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Algebraic theories and varieties
of functor algebras

by
Jan Reiterman (Prague)

Abstract. We prove that the concept of a variety of functor algebras [13] is equivalent to
that of a Linton’s equational theory [9] satisfying a certain condition called locally small
basedness. We show that this condition ensures reasonable properties of algebras.

0. Introduction. We shall compare two categorical approaches to al-
gebras in the category of sets: Linton’s equational theories [9] and author’s
varieties of functor algebras [13] restricted to the case that the base category

. is the category of sets. Both approaches are more general than triples in sets

including also algebraic theories not admiting free algebras, such as that of
complete Boolean algebras and that of complete lattices. ‘

Linton’s equational theories provide a natural and efficient generaliz-
ation of Lawvere’s theories [8]. The price which equational theories pay for
their generality and elegance is that they include also theories which are not
of nature. For instance, for the theory generated by a proper class of
operations subject to no equations, no non-trivial algebra can be described
by a set of data and the number of all algebras exceeds the cardinality of the
universum we work in.

On the other hand, dealing with functor algebras does not lead to any
non-Jegitimacy of that kind. Categories of functor algebras have been in-
vestigated in a lot of papers (see [11] for references) as a categorical |
generalization of categories of algebras of a given type. Theydisadvantage of
the approach is that selection of varieties ([13], see section g in a category of
functor algebras is complicated.

The basic concept of our paper is as follows: an equational theory is
locally sinall based if it is generated by a subcategory which is locally small.
The main result states that a concrete category can be represented as o
variety of functor algebras iff it can be represented as the category of
algebras for a locally small based equational theory, see 3.3 and 3.9. This
solves the problem of the relation between the two approaches. Further, this
gives a simple characterization of varieties of functor algebras. Finally, this
provides a natural restrictive condition on an equational theory to ensure
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reasonable properties of algebras: If a theory is locally small based then for
every set X there is a ser of basic operations such that each algebra 4 whose
underlying set is X is determined by these basic operations; other operations
are obtained by a canonical procedure, see 3.5; homomorphisms from A are
characterized by compatibility with basic operations, cf. 3.7; subalgebras of 4
are characterized by closedness under basic operations, see 3.8 ; the category
of algebras is small fibred (see 3.6). Notice that relations between smallness
conditions of that type are investigated in [12].

1. Equational theories. In the first section, we recall elements and
examples of Linton’s equational theories [9].

1.1. We shall work in the Bernais-Godel set heory involving sets and
proper classes. The class of all sets is denoted by #, the category of sets by
Set while Set* is the dual of Set. Sometimes, when dealing with proper
classes, we shall suppose that our universum % is embedded into a univer-
sum % in such a way that our classes coincide with #'-subsets of # (thus, in
fact, we accept the approach of [10]). However, terms sel and class are
meant relatively #; this applies, in particular, to the notion of a category: if
not stated otherwise, objects of a category, and also maps between any two
objects, form a (possibly proper) class.

1.2. An equational theory in the sense of Linton [9] is a category T
whose objects are sets, equipped with a functor Set* — T which is identical
on objects and preserves products. If each class T(n, k) with n % 0 has just
one element then T is called degenerate. 1f T is non-degenerate then the
functor Set* — T is necessarily faithful and so we may and shall assume that
it is an embedding of a subcategory. A theory T is varietal if each class
T(n, k) is a set.

13. If T is an equational theory then a T-alyebra is a product pre~
serving functor A: T— Set; it can be expressed as a. couple A = (X, [w4))
where X is the underlying set, the w*'s (where w runs over all T-maps) are
operations, w*: X"— X* if we T(n, k), such that

(i) (wd)* = w*3* whenever wd is defined in T,

(i) w*(x) = q{' if xeX" and w = f*eSet*(n, k) for some [ &Set(k, n).
Homomorphisms between T-algebras, defined as natural transforme-

ations, can be identified with maps between underlying sets which compatible -

with all operations.

