icm

, |
Approximating homotopy equivalences
of surfaces by homeomorphisms

by

W, Jakobsche (Warszawa)

Abstract. We prove the 2 and 3-dimensional version of the “Splitting Theorem” of
Chapman and Ferry [2). The consequence of this is the 2-dimensional analogue of the
a-approximation theorem [2], and the equivalence of the 3-dimensional a-approximation
theorem and of the Poincaré conjecture.

1. Introduction. The aim of this note is to extend some of the high-
dimensional theorems of Chapman and Ferry to dimensions 2 and 3. More
precisely, we prove the “Splitting theorem” from [2] in these dimensions. The
2-dimensional version of this theorem implies the 2-dimensional analogues of
the “a-approximation theorem” and the “Bundle theorem” from [2], and
theorem (1) from [3]. The 3-dimensional “Splitting Theorem” proves that the
3.dimensional “a-approximation theorem” is equivalent to the classical
Poincaré conjecture. .

The additional motivation for the proof of the 2-dimensional “a-
approximation theorem” was [6], where it was used to study the fixed point
sets of the close PL involutions of 3-manifolds.

We adopt from [2] the following notation: Let X, Y be two spaces and
let « be an open cover of Y. We say that the maps fig: X—Y are a-
homotopic (written f 2 g) if there is a homotopy Fy: f=~g, te[0,1] such
that the track of each point {F,(x): 0 <t <1} lies in some element of a. If
h: X = Yis a map and Y is given a fixed metric then f~'(¢) denotes the
cover {U < X: U is open and diam f(U) < ¢} of X. More generally £~ (o)
denotes {U cX: U is open in X and there exists a Veoa such that
f(U) = V} whenever o is a cover of Y.If A is a subset of Yand « is a cover

. of Y, then we say that /1 X = Yis an a-equivalence over A with the a-inverse
g if g is a map of 4 into X, fgld is a-homotopic to the inclusion id,, and
af\f ~ 1 (A) is f ~* (a)-homotopic to the inclusion id,_y . If A=Y, then we
say that f is an a-equivalence. If is a cover of Y and ?): X — Yis a proper
map, then we say that f is a f-map if for every ye Y there is a U € § such that
F1y) < U. If X is a metric space then we say that f is an e-map if for every
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yeY, f~1(y) has a diameter <. By f; and f, we shall denote homomor-

phisms induced by the map f on homotopy and homology groups

respectively. ‘

We assume the following data:

(1.0) Wis an n-manifold without boundary, n =2 or 3, and W is orien-
table if n = 2. § = 5""! is an (n—1)-dimensional sphere. We put: B?
=8x(—a,a) and B, =S x[—~a, a] for aeR, a> 0. Let p: SxR
— R denote the usual projection. f: W—SxR is a proper map,
which is a p~'(e)-equivalence over B,, with p~!(g)-inverse g: B,
- W.

. SPUTTING THEOREM (1.1). Suppose that (1.0) is satisfied. Then if ¢ is suf-
ficiently small, then there is an (n—1)-sphere So < (pf)™! (—1, 1)) such that
f18o: So — 8"~ x R is a homotopy equivalence, S, is bicollared, and So separates
the component of W containing (pf)™* ([—1, 1]) into two components, one
containing (pf)~' (—1) and the other containing (pf)~* (1).

Addendum. It also follows that if C, is the closure of the component of
(1)1 ((—1, $)\S, containing (pf)~* (1), and C, is the closure of the com-
ponent of (o)™ ((—1,3))\S, containing (pf)~* (1), then C, deforms into
So 1el Sy, with the deformation taking place in C, (ie. there is
a homotopy H,: C, — C, such that H, is an inclusion and H,(Cy) = Cy, and
H|S, = idy).

Note that ¢ depends neither on W nor on f.

