extend some of the high-dimensional theorems of Chapman and Ferry to dimensions 2 and 3. More precisely, we prove the "Splitting theorem" from [2] in these dimensions. The 2-dimensional version of this theorem implies the 2-dimensional analogues of the " α -approximation theorem" and the "Bundle theorem" from [2], and theorem (1) from [3]. The 3-dimensional "Splitting Theorem" proves that the 3-dimensional " α -approximation theorem" is equivalent to the classical Poincaré conjecture.

The additional motivation for the proof of the 2-dimensional " α -approximation theorem" was [6], where it was used to study the fixed point sets of the close PL involutions of 3-manifolds.

We adopt from [2] the following notation: Let X, Y be two spaces and let α be an open cover of Y. We say that the maps $f, g: X \to Y$ are α -homotopic (written $f \stackrel{\sim}{\simeq} g$) if there is a homotopy $F_t: f \simeq g$, $t \in [0, 1]$ such that the track of each point $\{F_t(x): 0 \le t \le 1\}$ lies in some element of α . If $h: X \to Y$ is a map and Y is given a fixed metric then $f^{-1}(\varepsilon)$ denotes the cover $\{U \subset X: U \text{ is open and diam } f(U) < \varepsilon\}$ of X. More generally $f^{-1}(\alpha)$ denotes $\{U \subset X: U \text{ is open in } X \text{ and there exists a } V \in \alpha \text{ such that } f(U) \subset V\}$ whenever α is a cover of Y. If A is a subset of Y and α is a cover of Y, then we say that $f: X \to Y$ is an α -equivalence over A with the α -inverse g if g is a map of A into X, fg|A is α -homotopic to the inclusion $\mathrm{id}_{f^{-1}(A)}$. If A = Y, then we say that f is an α -equivalence. If β is a cover of Y and $f: X \to Y$ is a proper map, then we say that f is a β -map if for every $y \in Y$ there is a $U \in \beta$ such that $f^{-1}(y) \subset U$. If X is a metric space then we say that f is an ε -map if for every

 $y \in Y$, $f^{-1}(y)$ has a diameter $\leq \varepsilon$. By f_* and f_* we shall denote homomorphisms induced by the map f on homotopy and homology groups respectively.

We assume the following data:

(1.0) W is an n-manifold without boundary, n=2 or 3, and W is orientable if n=2. $S=S^{n-1}$ is an (n-1)-dimensional sphere. We put: $B_a^0=S\times(-a,a)$ and $B_a=S\times[-a,a]$ for $a\in R$, a>0. Let $p\colon S\times R\to R$ denote the usual projection $f\colon W\to S\times R$ is a proper map, which is a $p^{-1}(\varepsilon)$ -equivalence over B_2 , with $p^{-1}(\varepsilon)$ -inverse $g\colon B_2\to W$.

SPLITTING THEOREM (1.1). Suppose that (1.0) is satisfied. Then if v is sufficiently small, then there is an (n-1)-sphere $S_0 \subset (pf)^{-1}$ ((-1, 1)) such that $f|S_0: S_0 \to S^{n-1} \times R$ is a homotopy equivalence, S_0 is bicollared, and S_0 separates the component of W containing $(pf)^{-1}$ ([-1, 1]) into two components, one containing $(pf)^{-1}$ (-1) and the other containing $(pf)^{-1}$ (1).

Addendum. It also follows that if C_0 is the closure of the component of $(pf)^{-1}$ $((-1,\frac{4}{3}))\backslash S_0$ containing $(pf)^{-1}$ (1), and C_1 is the closure of the component of $(pf)^{-1}$ $((-1,\frac{5}{3}))\backslash S_0$ containing $(pf)^{-1}$ (1), then C_0 deforms into S_0 rel S_0 , with the deformation taking place in C_1 (i.e. there is a homotopy $H_t\colon C_0\to C_1$ such that H_0 is an inclusion and $H_1(C_0)\subset C_1$, and $H_t|S_0=\mathrm{id}_{S_0}$).