. T-alg d_enotes the category of all T-algebras and their homomor-
phisms. Notice that, to form T-alg, one needs a higher universum (see 1.1),
They are two reasons for it:

1) Each T-algebra is a proper class and the set theory does not admit to
form collections’ whose members are proper classes,
2) It can happen that T-alg is illegitimate in the sense that it is even not
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~isomorphic with any category within # because the number of T-algebras

exceeds the cardinality of .

1.4. Equational presentation. An equational theory is often given in the
form of an equational presentation. Namely, a possibly proper class Q
= |J Q, of operation symbols is given where i runs over sets; each £, is the

class of symbols of arity n. Further, there is given a class E of equations
between terms formed by transfinite induction from operation symbols and
variables. :

An (R, E)-algebra is a system 4 = (X, {©*}) where X is the underlying
set,  runs over , each w* is an operation on X, n-ary if @ €Q,, such that
all E-equations are satisfied. Homomorphisms between (Q, E)-algebras are
maps between underlying sets which are compatible with all operations. Up
to the same formal difficulties as in 1.3 we can form the category (2, E)-alg
of (@, E)-algebras and their homomorphisms. The couple (€2, E) yields an
equational theory T such that categories (2, E)-alg and T-alg can be
naturally identified. The theory T is obtained as follows: we accept a higher
universum %', see 1.1. Then Q and E are sets from the point of view of #
and we can construct (within %'), for every #-set n, an (Q, E)-free algebra
over n, using the Stomiriski construction [14]. Then T is the dual of the
category of free (£2, E)-algebras over %-sets. The category T is isomorphic to
a category within #. In fact, T can be constructed within # using transfinite
induction and the axiom of choice for classes: T'(n, 1) is obtained from' the
class of Q-terms with variables in n by identifying terms whose equality is
derivable from E, and T{n, k) =(T(n, 1)}

One remark more. It is well-known [3] that if the underlying functor
(Q, E)-alg — Set has a left adjoint F then the dual T' of the full subcategory
of (Q, E)-alg consisting of the F(n)’s is a theory such that T'-alg=(Q, E)-alg.
But T’ can differ from the above T The reason is that T” respects not only
the equations which can be derived from E but also those which cannot be
derived but hold in every (2, E)-algebra. E.g., in the example mentioned in
{5, p. 558], T is non-varietal while T' is degenerate. The example is as
follows: € consists of n-ary symbols ,, neCard and unary symbols o;,,
ien, neCard and E consists of equations

(0 (X): TEn) =%, g {@n(x;5 jEM) =X

1.5. Examples.

a) Classical algebraic theories, such as the theory of groups, of semi-
groups ect. are always given in the form of an equational presentation (2, E)
with Q a set. The corresponding theory T is then varietal.

b) Each category of alyebras for a triple over Set can be resented as
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T-alg for a suitable varietal theory T and conversely, every category T-alg with
T varietal is tripleable [9]. ‘

¢) Complete lattices represent the most familiar example of a category of
algebraic nature which does not admit free algebras [4] (and thus is not
tripleable) but can be regarded as the category of T-algebras for a suitable
(non-varietal) theory T [9]. Analogously for complete Boolean algebras.

d) Categories of functor algebras [1], [2], [6], [7], [11], [13], [15]. Let
K be a category and F: K— K a functor. An F-algebra is a K-map
FX 5 X. A homomorphism from A =FX 5 X to B=FY 5 Yis a K-map
f: X — Ysuch that f6 = ¢Ff. All F-algebras and their homomorphisms form
a category denoted by K (F).

PropoSITION. For every functor F: Set — Set, the category Set(F) can be
_identified with the category (Q, E)-alg where F =) Q,, @, = (w,; x&Fn} und
E consists of equations !

0. (X5 .iem) = W (X5 JEN)
Jor all sets m, n, every mapping f: m—n and every xeFm,

The proof is straightforward.

e) Varieties of functor &Igebras ([13], cf. the next section) provide
another examples of categories of the form Talg (to be proved bellow).