In dimension 2 the Splitting Theorem and the torus argument imply, as in
[2], the following theorems (see Section 3):

a-APPROXIMATION THEOREM (1.2). Let N2 be q surface. For every open cover
@ of N there is an open cover P of N such that for any surface M and proper p-
equivalence f : M — N, which is already a homeomorphism from 8M onto N, f
is a-close to a homeomorphism h: M — N (i.e. for every meM there is a Uea
containing f(m) and h(m)). '

BunpLE THEOREM (1.3). Let p: E — B be a Hurewicz, Sibration such that E
and B are locally compact metric spaces, B is locally path connected and locally
finite dimensional, and the fibres p~' (b) are compact surfaces. Define OE
=U {@p™* (b)| beB) and assume that PIOE: OE — B is a locally trivial bundle.
Then p is also a locally trivial bundle. ‘

(1.3) gives another partial answer to the question raised by Raymond [8].

Then we can apply the proof used in [3] to get

THEOREM (1.4). If M is a surface and a is an open cover of M, then there is
an open cover B of M such that, if N is a surface and g: (M, dM) —(N, oN)is a
proper B-map, then g is- homotopic through a-maps to a homeomor phism.

I am very grateful to Professor H. Toruniczyk for his suggestions that
permitted on improving of the exposition.
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2. The proof of the “Splitting Theorem”. To prove (1.1) we shall need
lemmas. All the manifolds considered have dimension < 3, and so by [7] we
can consider them as PL manifolds. In particular, we assume that "~ x R has
a natural PL structure in which every submanifold §"~! x[a, b] is PL.

The following lemma is easy, and so we omit the proof.

LemMMa (2.1). Let N be a surface, x,eN, and let R be a subgroup of
ny (N, Xo) such that M #n, (N, xo). Then there exists a PL embedding &: S*
=N which determines an element [£] of n, (N, x0)\N.

LemMa (2.2). Given a, be(—2, 2), a < b there exists an ¢ such that whenever
(1.0) holds, then there exists a PL (n—1)-sphere S, = ()" ((a, b)) satisfying
k-[So] # Ofor/' every integer k + O, where [S,] is the image in H,_ (f ~* (By)) of
the fixed generator of H,.,(Soy~Z by the homomorphism induced by the
inclusion 8o <, f ' (B,). Moreover if n=3, then So disconnects the
component of = (B,) containing S,.

Proof of 22. Let c=4(a+b)e(a, b) and & <i(b—a), and let f:
W —SxR satisfy our requirements for this choice of & Then N
=(pf)"*((a, b)) is a PL n-submanifold of W, and N > @)~ ({chHug(p~t{c})
(this follows from the fact that pfg_is e<lose to p on p~'({c}). Let go
=glp~'({c}). Then g, is a map into N of the (n—1)-sphere P ({c})
=8 x {c}. Take xoeg(p~* ({c})) and, let i: N — W denote the inclusion and
g Tyt (N, Xo) > 7,1 (W, xo) denote the induced homomorphism. Then
Yt = Ker (i4) is a m,-invariant subgroup of m,_, (W, Xo). We claim that
[golem; (N, xo)\N. In fact otherwise f¢,: p~* ({¢}) = S x R would be homo-
topic to a constant, which is not the case’ since it is homotopic to the
inclusion p~* ({c}) — § x R. So by the sphere and projective plane theorem (see
[5], p- 54) in the case of n = 3, and by Lemma (2.1) in the case of n = 2, there
exists a covering map ¢é: S —S§, = N (which for n =2 must be a homeo-
morphism), where §, is a PL 2-sphere S? or a projective plane P2 if n = 3,
and S, is a l-sphere if n =2, x,€8,, and & determines an element [¢] of
7,1 (N, Xo). In particular S, is not contractible in N.

Now we show that, if n=3, then S, disconnects the component of
1 (B,) containing S,. Suppose that it does not. Then there exists a simple
closed curve o: S* — f~*' (B,) such that a($*) NS, = x,, and «(S!) is trans-
versal to S,.