Note that ε depends neither on W nor on f.

In dimension 2 the Splitting Theorem and the torus argument imply, as in [2], the following theorems (see Section 3):

 α -Approximation Theorem (1.2). Let N^2 be a surface. For every open cover α of N there is an open cover β of N such that for any surface M and proper β -equivalence $f: M \to N$, which is already a homeomorphism from ∂M onto ∂N , f is α -close to a homeomorphism $h: M \to N$ (i.e. for every $m \in M$ there is a $U \in \alpha$ containing f(m) and h(m)).

Bundle Theorem (1.3). Let $p \colon E \to B$ be a Hurewicz fibration such that E and B are locally compact metric spaces, B is locally path connected and locally finite dimensional, and the fibres $p^{-1}(b)$ are compact surfaces. Define $\partial E = \bigcup \{\partial p^{-1}(b) | b \in B\}$ and assume that $p|\partial E \colon \partial E \to B$ is a locally trivial bundle. Then p is also a locally trivial bundle.

(1.3) gives another partial answer to the question raised by Raymond [8]. Then we can apply the proof used in [3] to get

THEOREM (1.4). If M is a surface and α is an open cover of M, then there is an open cover β of M such that, if N is a surface and $g: (M, \partial M) \to (N, \partial N)$ is a proper β -map, then g is homotopic through α -maps to a homeomorphism.

I am very grateful to Professor H. Toruńczyk for his suggestions that permitted on improving of the exposition.

The following lemma is easy, and so we omit the proof.

LEMMA (2.1). Let N be a surface, $x_0 \in N$, and let $\mathfrak N$ be a subgroup of $\pi_1(N, x_0)$ such that $\mathfrak N \neq \pi_1(N, x_0)$. Then there exists a PL embedding $\xi \colon S^1 \to N$ which determines an element $[\xi]$ of $\pi_1(N, x_0) \setminus \mathfrak N$.

Lemma (2.2). Given $a, b \in (-2, 2), a < b$ there exists an ϵ such that whenever (1.0) holds, then there exists a PL (n-1)-sphere $S_0 \subset (pf)^{-1}$ ((a, b)) satisfying $k \cdot [S_0] \neq 0$ for every integer $k \neq 0$, where $[S_0]$ is the image in $H_{n-1}(f^{-1}(B_2))$ of the fixed generator of $H_{n-1}(S_0) \simeq Z$ by the homomorphism induced by the inclusion $S_0 \subset f^{-1}(B_2)$. Moreover if n=3, then S_0 disconnects the component of $f^{-1}(\overline{B}_2)$ containing S_0 .

Proof of 2.2. Let $c = \frac{1}{2}(a+b) \in (a, b)$ and $\varepsilon < \frac{1}{2}(b-a)$, and let f: $W \rightarrow S \times R$ satisfy our requirements for this choice of ε . Then N $= (pf)^{-1}((a, b))$ is a PL *n*-submanifold of W, and $N \supset (pf)^{-1}(\{c\}) \cup g(p^{-1}(\{c\}))$ (this follows from the fact that pfg is ε -close to p on $p^{-1}(\{c\})$). Let g_0 $=g|p^{-1}(\{c\})$. Then g_0 is a map into N of the (n-1)-sphere $p^{-1}(\{c\})$ $= S \times \{c\}$. Take $x_0 \in g(p^{-1}(\{c\}))$ and let $i: N \to W$ denote the inclusion and $i_{\#}: \pi_{n-1}(N, x_0) \to \pi_{n-1}(W, x_0)$ denote the induced homomorphism. Then $\mathfrak{N} = \text{Ker } (i_*)$ is a π_1 -invariant subgroup of $\pi_{n-1}(W, x_0)$. We claim that $[g_0] \in \pi_1(N, x_0) \setminus \mathfrak{R}$. In fact otherwise $fg_0: p^{-1}(\{c\}) \to S \times R$ would be homotopic to a constant, which is not the case since it is homotopic to the inclusion $p^{-1}(\{c\}) \to S \times R$. So by the sphere and projective plane theorem (see [5], p. 54) in the case of n = 3, and by Lemma (2.1) in the case of n = 2, there exists a covering map $\xi: S \to S_0 \subset N$ (which for n=2 must be a homeomorphism), where S_0 is a PL 2-sphere S^2 or a projective plane P^2 if n=3, and S_0 is a 1-sphere if n=2, $x_0 \in S_0$, and ξ determines an element $[\xi]$ of $\pi_{n-1}(N, x_0)$. In particular S_0 is not contractible in N.

