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Squares of Q sets
by

William G. Fleissner* (Pittsburgh, Pa))

Abstract. A Q set is an uncountable separable metric space in which every subset is a Gy
We show the following statement is consistent with ZFC: There is a Q set of cardinality w, but
no square of a space of cardinality w, is a Q set.

A Q set is an uncountable separable metric space in which every subset
is a G,. The existence of Q sets is consistent with and independent of ZFC.
The existence of Q sets is equivalent to several propositions of set theory and
topology and is central in a web of interesting implications — see [T], [P],
[F]. One concept investigated recently is that of a strong Q set, defined to be
a Q set all of whose finite powers are Q sets. The main results are:

If X is a strong Q set, then the Pixley-Roy space built from X is a
normal nonmetrizable Moore space [PT].

Conversely, if X is a separable metric space whose Pixley—Roy space is a
normal nonmetrizable Moore space, then X is a strong Q set [K].

If there is a Q 'set,» then there is a strong Q set of cardinality w,, [P].

We complement this last result with )

THEOREM. It is consistent, relative to ZFC, that there be a Q set of
cardinality w,, but no square of a space of cardinality w, is a Q set.

We sketch the proof of the theorem below. We start with a model, M, of
GCH. We define a notion of forcing P which adds a set Y of w, Cohen reals
and makes Y into a Q set in the manner of [FM]. Let Z = {z;: § < w,} be
a set of reals of cardinality w,. We will 'show that 4 = {(z;, zp): f < p*
< w,} is not a Gy in ZxZ. Let % = {U,: kew} be a family of open sets
containing 4. Using counting arguments (Lemma 3), we find a large subset H
of w, such that z,;, fe H, are independent over % (mutually Cohen generic
over %, in some sense). Choose , §* € H. There must be kew and reP such

* Partially supported by NSF grant MCS79-01848.
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that t]|— (2, 2p) ¢ Ux. Choose 0, 6* e H, § < &%, about which r says nothing.
We extend ¢ to a condition t; (Lemnma 4) which says about z; everything ¢
says about zp., says about z; everything t says about z;, and says nothing
new about zg, zg«. Because (z;, z;9) €4 there are basic open sets By, B, and
conditions t,, f3, t such that ty, t,, I3,  are compatible, ¢, forces z;€ By, t5
forces zp€B,, and 1 forces By x B, = U,. By the construction of H, we can
find 1%, ¥ such that 1% forces zg«€ By, t} forces z,¢B,, and t,, t%, (¥, F are
compatible (Lemma 5). Thus, (z4 zp)€ U,. We conclude that (% # 4, and
Z%is not a Q set.

What needs to be done to turn the sketch above into a proof? First, we
must define P and verify that forcing with P adds a set Y of w, Cohen reals
and then makes Y a Q set (Lemma 0).

Second, we were careless about talking about objects in the extension.
To be precise, we should say z,, a term for an element of C, the Cantor set;
U, a term for an open subset of Cx C; and G, the canonical term for the
generic filter. We leave it to the’reader to make these and associated changes.
Let us emphasize that “we work in the ground model”. In particular we
apply the A4-system lemmd in the ground model, and the set H is in the
ground model.

Third, we need to make precise the notion “t says about zg what it says
about z,”. We will do this after Lemma 3. One difficulty of this proof lies in
the fact that two slightly different notions are used.

Finally, we must, of course, prove the lemmas.

Let us establish some notation. XY is the set of functions from X to Y.
We denote the set of finite subsets of a set 4 by [4]°¢, the set of subsets of
A of cardinality » by [AT*. Since every Q set has cardinality less than 2, and
every separable metric space of cardinality less than 2° is hémeomorphic to
a subspace of C, the Cantor set, we lose no generality by considering only
subsets of C. We do this because 4, the family of clopen subsets of C, is a
countable base for C closed under intersection and difference.

We will use the following special case of the A-system lemma (see [J],
Appendix 2, for example); assuming CH, whenever {S,: aew,)} is a family of
countable sets, there are Je[w,]“? and a set S, such that for all

{o, BYe[J1% 8, NSy =Sg. {S,: aeJ} is called a d-system; Sy is called the
root.