Now we use the theory of the intersection index, as described in-[1], pp. 97
and 114. To avoid assumptions concerning orientability, we consider hom-
ology with Z,-coelicients. It is easy to see that a(S*) and S, support the l-cycle
and 2-cycle respectively with Z,-coefficients such that the corresponding
homology classes z, e H, (W, Z,) and z,eH,(W, Z,) have an intersection
index z; 'z, = 1. This implies that z, % 0, and so « is not homotopic to a
constant. Since n; (B,) = 0if n = 3, it follows on the other hand that f and gfx
are homotopic to constant maps which contradicts the fact that gfx= «. So S,
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disconnects the component of f ~! (B,) which contains it. In particular Sy is
bicollared in W.

Now we prove that, in the case of n=3, S, is a sphere, and not a
projective plane. Suppose on the contrary, that §o = P2, Then there exists a
closed curve a: S* — S,, which reverses the orientation of S¢S, is bicollared
in W and so « reverses the orientation of W. This implies that « is not
homotopic to a constant and we get a contradiction as before. So S, is a
sphere.

Finally we prove that for any integer k # 0 we have k:[Sy]# 0.
Suppose that, for some k # 0, k-[So] is equal to 0. [[Sy] = i, (e), where i, is in-
duced by the inclusion i: Sq< f '(By) and e is a generator of
H,_,(So) = Z, and 50 (f]S0)y ©(ri}e: Houz1(Se) = H,y (B;) must be O for
any map r,: So =S, of degree k. But this is not the case: if it were, then
(f1S¢) o7, and hence f|S, would be homotopic to constant maps, contradicting
the fact that gf|S, is homotopic to the inclusion So— W and S, is not
contractible in W.

Lemma (2.3). Let T be a compact, orientable surface and let Sy and S, be two
disjoint 1-spheres, not contractible in T. Suppose that there exists a homotopy
h: S'— T, tell, 2] such that h;(S*) = S;, and that the maps b;: S* = S; have a
non-zero degree. Then -there exists an embedding h: S*x[1,2]-T
such that W (S*x |i}) =S; for i=1,2.

Proof of (23). S, is a PL sphere in T, and so we can find a PL
cinbedding  u: S, %[0, 1] > T such that S, =u(S;x{0}) and wu(S,x
«{0, 1S, = @. We consider the decomposition space T = T/G with
non-degenerate points 4, = u(S; x {t}), te[0, 1], and with the projection map
¢: T—T. Then q|T\u(S,x[0, 1]) is an embedding, and 4 = () ]a, is an

te[0, 1

arc and T=T\ {J 4 is a compact, orientable surface. Let T; be the com-
1€(0,1)

ponent of T containing ¢(S,). Then it is easy to construct a map f: T
-» T; such that f|T; =idy . Let sen,(T;) be determined by the inclusion
4{8,) = T. Then fgh, is a homotopy between fgh,: S' — T and a constant
map fghy: §' - f(a)eT,. So s* =1 for a certain k # 0. But then we have s
= 1. Suppose the opposite, i.e. s* = 1. Then a subgroup of x, (T;) generated by
v is finite, cyclic, and so the covering T, of T, corresponding to it satisfies
M (1) = my (1) = Z,, which is impossible. This implies that g(S,) = aD for
some disc D = T;, whence §; US, bounds either an annulus ¢~! (D) or an
annulus ¢~ (D U A4), depending on whether D contains ag or ay, ‘

Lemma 2.4. Let M be a connected 3-manifold, 0M = @, and let S, and S, be
two disjoint 2-spheres in M such that the elements [S,] and [S,) of H,(M)
determined by S, and S, (as in (2.2)) satisfy the following condition: there are
integers ky, kj such that ky - [8,] = k, -[§,] # 0. Moreover, we assume that each
Si, i =1, 2, disconnects M. Let L be a closure of a component of M\S,\S, such
that L= 8, U S,. Then L is a compact manifold with the boundary 9L = S uUS,.
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Proof of (24). Suppose that L is non-compact. Let M, and M, be the
closures in M of two components of M 'L (note that M 'S,\S, has precisely 3
components) such that LnM; =S, for i = 1, 2. We consider the exact hom-
ology sequence of the pair (M, M; U M,):

Hy (M, My U M)~ Hy (My U M3) 5 Hy (M) —» Hy(M, M, UM,).