Now we show that, if n=3, then S_0 disconnects the component of $f^{-1}(B_2)$ containing S_0 . Suppose that it does not. Then there exists a simple closed curve $\alpha: S^1 \to f^{-1}(B_2)$ such that $\alpha(S^1) \cap S_0 = x_0$, and $\alpha(S^1)$ is transversal to S_0 .

Now we use the theory of the intersection index, as described in [1], pp. 97 and 114. To avoid assumptions concerning orientability, we consider homology with Z_2 -coefficients. It is easy to see that $\alpha(S^1)$ and S_0 support the 1-cycle and 2-cycle respectively with Z_2 -coefficients such that the corresponding homology classes $z_1 \in H_1(W, Z_2)$ and $z_2 \in H_2(W, Z_2)$ have an intersection index $z_1 \cdot z_2 = 1$. This implies that $z_1 \neq 0$, and so α is not homotopic to a constant. Since $\pi_1(B_2) = 0$ if n = 3, it follows on the other hand that $f\alpha$ and $gf\alpha$ are homotopic to constant maps which contradicts the fact that $gf\alpha \simeq \alpha$. So S_0

disconnects the component of $f^{-1}(B_2)$ which contains it. In particular S_0 is bicollared in W.

Now we prove that, in the case of n=3, S_0 is a sphere, and not a projective plane. Suppose on the contrary, that $S_0 \cong P^2$. Then there exists a closed curve $\alpha \colon S^1 \to S_0$, which reverses the orientation of $S_0 \cdot S_0$ is bicollared in W and so α reverses the orientation of W. This implies that α is not homotopic to a constant and we get a contradiction as before. So S_0 is a sphere.

Finally we prove that for any integer $k \neq 0$ we have $k \cdot [S_0] \neq 0$. Suppose that, for some $k \neq 0$, $k \cdot [S_0]$ is equal to 0. $[S_0] = i_*(e)$, where i_* is induced by the inclusion $i \colon S_0 \hookrightarrow f^{-1}(B_2)$ and e is a generator of $H_{n-1}(S_0) \cong Z$, and so $(f|S_0)_* \circ (r_k)_* \colon H_{n-1}(S_0) \to H_{n-1}(B_2)$ must be 0 for any map $r_k \colon S_0 \to S_0$ of degree k. But this is not the case: if it were, then $(f|S_0) \circ r_k$ and hence $f|S_0$ would be homotopic to constant maps, contradicting the fact that $gf|S_0$ is homotopic to the inclusion $S_0 \to W$ and S_0 is not contractible in W.

Lemma (2.3). Let T be a compact, orientable surface and let S_1 and S_2 be two disjoint 1-spheres, not contractible in T. Suppose that there exists a homotopy $h_t \colon S^1 \to T$, $t \in [1, 2]$ such that $h_t(S^1) = S_t$, and that the maps $h_t \colon S^1 \to S_t$ have a non-zero degree. Then there exists an embedding $h' \colon S^1 \times [1, 2] \to T$ such that $h'(S^1 \times \{i\}) = S_t$ for i = 1, 2.