Towards defining P we define a preliminary pamal order. Let Q be the
set of all triples (p, a, b) satisfying

11 pe®#, ac”[w,]<°), be34,

1.2 [{Bewy: p(B) # Cll < w, |iyews: a() Ub(y # O} < w,

1.3. for all few,, p(f) # @,

14. for all few,, for all yew;, Bea(y) implies p(B) N b(y) = O,
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1.5. (p, a, b) < (p*, a*, b*) iff for all few,, p(f) < p*(f) and for all
yew; a(y) > a*(y) and b(y) = b*(y).

Let (Eu)x<w,> Where E, has the form (q(e, 1, /S)I-Ew),,emz, count, w, times
each, every w, sequence of w sequences of pairwise incompatible elements of
Q. (The intended meaning is that {g(a, i, f): iew} is a countable pairwise
incompatible subset of conditions forcing feA,, where (Ao, lists all
subsets of w, in the extension.)

We define suborders’ P,,a < w3 of @ by induction on a P,
={(p.a, b)eQ: for all yews, a(y) vb(y = o). P, = U P,, when A is a

limit ordinal. P,,, =P, if {q(a, i, f): icw, ﬂcwz} is not a subset of P,. If
g, i, f): iew, Becw,} is a subset of Py, P, is the set of all (p, a, h)e Q
such that

2.1. for all y>o a(y)ub(y)=0,

2.2. (p, a*, b*)e P, where a*, b* are defined by

a* () = @, b* (o) = O,
a*(y) =a(y), b*() =b()if y#a,

2.3. if Bea(x) then there is iew such that

(p, a, b) < (p, a* b)) < q(a, i, B),

P,, =P is the partial order we will use.

Our next task is to determine when two elements of P, t = (p, a, b) and
f=(p, @, b), are compatible. In view of 1.5, the natural common, extension
seems to be (pnp,aud, bub), where (pnp)(B) = p(B)n p(B). (awa)(y)
=a(yyua(y), and (b L b)(y) = b(y)ub(y). However, we must consider also

1.4,.and so we define
(DB = (BN BB)—-U b Ub(H): Beak)na()).

(The subscript, t7, indicates the dependence on all of ¢ and 1, not only p and
p. Now, we ask when 7 = ((pn P (aLd), (b Ub)eP. 1t is straightforward
to check 1.1, 1.2, and 1.4. We can verify 2.1, 2.2, and 2.3 by induction on y
< wy. Further, 1.5 gives f < t and 7 < #. Hence the only way that ¢, 7 can fail
to be compatible is for 7 not to satisfy 1.3. The above analysis is summarized
in the following lemma.

Lemma O. Let t, T be elements of P. Define T =((p B, (au @), (b b))
as in the paragraph above. Then the following are equivalent

a) t and t are compatzble

b) feP,

c) for all B < w,, (Pﬁp)ﬁ(ﬂ # 0.

§ = Fundamenta Mathematicae CXVIILY
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Next, we use Lemma 0 to show that P has CCC. Let {t,: 2€w,} be an
uncountable subset of P, where t, = (P, 4y, b,). For acw,, set sp(a)=
(Bew: pa(B) # C}; sa(e) = (yews: a,() # B}; sb(@) = lyewy: b, () # B}
and sr(o) =sp(x) U(Urangea,). Apply the Ad-system lemma for finite
sets four times to get an uncountable W <, such that {sp(o): aeW},
{sa(o): aeW), (sb(x): ae W}, and {sr(x): acW} are all 4-systems. Since
there are only countably many possibilities for each o, we are further refine to an
uncountable W! < W so that for all aeW* we have card(sa(x) = n,,
card (sb () = m,, card (sp(«)) = n,, and card (st () = n,. Moreover, for | <, j
< n,, and k < ny, if B(«, i) is the ith element of sp(«), ¥ («, j) is the jth element of
sa(a), and &(a, k) the kth element of sb(a), then the values of p,(f(a, i) and
b,(8(, K)) in % and the truth of “f(a, i) €, (y(x, /)" does not depend on .

We claim that if o, #e W, then t, = (p, a,b) =1 and t; =(p, @, b) =1
are compatible because condition ¢) of Lemma 0 is satisfied. If  is in the
root of {sr(y): yeW?'}, then (pnp)s(B) =p(B#@. If Pé¢sr(a) then
(pn D)z(B) = P(B) # @ similarly if fésr(a).

