

A boundary set for the Hilbert cube containing no arcs

by

Jan van Mill (Amsterdam)

Abstract. There is a σ -Z-set $B \subset Q$ so that $Q - B \approx l_2$ but B contains no arcs.

0. Inroduction. A boundary set for the Hilbert cube Q is a σ -Z-set $B \subset Q$ for which $Q-B \approx l_2$, the separable Hilbert space. This concept is due to Curtis [4]. Well-known examples of boundary sets are Anderson's [1] capsets and fd-capsets. In this paper we present an example of a boundary set for Q containing no arcs. This answers a question of Curtis [4]. Our result implies that in every Q-manifold M there is a σ -compact σ -Z-set B such that M-B is an l_2 -manifold but B contains no arcs.

I am indebted to the referee for many valuable comments.

1. Triple-convex subspaces of Q. As usual, $Q = \prod_{1}^{\infty} [-1, 1]_i$. We use the metric $d(x, y) = \sup \{2^{-n}|x_n - y_n|: n \in \mathbb{N}\}$ on Q. Define a function $\mu: Q^3 \to Q$ by $\mu(x, y, z)_n$ = the middle one of x_n, y_n and z_n .

Clearly, μ is continuous and $\mu(x, x, y) = \mu(x, y, x) = \mu(y, x, x) = x$ for all $x, y \in Q$. The function μ is called the *standard mixer* on Q, [8], and a subset $X \subset Q$ is called *triple-convex* provided that $\mu(X^3) = X$, [9]. Notice that the intersection of an arbitrary family of triple-convex subspaces of Q is again triple-convex. Therefore for each $X \subset Q$, the intersection of all triple-convex subsets of Q containing X is the smallest triple-convex subset \hat{X} of Q that contains X. The "triple-convex closure" \hat{X} of X can also be found in a more constructive way. Inductively, define subsets $X_n \subset Q$ by

$$X_1 = X, \quad X_{n+1} = \mu(X_n^3).$$

Notice that $X_1 \subset X_2 \subset \ldots$ and that clearly $\hat{X} = \bigcup_{1}^{\infty} X_n$. The closure of \hat{X} in Q will be denoted by \tilde{X} . Observe that by continuity of μ , \tilde{X} is triple-convex and that \tilde{X} is the smallest triple-convex closed subset of Q containing X.

The proof of the following lemma is implicit in the proof of [8, Theorem 1.3] and a sketch of the proof will only be included for completeness sake.

1.1. Lemma. Let $X \subset Q$ and let $f: S^n \to X$ $(n \ge 1)$ be continuous. Then f can be extended to a map $\bar{f}: B^{n+1} \to X_2 \subset \hat{X}$.

Proof. We use the standard representations

$$S^{n} = \{(x_{0}, ..., x_{n}) \in R^{n+1} : \sum_{i=0}^{n} x_{i}^{2} = 1\},$$

$$B^{n+1} = \{(x_{0}, ..., x_{n}) \in R^{n+1} : \sum_{i=0}^{n} x_{i}^{2} \le 1\}.$$

Let $u \in B^{n+1}$ be defined by

$$u_0 = 1$$
 and $u_i = 0$ for $1 \le i \le n$.

For each $v \in B^{n+1}$ the equation

$$\sum_{i=0}^{n-1} v_i^2 + y^2 = 1$$

has exactly two solutions $y=g_1(v)\geqslant 0$ and $y=g_2(v)\leqslant 0$ each depending continuously on v. For each $v\in B^{n+1}-\{u\}$ the line through u and v meets $S^n-\{u\}$ in exactly one point $g_3(v)$ depending continuously on v. We put $g_3(u)=u$ for convenience. This leads us to a function

$$g = (g_1, g_2, g_3): B^{n+1} \to (S^n)^3$$

which is continuous in all points $v \neq u$. Define $\overline{f}: B^{n+1} \to X_2$ as the composition

$$B^{n+1} \xrightarrow{g} (S^n)^3 \to X^3 \xrightarrow{\mu} X_2$$

where the map in the middle is (f, f, f). Then \overline{f} extends f since for each $v \in S^n$, two points out of $g_1(v)$, $g_2(v)$ and $g_3(v)$ equal v. The easy check that \overline{f} is continuous is left to the reader (for details see the proof of [8, Theorem 1.3]).