Proof of (2.3). S_2 is a PL sphere in T, and so we can find a PL embedding $u: S_2 \times [0, 1] \to T$ such that $S_2 = u(S_2 \times \{0\})$ and $u(S_2 \times \mathbb{R}^2) \times [0, 1] \to T$ such that $S_2 = u(S_2 \times \{0\})$ and $u(S_2 \times \mathbb{R}^2) \times [0, 1] \to T$. We consider the decomposition space $\overline{T} = T/G$ with non-degenerate points $a_t = u(S_2 \times \{t\})$, $t \in [0, 1]$, and with the projection map $a_t : T \to T$. Then $a_t : T \to T$ and $a_t : T \to T$ is an arc and $a_t : T \to T$ and $a_t : T \to T$ be the component of $a_t : T \to T$ such that $a_t : T \to T$. Then $a_t : T \to T$ is such that $a_t : T \to T$. Let $a_t : T \to T$ be determined by the inclusion $a_t : T \to T$. Then $a_t : T \to T$ and a constant map $a_t : T \to T$. Then $a_t : T \to T$ is a homotopy between $a_t : T \to T$ and a constant map $a_t : T \to T$ and a constant map $a_t : T \to T$ is an anomaly $a_t : T \to T$. Suppose the opposite, i.e. $a_t : T \to T$ is a subgroup of $a_t : T \to T$ and a constant $a_t : T \to T$ in the $a_t : T \to T$ in the

LEMMA 2.4. Let M be a connected 3-manifold, $\partial M = \emptyset$, and let S_1 and S_2 be two disjoint 2-spheres in M such that the elements $[S_1]$ and $[S_2]$ of $H_2(M)$ determined by S_1 and S_2 (as in (2.2)) satisfy the following condition: there are integers k_1 , k_2 such that $k_1 \cdot [S_1] = k_2 \cdot [S_2] \neq 0$. Moreover, we assume that each S_1 , i = 1, 2, disconnects M. Let L be a closure of a component of $M \setminus S_1 \setminus S_2$ such that $L \supset S_1 \cup S_2$. Then L is a compact manifold with the boundary $\partial L = S_1 \cup S_2$.

Proof of (2.4). Suppose that L is non-compact. Let M_1 and M_2 be the closures in M of two components of $M \setminus L$ (note that $M \setminus S_2 \setminus S_2$ has precisely 3 components) such that $L \cap M_i = S_i$ for i = 1, 2. We consider the exact homology sequence of the pair $(M, M_1 \cup M_2)$:

$$H_3(M, M_1 \cup M_2) \to H_2(M_1 \cup M_2) \xrightarrow{j} H_2(M) \to H_2(M, M_1 \cup M_2).$$

If L is non-compact, then $H_3(M, M_1 \cup M_2) = H_3(L, S_1 \cup S_2) = 0$, and so j is a monomorphism. But $H_2(M_1 \cup M_2) = H_2(M_1) \oplus H_2(M_2)$ and, for each i = 1, 2, there is a $z_i \in H_2(M_i)$ such that $(j_i)_*(z_i) = [S_i]$, where $j_i \colon M_i \to M$ is an inclusion. So the fact that j is a monomorphism implies that $k_1 \cdot ((j_1)_*(z_1)) - k_2((j_2)_*(z_2)) = k_1 \cdot [S_1] - k_2 \cdot [S_2] \neq 0$. But we know that $k_1 \cdot [S_1] - k_2 \cdot [S_2] = 0$. So L is compact. This and the fact that $\partial M = \partial M$ imply that $\partial M = \partial M$

LEMMA (2.5). Let $0 < \varepsilon < 1$, and a_i , $b_i \in (-2, 2)$, i = 1, 2, be such that $-2+2\varepsilon < a_1 < b_1 < a_2 < b_2 < 2-2\varepsilon$. Assume that (1.0) is satisfied, and let $S_i \subset (pf)^{-1}$ ((a_i, b_i)) be a PL (n-1)-sphere such that $k \cdot [S_i] \neq 0$ for $k \neq 0$, and if n = 3 then S_i disconnects the component of f^{-1} (B_2) which contains it. $[S_i]$ is the image in $H_{n-1}(f^{-1}(B_{2-\varepsilon}))$ of the fixed generator of $H_{n-1}(S_i)$. Then there is a compact PL n-submanifold L of W such that L is an h-cobordism from S_1 to S_2 .