If L is non-compact, then H;(M, M; UM,) = H3(L, S; US,) =0, and so j
is a monomorphism. But H,(M, uM,) = H,(M,)®H,(M,) and, for each
i=1,2, there is a z;e Hy(M)) such that (j),(z) = [S;], where j;: M;— M
is an inclusion. So the fact that j is a monomorphism implies that
ley ((F0xdz0) = k2 ((J2)a(z2)) = ki *[S1]—k, [S;] # 0. But we know that
ky-[S;]—k,-[S;]1=0. So L is compact. This and the fact that (M = Q
imply that (L=S; uS,.

Lemma (2.5). Letr O<e <1, and a, bje(—2,2), i=1, 2, be such that

C =242 <ay <b; <a, <b, <2—2. Assume rthat (1.0) is satisfied, and let

S: = (@)~ (@, b)) be a PL (n—1)-sphere such that k-[S;] # 0 for k # 0, and if
n =3 then S, disconnects the component of f ~* (B,) which contains it. [S;] is the
image in H,_{(f ~! (B;-,)) of the fixed generator of H,_(S). Then there is a
compact PL n-submanifold L of W such that L is an h-cobordism from S, to S,.

Proof of (2.5). First we prove that there exists a homotopy #h,:
"t — 71 (BY.,), te[1, 2], such that h(S) =S; and that h;: S — S; has non-
zero degree for i =1, 2. Let f; = f|8;: S; — B3- 5, and let m; be the degree of f;
(we define the degree of f; as a number equal to the degree of pso f; where ps:

-1

SxR—S is a projection). Since S, = f~*(B3_,,) and gf]s, " = " id;,, the
map gfi: §; — f~* (B3-,) is homotopic to ids, in f~* (B3-,). This and the fact
that [S;] # O imply that m; # 0 for i =1, 2. Let k,, k, be the integers such that
my ky =my-ks #0, and r;: §—S; be any map of degree k; for i =1, 2. fr,
and fr, have the same degree, so they are homotopic in § x(ay, by). Therefore
qfy and gfr, are homotopic in g(Sx(ay, by)) = f T (S x(a—s, b+e)).
Since ¢ is a p~! (e)-inverse for f over B,, there are p~! (¢)-small homotopics
between ¢ff;, and r, §=1,2; their values lic in f~' (Sx(a;—¢, hy+e).
Thus there is a homotopy h: § — f~' (BS.,), t&[l, 2] such that hy =r,
and hy =r,. This is the homotopy we were looking for.

Then suppose n=2. ) h(S") is a compact space, and so it is con-
te[1,2)
tained in some compact surface T < f ™! (BS.,). Then by Lemma (2.3) we can

find an annulus L < T, with 0L =S, US,Lis the required h-cobordism.
If n = 3, then the existence of h, implies that the homology classes [S;],
[S,1eH,(f ~* (B;-,)) satisfy the condition k, +[S,] = k,-[S,] # 0, for some
integers k,, k,. Of course f ™! (B,_,) is a 3-manifold with an empty bound-
ary, and so we can use Lemma (24) to prove that S; and S, bound in

i
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f~!(B,-,) a compact manifold L. We only have to show that Lis a h-
cobordism. By [5], p. 26, we need to show that L is simply connected. Let
a: St L be any map. We may assume that a« is PL and that
Im («) < Int (L). Then fa: $* — B,_, is homotopic to a constant map, because
B,_, has a homotopy type of S2. So gfa: §' — W is homotopic to a constant
map. Moreover, by (1.0), o ~gfx and hence o is homotopic to aconstant
map in W. Let &: D>~ W be any map of the 2-disc D* into W which
extends o(S'=aD?%, and which is transversal to S;uS,. Then
& ! (S;US,) is a finite collection of circles in D% and the component P of
@' (L) which contains dD? is a PL submanifold of D? bounded by a finite
family [ of circles. For any cel, ¢ # dD? a*c can be extended to the map P,
—8S,,i=1or 2, where P, is a disc bounded in D* by ¢. The union of these
extensions and of @ P gives a map D? — L which extends o. This proves that L
is simply connected.