2. Varieties of functor algebras. These varieties were introduced to show
that the functorial calculus is rich enough to cover all examples of algebraic
categories from 1.5 a)—c); notice that categories Set (F) do not suffice; e.g,
the category of semigroups is not of the form Set(F).

We recall the basic definitions concerning varieties of functor algebras
[13] restricted to the Set case. The aim of the section is to prove that each of
these varieties is equivalent to T-alg for some equational theoryT.

2.1. In what follows, F is a fixed functor, F: Set — Set.

a) An algebraized F-chain (or an approximate F-algebra in terms of [6])
is a chain {X;}'=Xo— X{...— X; —... (i runs over all ordinals) where X,
are sets, X; -»X; are mappings with

Xi-Xi=1, X;—-X;-»X,=X;»X, (i<j<k),

equipped with a transformation {FX;} -1 {X,,,}, that is, with a Family
{FX; =5 X;11} of mappings such that FX,-%X,,, X, =FX,
—+FX,——+ j+1 (here FX; — FX; = F(X;~ X})).

b) The free algebraized F-chain ([1], [13]) {X,} over a set X is defined

by

X=X, X, =ZX,vcolim FX;;

i<i

icm®

Algebraic theories and varieties of functor algebras 63

in particular, X,,, = X v FX; which gives the required maps FX; - X;.,
( v denotes the coproduct, ie. the disjoint union).
¢) A homomorphism from an algebraized F-chain {X;} to an algebraized

by .
F-chain {Y;} is a family {X; — ¥} of mappings such that all diagrams

i hy
X, ————Y,  FX,}————TFF},
l L J’ l i+ 1 l
X ———— ¥ Xis1— Yy

commute,

d) The free algebraized chain {X,} over X has the property that for
each algebraized chain {Yj}, every mappmg hy: Xy~ Y, admits a unique
extension to a homomorphism {h}: {X,} - {¥;}.

e) We shall consider assignements ¥ sending each set X to an al-
gebraized chain WX and each mapping f: X — Y to a homomorphism
Pf: ¥X — VY. The assignements are required to be functorial (preserving
identities and composition).

We shall use the following notation: if X is a set then X; will denote the
ith component of ¥X, if f: X — Y is a mapping then f;: X; — Y, is the ith
component of Pf. The mappings FX, — X;,, in ¥X will be denoted by ¥,.

The free assignement, sending each set X to the free algebraized chain
(X} over X, and each mapping f: X - Y to the unique homomorphism
i} 1%} > {¥;} with f, = f, will be denoted by ®. The mappings FX,
— X;., will be denoted by ¢;.

f) Each F-algebra 4 = FX 2 X can be identified with the algebraized
chain {X;} where X; =X, X;—X; =1, FX; - X,,, =6 for every i, j (i <}j).
By d), the identity mapping 1: X — X yields a unique homomorphism
{X, > X} from ®X to A, called the canonical homomorphism of A.

g) Let ¥ be an assignement and e: ¢ — ¥ an epitransformation. More
in detail, for every set X, a homomorphism eX: ®X — ¥X is given such that

oX 2L oy £ vy = 0X = wx 2L wy for every mapping f: XY,
and &* = {ef } where each mapping e is surjective. Then the couple (¥, e)is
called a system of equations.

h) An F-algebra 4 = FX — X is said to satisfy (¥, €) if the canonical
homomorphism of A4 factors as ®X < YX — A. It follows from d) that A
satisfies (W, e) iff there exists a homomorphism gt: PX — 4, ¢* = {ed}, such
that &f = 1.

i) The full subcategory of Set(F) whose objects are F-algebras satisfying
(P, e) will be called the variety of functor algebras determined by (¥, €) and
denoted by (F, ¥, e)-alg.
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2.2. Tueorem. Every variety (F, ¥, e)-alg of functor algebras is equivalent
to (R, E)-alg for some equational presentation (2, E).
Proof. Given (F, ¥, ¢), define (2, E) as follows.
. Q consists of symbols w,;, where n runs over sets, i runs over ordinals
and  runs over n;, the ith component of ¥n; the symbol @, is n-ary.
E consists of all equations of the form (i), (ii), (iii) bellow.
(1) Wi (X3 Kk ERY = Wy (Xpiyy 3 JEM)

for every f: m—n, tem, u=fi(en;
(i1) Wy ~ Wyjy

for every n, i, ten;, j > i and uen; where u is the image of ¢ under the chain
map »; — n; in the chain ¥n = (n};