Proof of (2.5). First we prove that there exists a homotopy h_i : $S^{n-1} oup f^{-1}(B^0_{2-e})$, t oup [1, 2], such that $h_i(S) = S_i$ and that h_i : $S oup S_i$ has nonzero degree for i = 1, 2. Let $f_i = f|S_i$: $S_i oup B^0_{2-2e}$ and let m_i be the degree of f_i (we define the degree of f_i as a number equal to the degree of $p_S oup f_i$ where p_S : S imes R oup S is a projection). Since $S_i oup f^{-1}(B^0_{2-2e})$ and $gf|S_i oup gf^{-1}(e) oup id_{S_i}$, the map gf_i : $S_i oup f^{-1}(B^0_{2-e})$ is homotopic to id_{S_i} in $f^{-1}(B^0_{2-e})$. This and the fact that $[S_i] \neq 0$ imply that $m_i \neq 0$ for i = 1, 2. Let k_1, k_2 be the integers such that $m_1 imes k_1 = m_2 imes k_2 \neq 0$, and r_i : $S oup S_i$ be any map of degree k_i for i = 1, 2. fr_1 and fr_2 have the same degree, so they are homotopic in $S imes (a_1, b_2)$. Therefore gfr_1 and gfr_2 are homotopic in $g(S imes (a_1, b_2)) oup f^{-1}(S imes (a_{-e}, b_{+e}))$. Since g is a $p^{-1}(e)$ -inverse for f over g_2 , there are $p^{-1}(e)$ -small homotopies between gfr_i and r_i , i = 1, 2; their values lie in $f^{-1}(S imes (a_1-e, b_2+e))$. Thus there is a homotopy h_i : $S oup f^{-1}(B^0_{2-e})$, t oup [1, 2] such that $h_1 = r_1$ and $h_2 = r_2$. This is the homotopy we were looking for.

Then suppose n=2. $\bigcup_{t\in[1,2]} h_t(S^1)$ is a compact space, and so it is contained in some compact surface $T\subset f^{-1}(B^0_{2-\epsilon})$. Then by Lemma (2.3) we can find an annulus $L\subset T$, with $\partial L=S_1\cup S_2\cdot L$ is the required h-cobordism.

If n=3, then the existence of h_t implies that the homology classes $[S_1]$, $[S_2] \in H_2(f^{-1}(B_{2-e}))$ satisfy the condition $k_1 \cdot [S_1] = k_2 \cdot [S_2] \neq 0$, for some integers k_1, k_2 . Of course $f^{-1}(B_{2-e})$ is a 3-manifold with an empty boundary, and so we can use Lemma (2.4) to prove that S_1 and S_2 bound in

 $f^{-1}\left(B_{2-e}\right)$ a compact manifold L. We only have to show that L is a h-cobordism. By [5], p. 26, we need to show that L is simply connected. Let $\alpha\colon S^1\to L$ be any map. We may assume that α is PL and that Im $(\alpha)\subset \operatorname{Int}(L)$. Then $f\alpha\colon S^1\to B_{2-e}$ is homotopic to a constant map, because B_{2-e} has a homotopy type of S^2 . So $gf\alpha\colon S^1\to W$ is homotopic to a constant map. Moreover, by (1.0), $\alpha\simeq gf\alpha$ and hence α is homotopic to a constant map in W. Let $\overline{\alpha}\colon D^2\to W$ be any map of the 2-disc D^2 into W which extends $\alpha(S^1=\partial D^2)$, and which is transversal to $S_1\cup S_2$. Then $\overline{\alpha}^{-1}\left(S_1\cup S_2\right)$ is a finite collection of circles in D^2 , and the component P of $\overline{\alpha}^{-1}\left(L\right)$ which contains ∂D^2 is a PL submanifold of D^2 bounded by a finite family l of circles. For any $c\in l$, $c\neq \partial D^2$, $\alpha^2|c$ can be extended to the map $P_c\to S_i$, i=1 or 2, where P_c is a disc bounded in D^2 by c. The union of these extensions and of $\overline{\alpha}|P$ gives a map $D^2\to L$ which extends α . This proves that L is simply connected.