LeMMA 1. P adds a Set, Y, of Cohen reals and makes Y a Q-set.

Proof. For each few,, let y; the unique element of
N{pB: (p, a, b)eG}. Each y, is a Cohen real because ##—{Q} is isomor-
phic to the usual Cohen poset. Let Y = {y,;: few,}.

Towards showing that Y is a Q-set, let A* be an arbitrary subset of ¥,
and set A = {few,: yyeA*}. Let E =(q(i, Plicw)pew, be such that for all
Bew,, {q(i, P): iew} is a maximal pairwise incompatible subset of P of
conditions forcing S A. There is o < w; such that {q(i, f): icw, few,} isa
subset of P,. Because E was listed w; times, there are distinct a,, ne w, of
ordinals greater than a such that E, =E. For new let :

Fn = {yﬂEY: a(p’ a, b)EG[Bea(“n)]}a
- Va=U{b(@): (p, a, b)eG}.

Our first claim is that V,~ F, = (0. Aiming for a contradiction, assume that
ypeV,nF,. Then for some (p, a, b)e G, fea(x,) and for some (P, 4, h)eG,
ypeb(a,). Since G is a filter, there is a common' extension, (5, &, b). We have
yp€ B(B) (definition of yj) and yzeb(a,) < b(a,), hence y,e(B) N b(x,) # .
However, Beal(a,) < d(x,), so by 14, 5(f)nb(a,) =@ — contradiction.

Next, we claim that F, U ¥, =Y, and hence that F, is closed in Y. It will
suffice to show that for each f < w,, the set

Dll = {(ps a, b)EP: ﬁEb(an)Ua(an)}

icm
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is dense in P. So let t =(p, a, b)e P be arbitrary. If fea(a,), then teDy. If
Béa(x,), we define p* from w, to # and b* from w, to & so that

p*(@)=p@) if d¢alx)u{f,
O#p*@)<p@ if deal)w{p]
{p*(9): dea(a,) U {B}} is disjoint,
bB*(W=>b(y) if y#a,
b* (o) = b (a)) U p(B).

Then (p*, a, b*) extends (p, a, b) and is in Dj.

Finally, we claim that (J{F,: new} = {y;: fed}. It is clear from the
definition that F, = {y,: BeA}. We will demonstrate the other inclusion by
showing that for all fe A, the set

D = {(p, a, b)eP: Ancw[feala,)]}

is dense below any t,eG. Since fe A, there is iew such that g(i, f)e G. Since
G is a filter, there is t = (p, a, b) extending t, and q(i, f). By 1.2, there is
new such that a(x,)w b(a,) = @. Define a* by a*(a,) = {8}, a*(y) = a(y) if
y€w;—{a,}. Because t* = (p, a¥, b) is so similar to te P, to verify that t*e P
only 1.4 and 2.3 for y = «, need to be checked. Since b(x,) = @, 1.4 checks;
2.3 checks because t extends q(i, ) = q(,, i, B). Hence t* extends t, and is
in DA )

Since A was arbitrary, we may conclude that Y is a Q-set.

We will not use the following lemma, which is a simple version of
Lemma 5. We have included it here to give the reader some idea of the
direction of our argument.

LemMa 2. Suppose 1. t =(p, a, b), t* =(p*, a*, b¥) and t = (p, G, b) are
elements of P,

2. t and t are compatible,

3. there are permutations of order 2,': w, — w, and ": w3 — ws such that

a) B+ implies p(f) = C,

b) y#y" implies a(y) L b(y) =,

¢) P(B) = p*(B),

d) b(y) =b*(y"),

¢) Bealy) iff Bea*(y"),

f) Bed(y) implies f=p" and y=1y".

Then t* and [ are compatible.

Proof. For all few,,

(PP (B) = p* (BB —U {b* ) v b(): Bea*(y) valy)}
=pB)nBB)-U{b(y")vb(y): Bealy)yvaly)
=(P*ODw(B) # . =
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Let Z ={z,: v <w,}e[C]"% Let % ={U,: kew} be a set of open
subsets of CxC. Let 4 be {(z,, z,): v <v* < w,}. We will show that
N % ~(Z x Z) # 4. Since we are working in the ground model, what we will
really show is that the set of conditions forcing this statement is dense.