(iii) ‘ W, 1,b4 (@i (@) LEM) = Wne 1,52 ()
for every n, i, ten;, b,e(n);, byen., such that
=YoFeg(b), by =yi(b)
for some beFn; and for every collection a = (x,; ken) of variables.

Given an F- algebrd A =FX -2 X satisfying (¥, ¢), define an (Q, E)-
algebra A’ = (X, {wi}) as follows. Let

4
{)? i ﬂ_’ X, 4 x }
be the factorization of the canonical homomorphism of 4, sce 2.1 h). Put
o @) =gl () (xeX™

(remember that «; is the ith component of ¥a).

It is rather lengthy but quite routine to verify that the assignement
Ar+ A’ defines an isomorphism of categories (F, V¥, e)-alg and (R, E)-alg;
notice that the inverse isomorphism sends every (Q, E)-algebra 4 to A

=FX 5 X where 6(x) = wf, (15) where t = ¥ YFef(x).

3. Locally small based equational theories. In the third. section, we
introduce the concept of a locally small based equational theory, We show
that all theories from 1.5 (including theories corresponding to varieties of
functor algebras) are locally small based. We prove that if the theory is
locally small based then the category of algebras is legitimate (in fact, small
fibred), and each algebra is determined by a set of operations; homomos-
phisms are selected by compatibility with a set of operations ; subalgebras are
carried by subsets closed under a set of operations. The main result is that
the category T-alg with T locally small based be represented as a variety of
functor algebras. Consequently, the concept of a locally small based equa-
tional theory is equivalent to that one of a variety of functor algebras.
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3.1. Locally small based equational theories. An equational theory T is
said to be. locally small based if either T is degenerate or there exists a
category B with Set* < B < T which is locally small (that is; each class
B(n, k) is a set) and which generates T in the sense that the only subcategory
of T closed under products of maps in T and comamlng B is all of T The
category B is called a buse of T

3.2. Remark. Let a theory T be given by an cquational presentation
(Q, E) where Q = () Q,, n runs over sets and €, is the class of n-ary symbols

n
in Q. Let us suppose that
(i) each Q, is a set,
(1i) for each weR,, and f: m— n there is o€, such that the equation

w(xpys iem) =a(x;; jen)

can be derived from E.

(The condition (ii) says, roughly speaking, that basic operations -are
closed under the composition with the Set*-ones.) Then T is locally small
based. Indeed, recall (cf. 1.4) that T-nfaps are tuples of terms taken modulo
E; so the least subcategory B of T which contains Set* and all terms
w(x;; ien) generates T and, if (i); (ii) hold, it is locally small.

3.3. All 'theories corresponding to examples in 1.5 are locally small based.

As for 1.5 a)-d), one could show that these are only special cases of 1.5 e),
but direct proofs are simpler:

Classical algebraic theories 1.5 a) and, more generally, theories cor-
responding to triples 1.5 b) are varietal. So they are locally small and hence
locally small based.

Complete lattices lead to a locally small based theory via the equational
presentation (@, E), @ = Q,, @, ={0,4; A =n}U{1,4; A=n} where the
0,48 correspond to sups and the 1,,'s to infs (o,4(x;; ien) =sup(x; ieA]
and analogously for infs) and E consists of the usual laws. Analogously for
complete Boolean algebras. .

Concerning categories Set(F), apply Remark 3.2 and Proposition 1.5 d).

ProPOSITION. The theory corresponding to a variety (F, ¥, e)-alg of

Sunctor algebras (cf. 2.2) is locally small based.