Now we can prove Theorem (1.1):

Proof of (1.1). Let $\varepsilon \in (0, 1)$ and $a_i, b_i \in (-2, 2)$, i = 1, 2, or 3, satisfy the inequality

$$\begin{aligned} -2 + 2\varepsilon &< a_1 < b_1 < -1 - \varepsilon < -1 + \varepsilon < a_2 < b_2 \\ &< 1 - \varepsilon < 1 + \varepsilon < \frac{4}{3} + \varepsilon < a_3 < b_3 < \frac{5}{3} - \varepsilon < 2 - 2\varepsilon. \end{aligned}$$

Assume in addition that ε is so small that the hypothesis of (2.2) is satisfied for $(a, b) = (a_i, b_i)$, $i \in \{1, 2, 3\}$. Let $S_i \subset (pf)^{-1}$ ((a_i, b_i)) be PL spheres provided by (2.2) and our choice of ε , i = 1, 2, or 3, and let L be an h-cobordism from S_1 to S_3 provided by (2.5). In the sequel we shall use the following.

CLAIM. Let Q be a connected n-submanifold of W with the boundary ∂Q . If $pf(\partial Q)$ misses a segment (a, b) contained in (-2, 2) and intersects each component of $R \setminus (a, b)$, then $Q \supset f^{-1}(S \times [a+\varepsilon, b-\varepsilon])$.

Proof of the claim. Fix $x_0 \in W$ with $gf(x_0) \in [a+\varepsilon, b-\varepsilon]$. By the connectedness of gf(Q) there is a point $x_1 \in Q$ with $gf(x_0) = gf(x_1)$. Let $\alpha \colon [0, 1] \to gf(x_0) \times S$ be a path connecting $f(x_0)$ and $f(x_1)$. Then $\beta = g\alpha$ is a path between $gf(x_0)$ and $gf(x_1)$ lying in $f^{-1}(S \times (a, b))$ (we use here (1.0), which implies that on B_2 the maps p and $gf(x_0)$ for i = 1, 2 and such that diam $(gf(\operatorname{Im}(\beta_i))) < \varepsilon$. Then $\operatorname{Im}(\beta_i) = f^{-1}(S \times (a, b))$ and $\beta = \beta_1 \cup g\alpha \cup \beta_2$ is a path in $f^{-1}(S \times (a, b))$ connecting x_0 and x_1 . Then $\operatorname{Im}(\beta)$ misses ∂Q , and since $x_1 \in Q$, it follows that $x_0 \in Q$. This finishes the proof of the claim.

Since pfg is ε -close to p on B_2 it follows from the claim applied to Q = L that $g(B_1) \subset f^{-1}(B_{1+\varepsilon}) \subset L$. In particular $S_2 \subset L$ and S_2 separates L into two components such that their closures L_1 and L_2 form h-cobordisms from S_1 to S_2 and from S_2 to S_3 respectively. Applying the claim to $Q = L_i$ for $a \in R$, we infer that $L_1 \supset (pf)^{-1}(-1)$ and $L_2 \supset (pf)^{-1}(1)$.