Now we can prove Theorem (1.1):

Proof of(1.1). Let ¢e(0, 1) and a;, b;e(—2, 2), i =1, 2, or 3, satisfy the
inequality

—242%<a, <b < -l-e<—1l+s<ay,<b,

<l-e<l+e<$te<ay<by<f—g<2-2.

Assume in addition that ¢ is so small that the hypothesis of (2.2) is
satisfied for (a, b) =(a;, b), iefl, 2,3}. Let S;<=(p)"* (@, b)) be PL
spheres provided by (2.2) and our choice of ¢, i =1, 2, or 3, and let L be an h-
cobordism from §; to S, provided by (2.5). In the sequel we shall use the
following.

Craim. Let Q be a connected n-submanifold of W with the boundary 8Q. If
pf (éQ) misses a segment (a, b) contained in (=2, 2) and intersects each com-
ponent of R\(a, b), then Q = f~* (S x[a+e, b—¢]).

Proof of the claim. Fix xoeW with pf(x,)e[a+e, b~c]. By the
connectedness of pf(Q) there is a point x;€Q with pf(xo) = pf (x,). Let
a: [0, 11— pf (xo) xS be a path connecting £ (xo) and f (x;). Then § = go is a
path between gf (xo) and gf (x,) lying inf =" (S x(a, b)) (we use here (1.0), which
implies that on B, the maps p and pfg are s-close). Using (1.0) again, we get
paths B; connecting x; and gf(x) for i=1,2 and ' such that
diam (pf(In_x (ﬁ,-))) <e. ThenIm () = f~* (Sx(a, b)) and B = f, Uga L f, is
a path in f ™" (S x(a, b)) connecting x, and x;. Then Im () misses aQ, and
since x; €Q, it follows that x,eQ. This finishes the proof of the claim.

Since pfg is e-close to p on B, it follows from the claim applied to Q=L
that g(By) < f ' (By+,) = L. In particular S, = L and S, separates L into two
compornents-such that their closures L, and L, form h-cobordisms from S, to
S, and from §, to S5 respectively. Applying the claim to Q = L, for aeR, we
infer that L, = (pf)~" (—1) and L, > (pf)~1 (1). ‘
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Now to prove that §, disconnects the component 4 of W cutting it into
two components, one containing (pf)”' (—1) and the other containing
(pf)"* (1), we need only to show that A\L is not connected. Suppose it is.
Then there is a curve a: [0, 1] W, such that «(0)eS,;, a(l)eS,, and
a([0, 1)L =a({0, 1}). Hence there is a point yea((0, 1)) such that
Sep t([—1,1]). Then yef~! (B,) c L, which gives a contradiction.

Finally we prove that f|S,: §, = S xR is a homotopy equivalence. First
we notice that f(S;) < By.,. This, as we have shown, implies that

=1

af (S2) = Lo f~* (By.,). From the fact that gf|f~* By~ “id it follows
that there is a homotopy h,: S, —» W, with hy = idg,, hy = gf|S,, such that the
track {h,(x): t&[0, 1]} of each point x&S, has image by pf of diameter < e.
This implies that for every xeS,, {h(x): te[0, 1]} ndL= Q, so ¢f|S,; is a

- homotopy equivalence between S, and L, and so f|S, is a homotopy

equivalence.

Now we can put Sy = §,. As we have shown it satisfies all the conditions
of (L.1).