Proof. Let us consider the equational presentation (2, E) of 2.2, Put @,
= {@yy,s ten) for every nand @ = (J Q,. Each @, is a set and Q' is closed
n
under the composition with Set*-operations in the sense of 3.2 (i) by 2.2 (i).
Thus, to conclude the proolf, it suffices to show that Q'-operations generate

all Q-operations. This is provided by the lemma bellow.
LeMMA. For every we$, there exists an Q'-term w such that the equation
w(x;; ien) =w can be derived from E.

5§ - Fundamenta Mathematicae CXVINL |
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Proof. Let @ =w,. We proceed by induction on i For i=0,
Wiyt = Wyy, for some u by 2.2 (ii). Let the assertion hold for some i > 1. Let
® = @y 41, Consider the homomorphism e": ¢n— ¥n to obtain the fol-
lowing commutative diagram

n
€0

flg — Ho
| , |
~ ei+1
Mi+1 > P41
o l 'll?l
~ Felt
Fii; ! Fn;

Recall that ., = fi v Ffi;, that maps fip = 4y, Fil— A4y are summand
embeddings ; hence their images cover 4. Finally, the map &7, is surjec-
tive. It follows that ¢ is either in the image. of ng = #;4, Or in the image of
Y. In thé former, case, w,; = Wy, for some u, see 2.2 (ii). In the latter case,
= Y7 (b) for some beFrn;. Then t = b, in terms of 2.2 (iii) and we can use 2.2
(iii) and the induction assumption.

Let the assertion hold for all i <j where j is a limit ordinal. Let w
= ;. As the images of maps 7; — i; (i <) cover 7i; and the map ej: ;= n
is surjective, t is necessarily in the image of some map »; —n; and so w
= w,y, for some uen; by 2.2 (ii). Thus we can use the induction assumption.
The proof is finished.

3.4. Hierarchy of operations. Let T be a theory and B a locally small
category with Set* = B < T. For every set X, define sets Xq < X; <« X, &
...cX; ...« T(X, 1) by induction using rules

(i) X, = Set*(X, 1),
(i) X;4, = {Bw; weX;>; BeB(X;, 1)},
(i) X; = U X; for i limit.
j<i

Define a category T'= T by
T(X, 1) =Lij X, T(X,Y)={o,;yeY>; w,eT(X,1) for every yeY].
LemMa. T is the smallest subcategory of T that is closed under products
of maps in T and contains B. »
CoOROLLARY. B is a base of T iff T(X, 1) = X for every set X.
Proof of the lemma is routine. ‘

35. Let A = (X, {w*}) be a T-algebra where T is a locally small based
theory with a base B. Then :

(i) each w* with weB(n, 1) for some n is determined by the opera-
" tions f* with BeB(X, 1) by w(x) = (wa*)* (1x),
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(i) each & with e T(X, 1) is obtained by succesive composition (see
3.4 (i), (i), (iii) and Corollary) from the p*s with fel) B(n, 1),

(iii) each w* with @ in T is determined by the operations 6% with
seT(X, 1) (as in (i)

These observations show that all operations of the algebra A are
obtained by a canonical procedure from the operations f* with feB(X, 1).
As a consequence we have the following three propositions.

3.6. ProposiTioN. If T is a locally small based theory with a base B then
every T-algebra A = (X, {w*)}) is uniquely determined by a set of data, viz by
B peB(X, D

CoroLLARY. If T is locally small based then the category T-alg is small
fibred (that is, for every set X, all Talgebras whose underlying set is X form a
set).

3.7. ProvositioN. Let T be a locally small based theory with a base B.
Let A =(X, {w*)), B = (Y, {&®}) be T-algebras. Then a mapping f: X =Y is
a homomorphism from A to B iff it is compatible with a set of operations, viz by
all feB(X, 1).

3.8. ProposiTioN. Let T be a locally small based theory with a base B.
Let B=(Y, {w”)) be a T-algebra and let X = Y. Then X is a subalgebra if
and only if it is closed under all B* with BeB(X, 1).