Now to prove that S_2 disconnects the component A of W cutting it into two components, one containing $(pf)^{-1}(-1)$ and the other containing $(pf)^{-1}(1)$, we need only to show that $A \setminus L$ is not connected. Suppose it is. Then there is a curve $\alpha: [0, 1] \to W$, such that $\alpha(0) \in S_3$, $\alpha(1) \in S_1$, and $\alpha([0, 1]) \cap L = \alpha(\{0, 1\})$. Hence there is a point $y \in \alpha([0, 1])$ such that $f(y) \in p^{-1}([-1, 1])$. Then $y \in f^{-1}(B_1) \subset L$, which gives a contradiction.

Finally we prove that $f|S_2: S_2 \to S \times R$ is a homotopy equivalence. First we notice that $f(S_2) \subset B_{1-\epsilon}$. This, as we have shown, implies that $gf(S_2) \subset L \cap f^{-1}(B_{1+\epsilon})$. From the fact that $gf|f^{-1}(B_2) \stackrel{(ef)^{-1}(\epsilon)}{\simeq}$ id it follows that there is a homotopy $h_t: S_2 \to W$, with $h_0 = \operatorname{id}_{S_2}$, $h_1 = gf|S_2$, such that the track $\{h_t(x): t \in [0, 1]\}$ of each point $x \in S_2$ has image by pf of diameter $< \epsilon$. This implies that for every $x \in S_2$, $\{h_t(x): t \in [0, 1]\} \cap \partial L = \emptyset$, so $gf|S_2$ is a homotopy equivalence between S_2 and L, and so $f|S_2$ is a homotopy equivalence.

Now we can put $S_0 = S_2$. As we have shown it satisfies all the conditions of (1.1).

The addendum may be proved as follows: First we note that $(pf)^{-1}$ ($[-1, \frac{4}{3}]$) $\subset L$. This can be shown in the precisely the same way in which we have shown that $(pf)^{-1}$ (1) $\subset L_2$, using the claim. The only difference is that we replace $\{1\}$ by $[-1, \frac{4}{3}]$ and L_2 by L, and we use the fact that $b_1 + \overline{\epsilon} < -1 < \frac{4}{3} < a_3 - \overline{\epsilon}$. This implies that the component C_0 of $(pf)^{-1}$ ($[-1, \frac{4}{3}]$) $\subset C_0$ containing $(pf)^{-1}$ (1) is contained in L_2 . But $S_0 = S_2$ is a deformation retract of L_2 , and so C_0 can be deformed to S_0 in L_2 . Finally we notice that $L_2 \subset C$. This easily follows from the fact that $b_3 < \frac{5}{3} - \epsilon$. This finishes the proof of (1.1).

3. Remarks on the proof of the α -approximation theorem for dimension 2. The proof is only slightly different from the one given by Chapman and Ferry in [2].

First, using the "orientable" splitting theorem, we prove the "handle Lemma" as in [2] p. 589, with n=2, and an orientable V^2 . The proof is analogous to the one given in [2]. We need only to note that the surface W_0 ([2], p. 591) is immersed in V, and V is orientable in our case, so W_0 is orientable, and hence we can construct the orientable W_1 , W_2 , W_3 as in [2].

As in [2] we prove the "Main theorem" (p. 595 in [2]), with n=2 and an orientable V^2 . Then we prove the following, weaker version of the " α -approximation theorem":

Lemma (3.1). Let N^2 be a surface, and let γ be any open cover of N. Then, for every open cover α of N, there is an open cover β of N such that for any β -equivalence $f: M \to N$, which is already a homeomorphism from ∂M onto ∂N , and is such that for any $c \in \gamma$, $f^{-1}(c)$ is an orientable surface, and f is α -close to a homeomorphism $h: M \to N$.

The proof proceeds as in [2], pp. 597, 598. First, we prove the version of Lemmas (5.1) and (5.2) of [2] with n=2 and an orientable M.