For kew and By, Bje%, let I'(k, By, By) be a maximal pairwise
incompatible set of conditions forcing Bo x By < U,. For vew,, Be4, let
I'(v, By={r{v, B,i): i ew} be a maximal pairwise incompatible set of con-
ditions forcing z,eB. Set, for t =(p, a, b)e P and for f, vew,,

K, = {Bew,: p(B) # C} urange(a),

L ={yew;: a(y)ub(y # O},
Ky =U{K,: tel(k, By, By), kew, By, By %},
Ly=U{L: tel'(k, By, By), ke, By, B, e %},
K =) {Kymip: 2Ky, ico},

I = {Kyuip: ®€Ky, icw},

K, = {K,: teI'(v, B), Be #},

L, =U{L: tel'(v, B), Be %},

Kv = U {Kﬁ: ﬁEEv} Y K(,U KU’

L,=U{: peL,} VL,uLy.

All the above sets are countable.

For each dew,, let (y(8, )<y list K; in the order preserving way.

For all §, 6* ew, with % (8) = x(8%), let T4,: w3 — w3 be the permutation of
order two which exchanges 7(5, @) and 7 (5% «) for all o <x(8), and fixes
everything else. Similarly list L; as (B(8, o)), <y and if A(8) = A(8*), define
055.: @y — @,, a permutation of order two.

DerFINITION. For 8, 6*ew, and t=(p, a, b), t* =(p*, a* b¥)eP, let
(6, t 0%, t*) mean

855 and 745, are defined,

rn

and, abbreviating them by )", respectively,
L for all Bew,, p(f) = p*(B),
-2 for all yew,, b(y) =b*(y"),

3. for all Bew,, yews, Bea(y) iff fea*(y”).

The proof of the following lemma is a straightforward counting argu-
ment, very similar to the proof given above that P has CCC. The fact that
CH holds in the ground model allows us to apply the A-system lemma to
families of w, — many countable sets.

LeMMa 3. There is He[w,]°? such that

- 1. {Ks: 6eH} is a A-system with root Kg,

2. {Ls: 8eH} is a A-system with root Ly

and for each 6,d5%€H, -

k]
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3. for all BeLyg, 05.(8) =8,

4. fOT all 'yEKRs TM*(’V) =7

5. for all aeKy, icw, (3, q(a, i, 8) « 0%, q(x, i, &%),

6. for all iew, BeA, (5,r(5, B, i) « 0% r(6* B, i)).

DeFINITION. Let ¢t = (p, a, b)e P and n, n* € H. Abbreviate 6,,, and t,,,
by ' and “, respectively. Let (t; #+>#*) mean

1. for all Bew,, p(B) = p(B),

2. for all yews, b(y) = b(y"),

3.if peL,u L, and yeK, UK, then fea(y) iff f'ea(y”),

4. Lin(LywL,) < Lg. ‘

Remark. (t; n«>n*) is weaker than (4, t—n*, t) — compare condition
3 in each definition. The use of these two similar but slightly different
notions seems necessary. Lemma 4 is false if the conclusion is strengthened
to (8, t* 0%, t*). Lemma 5 is false if we weaken (1, tz>ny, 13) or
(35 t3 > No, 13).

Lemma 4. Let 8q,...,6,€H, t =(p, a, beP. The set J = {8p,..-,05} U

U{6*€H: LpnL—Lg# @} u{s*eH: KynK,—Kg} is countable. If

§%,...,8% are distinct elements of H—J, then there is t*e P, t* <1t such that
for all i< n(t*, 6;+>6¥)..

Proof. The countability of J is routine. For the second assertion of the
lemma, we do the special case n=0. The general case is only notionally

‘more complex. Let ', be as in Lemma 3. We define t* = (p*, a* b*) by

(B = pB p(B).
a*(y) =a() U {B: B'eLy, v €K, and f'ea(y’)},
b* () = b b().

It is straightforward to check that for all i < n, (*0; > ¥). Most of the
verification that t*eP is routine; below we verify 1.3, 23 and 14.