39. Turorem. Let T be a locally small based theory. Then there exists a
Junctor F: Set — Set and a system (¥, €) of equations such that the categories
T-alg and (F, ¥, e)-alg are equivalent.

Proof. The case that T is degenerate is trivial. Let T be non-degenerate
and let B be a base of T.

a) The functor F: Set — Set is defined by

FX =B(X,1), Ff=B(f1).

The system (¥, e) of equations is defined as follows. For every set X, let
{X,) be the chain from 34 where the connecting maps X;— X; are in-
clusions. For every i we have a natural mapping W¥: FX; — X;,, sending
cach feFX; = B(X,, 1) to f{w; weX;>. Maps Y make {X;} an algebraized
chain which will be denoted by ¥X. If f: X = Y is a mapping then the
mappings f;: X, - ¥ defined by

filw) = of*
form a homomorphism ¥f from ¥X to ¥Y. Thus, we have defined an
assignement ¥ which is easily seen to be functorial.

For every set X, there is a natural bijection eX: X - X, where ef (x)
=j* where j,: 1 —X is the mapping with value x. By 2.1 d) there is a
unique homomorphism e*: #X — ¥X whose Oth component is e3. It is easy
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to prove by induction that all other components are surjective as required in
2.1. Thus we have defined a system (¥, e) of equations.

b) For every T-algebra A = (X, {w4)), define 4’ = FX %> X by
d(w)=wi(ly) for all weFX (= B(X,; 1)).

¢) It is routine to verify that the assignement A+ 4’ defines an isomor-
phism of categories T-alg and (F, ¥, e)-alg. Notice that the inverse isomor-
phism sends each (F, V¥, ¢)-algebra 4 =FX X to a T-algebra A
= (X, {©*}) defined by

o*(0) = g(wa*) for all weT(n, 1), ac X",

where ¢ is as in 2.1 h), and i is such that wa*e X.
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On approximate n-connectedness
by

Thomas J. Sanders* (Annapolis, MD)

Abstract. The concept of approximate n-connectedness has been given by K. Borsuk in his
book Theory of Shape as a property of topological spaces to correspond in the theory of shape
to the concept of n-connectedness in homotopy theory. In this paper, this concept is character-
ized using the homotopy bi-groups. Also, a Vietoris-Smale type theorem in compactly generated
shape theory is proven, conditions are given under which the shape groups are isomorphic to
the usual homotopy groups, and a result on lifting CG-shape maps and some of its applications
to the theory of decomposition spaces are given.

1. Introduction. Let K be a category. There are associated categories
inv(K) whose objects are inverse systems X = {X,, Purs A} in K and whose
morphisms are morphisms of inverse systems =t X-Y
=1{Y;, 4gp» B}, and pro(K) which is a quotient category inv(K)/= (see for
example [Mar]). Dually, there are associated categories dir (K) whose objects
are direct systems X* = [X% p*, 4] in K and whose morphisms are mor-
phisms of direct systems f* =(f, f*): X* > Y*= [Y?, ¢*”, B], and ind(K)
which is a quotient category dir(K)/= (se¢ for example [S—4]). If the
function on indicees f of a morphism in either inv(K) or dir (K) is a bijection,
that morphism will be called a special morphism. If Lis a category and
F: K — Lis a functor, then F induces functors pro(F): pro(K)— pro(L) and
ind (F): ind(K) — ind(L).

It can be verified (cf. [S-4]) that the following holds.

(1.1) Tueorem. If f* is a special dir(K) morphism, then

(a) if each f* is an isomorphism in K, then the equivalence class [f*]is
an isomorphism in ind (K),

(b) if each f* is an epimorphism in K, then [f*] is an epimorphism in
ind(K), and

"(c) a similar statement holds for monomorphisms.

(1.2) Noration. If X is a metrizable space and xpeX, then m,(X, xo)
denotes the usual homotopy groups, 7,(X, xo) denotes the shape groups
[S-2], pro(m){X, xo) denotes the homotopy pro-groups (whenever X is

* Supported by a grant from the Naval Academy Research Council. '
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