Then, the proof of Lemma (3.1) proceeds as the proof of the α approximation theorem in [2], pp. 598, and the only change is that by our assumption, we require that a star finite cover $\{N_i\}$ found in the proof of the α approximation theorem in [2] be such that all sets $f^{-1}(N_i)$ are orientable.

Lemma (3.1) easily implies Theorem (1.2) if we use the following Lemma (3.2):

Lemma 3.2. Let N be a surface. Then there is an open cover α of N such that if M is a surface and $f: M \to N$ is an α -equivalence, then for every $c \in \alpha$, $f^{-1}(c)$ is an orientable surface.

Proof of (3.2). Suppose that γ is any cover of N by the open discs. Then we can easily find an open cover α of N such that to every $c \in \alpha$, there is $d \in \gamma$ such that $c \subset d$. Suppose that for a certain $c \in \alpha$ and some α -equivalence f : M $\rightarrow N$, $f^{-1}(c)$ is a non-orientable surface. Then there exists an element z of $H_1(f^{-1}(c), \mathbb{Z})$ such that $z \neq 0$, and $0 \neq i_+(z) \in H_1(M)$, where $i: f^{-1}(c) \to M$ is an inclusion. We can take for z an element of $H_1(f^{-1}(c))$ determined by the curve reversing orientation of $f^{-1}(c)$. Let g be the inverse of f. Then $g_{\star}(f|f^{-1}(c))_{\star}(z) = (g_{\star}f_{\star}i_{\star}(z)) = i_{\star}(z) \neq 0$, and on the other hand $(f|f^{-1}(c))_{\star}(z)=0$, because $c\subset d\in\gamma$, which gives a contradiction.

4. The equivalence of the α-approximation theorem and the Poincaré conjecture in dimension n=3. It is very easy to construct for every $\varepsilon>0$, the ε equivalence from the homotopy sphere $\neq S^3$ (if one exists) onto S^3 . This equivalence obviously cannot be approximated by homeomorphisms.

On the other hand if the Poincaré conjecture is satisfied, then we can use our "Splitting Theorem" in dimension 3 to prove the α-approximation theorem, as in [2]. The only difference is that in the construction of h in the "Handle Lemma" (step V) we use the theorem of Waldhausen [10] in the form described in [4] (Lemma 3, p. 65 in [4]). Note that the manifold W_3 in the step V of the construction in the "Handle Lemma" in [2] is homotopy equivalent to $B^k \times T^m$, m+k=3, and we assume that the Poincaré conjecture holds, whence W_3 is irreducible.

References

- [1] W. Browder, Surgery on Simply-Connected Manifolds, Springer-Verlag, Berlin-Heidelberg-New York 1972.
- [2] T. A. Chapman and S. Ferry, Approximating homotopy equivalences by homeomorphisms, Amer. J. Math. 101 (1979), pp. 583-607.
- [3] S. Ferry, Homotopying & maps to homeomorphisms, Amer. J. Math. 101 (1979), pp. 567-582.
- [4] A. J. S. Hamilton, The triangulation of 3-manifolds, Quart. J. Math. 27 (1976), pp. 63-70. [5] J. Hempel, 3-manifolds, Ann. of Math. Studies No 86, Princeton, Princeton University Press,
- 1976.

[6] W. Jakobsche, Close PL-involutions of 3-manifolds which are conjugate by a small homeomorphism, Fund, Math. 116 (1983), pp. 73-81.

[7] E. Moise, Geometric Topology in Dimension 2 and 3, Springer-Verlag, New York-Heidelberg-Berlin 1977.

[8] F. Raymond, Local triviality for Hurewicz fibering of manifolds, Topology 3, 1965, pp. 43-57.

- [9] L. C. Siebenmann, Approximating cellular maps by homeomorphisms, Topology 11 (1972), pp. 271-294.
- [10] F. Waldhausen, Irreducible 3-manifolds which are sufficiently large, Ann. of Math. 87 (1969), pp. 56-88.

Accepté par la Rédaction le 30, 10, 1980