13. Because Ls, N L, © Lg, either fef’ or one of p(B), p(f)=C. In
either case p*(f) + O.

23. Suppose fea*{y). If feal(y) it suffices to note that te P. Otherwise
yeKy,, Be Ly, and B ea(y”). Because of this last fact, there is ie such that
t < q(y", i, B) = (1, a3, by). We claim that t* <q(y, i, f) = (pf, af, b}). For
all new,, prm=p@)>p@)>p*@). For all new, acws,
neat(a) « y €a,(@") — n'€a(a”) — nea* (). (The last implication uses the fact
that #n'ea,(o”) implies n'eL, and «’eK,;) For all aew;, bf(a)

C=by (@) = b(@) < b* ().

1.4. Suppose fea*(y); we must show that p* () N b*(y) = Q. If Bea(y),
then b*()=b() and p*(B)<=p(p) so p*(B)Nb*() =p(p)nb(y) =0.
Otherwise, yeKy, PpelLyp, and fea(y”). Then p* B b*(y) =pB)n
Ab()=0. w :
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LeMMa 5. Suppose ty, ta, ts, &, t3, t¥ are elements of P such that for some
o» ’11, s 13€H, k, i, jew, By, Bye # we have
t2 = r(’?z: BO: l)a t2 = r(”la BO: l)’
t3 =r(’13a Blaj)! t3 —I'(Y[o, th)a
teI'(k, Bo, By),
(t1> M0+ 1a), (ty, m < 12).

If ti, I3, ts, I, are compatible, then t,, tf, 3, T are compatible.

Proof. The proof is an elaboration of that of Lemma 2. Abbreviate the
composition 6,,,, 06,.,, by ’ and the composition 7,,,, 0Ty, by ”. Note that
by hypothesis and part 6 of Lemma 3, we have (n,, ;> n,, t3) and
(1135 t3 <> Mo, t%). We will refer to this fact as («»). The following definitions

allow us to define and work with the given common extension of ty, t, t3, T

and the claimed common extension of t,, t%, t¥, . We simultaneously make
the same definitions with t,, t3, @, b, ¢, ¢,, d, and p (but not t; or 1) starred
For all y < w; and B < w,, let

a() = a, () Y a, () U as () wa(y),
b(y) = as () U az () Uas (p) U aQ),

d(B) = p1(B) " p2(B) " p3 (B) n B(B),

co(f) =U{b(): fea(y) &y =17"},

B =Ubpea&y #y"} for i=1,2,3,
PB) =d(B)—(coB) ey (B)uca(B)ucy(B)).

By 4 of (t, n#*) and Ly < Ly, we have that
U (bG): Beatd} = colB)oer(B)uea(Bucs(B).

From Lemma 0, we see that for all 8 < w,, p(f)
5, it will suffice to show that for all § < w,,

Case 1. g = f'. First,

a*(B) = p.(BY ' p3(B) ~ p3 (B) NP (B)
=p1(B)np2(B)p3 (BYN B(P)
= p1(B) " p2(B) N b3 (B) N B(B) = d(B).

- The first and fourth equalities are dcﬁmtlons the sucond is by (+»), and the
third is by § = f'. Next,

c§(B) =

#'0, and that to prove Lemma

P*(B) # O.

U{b*m): Bea* &y =7"}
=U{b(): Bea(&y=1v"} =co(B):

icm
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Here the middle equality is from (<), § = B’ and y = y". Becausc only ¢,
is used in the definition, c¥(B) = ¢, (B). Next,

cx(B) =U{br(r): Peat(y) &y # "}
=U{b2(): Bea(v) &y # 7'}
=U1{b2(»): Bea () &y # 7"} = ca(B).

The first and fourth equalities are definitions, the second uses (<), and
the third uses f=p, (y)" =7 and the symmetry of #. Finally, c¥(f)
= c3 (8) by exactly the same argument Hence if f=p, then p*(B)

=pB)+#0.

Case 2. f s f'. The key is to note that for all y < w,, B¢ay () a(y).
By the same arguments as in Case 1, we show that 4*(8) = d(8), c3(p)
= ¢, (B), and c}(B) = c5(B). Next, c¥(B) = @ = ¢, (). Finally, we show that
ck(B) = @ = c¥(p). If Bea,(y), then yeK (Similarly, for as, a¥, and a¥). If
further y = y”, then ye K, feLy, and /3 B. But Case 2 is f # f'. Hence .
B =pB)# 0. =
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