The addendum may be proved as follows: First we note that (pf)~?!
([~1, $1) = L. This can be shown in the precisely the same way in which we
have shown that (pf)~* (1) = L,, using the claim. The only difference is that we
replace {1} by [—1,%] and L, by L, and we use the fact that
by+f<—1<%<ay—%. This. implies that the component C, of
@)~ ([—1, $D)\S containing (pf)~* (1) is contained in L,. But §,=§, is
a deformation retract of L,, and so C, can be deformed to S, in L,.
Finally we notice that L, < C. This easily follows from the fact that by < $—e.
This finishes the proof of (1.1).

3. Remarks on the proof of the o-approximation theorem for dimension 2.
The proof is only slightly different from the one given by Chapman and Ferry
in [2]. : :

First, using the “orientable” splitting theorem, we prove the “handle
Lemma” as in [2] p. 589, with n =2, and an orientable V2. The proof is
analogous to the one given in [2]. We need only to note that the surface W,
([2], p. 591) is immersed in ¥, and V is orientable in our case, so W, is
orientable, and hence we can construct the orientable W;, W,, W5 as in [2].

As in [2] we prove the “Main theorem” (p. 595 in [2]), with n = 2 and an
orientable V2. Then we prove the following, weaker version of the. “a-
approximation theorem”:

LemMA (3.1). Let N? be a surface, and let y be any open cover of N. Then, for
every open cover « of N, there is an open cover f of N such that for any f-
equivalence {: M — N, which is already a homeomorphism from 0M onto AN,
and is such that for any cey, f ™' (c) is an orientable surface, and f is o-close
to a homeomorphism h: M — N. : :
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The proof proceeds as in [2], pp. 597, 598. First, we prove the version of
Lemmas (5.1) and (5.2) of [2] with n=2 and an orientable M.

Then, the proof of Lemma (3.1) proceeds as the proof of the o-
approximation theorem in [2], pp. 598, and the only change is that by our
assumption, we require that a star finite cover {N;} found in the proof of the a-
approximation theorem in [2] be such that all sets /"' (N;) are orientable.

Lemma (3.1) easily implies Theorem (1.2) if we use the following Lemma
3.2):

Lemma 3.2. Let N be a surface. Then there is an open cover o of N such that
if M is a surface and f : M — N is an a~equivalence, then for every c e, f ™ * (¢) is
an orientable surface. ) ‘

Proof of (3.2). Suppose that y is any cover of N by the open discs. Then
we can easily find an open cover « of N such that to every cea, there is dey
such that ¢ = d. Suppose that for a certain ¢ o and some a-equivalence f : M
— N, f~1(c) is a non-orientable surface. Then there exists an element z of
H,(f~*(c), Z) such that z # 0, and 0 + i, (z)e H, (M), where i: f "' (¢}~ M is
an inclusion. We can take for z an element of H, (f ~*(c)) determined by the
curve reversing orientation of f~*(c). Let g be the inverse of f. Then
(M1 ()n(2) = (04 Suiu (@) =i4(2) #0, and on the other hand
(F1f "*(0)4(2) = 0, because ¢ = dey, which gives a contradiction.

4. The equivalence of the o-approximation theorem and the Poincaré
conjecture in dimension 1 = 3. It is very easy to construct for every & > 0, the &~
equivalence from the homotopy sphere # S* (if one exists) onto $3. This
equivalence obviously cannot be approximated by homeomorphisms.

On the other hand if the Poincaré conjecture is satisfied, then we can use
our “Splitting Theorem” in dimension 3 to prove the a-approximation
theorem, as in [2]. The only difference is that in the construction of h in the
“Handle Lemma” (step V) we use the théorem of Waldhausen [10] in the form
described in [4] (Lemma 3, p. 65 in [4]). Note that the manifold W; in the step
V of the construction in the “Handle Lemma” in [2] is homotopy equivalent to
B*x T™ m+k = 3, and we assume that the Poincaré conjecture holds, whence
W; is irreducible.
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