We claim that any closed and connected triple-convex subspace of Q is an Absolute Retract. This is known. Since any closed triple-convex subspace of Q has a binary normal subbase (this will not be defined here), [9], and since any continuum with a binary normal subbase is an AR, [5], our claim follows. For the readers convenience we will give another proof of this fact using standard apparatus only. So, let $X \subset Q$ be a triple-convex continuum. First, the connectedness of X implies that X is locally connected, [8, Lemma 1.1]. Second, if $Y = \prod_{i=1}^{\infty} H_i$, where $H_i \subset [-1, 1]$ is an interval for all $i \in N$, then clearly $X \cap Y$ is triple-convex, hence each map $f: S^n \to X \cap Y (n \ge 1)$ is null-homotopic (Lemma 1.1). Now let \mathcal{U} be an open cover of X. Let \mathcal{V} be an open starrefinement of \mathcal{U} consisting of open subsets of X which are the intersection of some basic open (hence triple-convex) subset of X with X are the intersection of refinement of \mathcal{V} consisting of connected open subsets only. Such a refinement

1.2. Lemma. If X is a continuum (resp. Peano continuum) then so is X_i , for all $i \in \mathbb{N}$.

Proof. For $i \ge 2$, X_i is a continuous image of X_{i-1} .

Observe that this lemma implies that $\widetilde{X} \in AR$ if $X \subset Q$ is a continuum. A subcube of Q is a product $\prod_{1}^{\infty} H_n$, where, for each $n \in N$, $H_n \subset [-1, 1]$ is an interval (not necessarily closed).

Let $S \subset Q$ be a compact subcube. It is easily seen that the function $r \colon Q \to S$ defined by

 $r(x)_n$ = the middle one of x_n , min $\pi_n(S)$ and max $\pi_n(S)$,

is a retraction of Q onto S. We will call r the canonical retraction of Q onto S. This type of retraction was studied in van Mill and van de Vel [8].

1.3. Lemma. If S_1 and S_2 are intersecting compact subcubes in Q and $r_i \colon Q \to S_i$ denote the canonical retractions, then the formula

$$r(x) = \mu(r_1 \circ r_2(x), r_2 \circ r_1(x), x)$$
 for $x \in Q$

defines the canonical retraction $Q \to S_1 \cap S_2$.

Proof. Left to the reader.

If $X \subset Q$, let I(X) denote the smallest closed subcube of Q containing X, i.e.

$$I(X) = \prod_{1}^{\infty} \left[\inf \pi_n(X), \sup \pi_n(X) \right].$$

1.4. Lemma. For any set X in Q we have $\widetilde{X} \subset I(X)$ and hence, for all n, diam $X \leq \operatorname{diam} X_n \leq \operatorname{diam} \widetilde{X} \leq \operatorname{diam} X$.

Proof. This is clear since each subcube is triple-convex.

1.5. LEMMA. If $X \subset Q$ and $x \in X_n$, then there is a set $F \subset X$ with $x \in I(F)$ and $|F| \leq 3^{n-1}$.

Proof. If n=1 then there is nothing to prove. So assume the statement to be true for n and take $x \in X_{n+1}$ arbitrarily. There are $p, q, r \in X_n$ with $\mu(p, q, r) = x$. Find, by induction hypothesis, sets $F, G, H \subset X$ with $|F|, |G|, |H| \le 3^{n-1}$

97

and $p \in I(F)$, $q \in I(G)$ and $r \in I(H)$. Then

$$\{p,q,r\}\subset I(F)\cup I(G)\cup I(H)\subset I(F\cup G\cup H),$$

and consequently, $x = \mu(p, q, r) \in I(F \cup G \cup H)$. Clearly $|F \cup G \cup H| \leq 3^n$.

1.6. Lemma. Let F be a finite set in X and $r: Q \to I(F)$ be the canonical retraction. Then $r(\hat{X}) \subset \hat{X}$ and hence, $r(\tilde{X}) \subset \tilde{X}$. If F in addition is an ε -net in X then $d(r(x), x) < \varepsilon$ for all $x \in I(X)$.

Proof. Suppose that |F| = n+1 and that the first statement is true for sets of cardinality n. Pick $y \in F$ and let $r_0 \colon Q \to I(F - \{y\})$ be the canonical retraction. It is trivial to verify that $r(x) = \mu(x, r_0(x), y)$ for $x \in Q$; hence if $x \in \hat{X}$ then $r(x) \in \hat{X}$ since $r_0(x)$, $y \in \hat{X}$.

The proof of the remaining part is left to the reader.

In verifying that certain subsets of Q are boundary sets, we will make use of the following result due to Curtis [4], the proof of which is based on Toruńczyk's characterization of l_2 .

- 1.7. Theorem. Let B be a σ -Z-set in a topological copy A of Q. Then B is a boundary set in A iff
- (C1) for each $\varepsilon > 0$ and each map $f: I^n \to A$, where $n \in N$, there is a compactum $K \subset B$ such that for every neighborhood N(K) of K in A there is a map $g: I^n \to N(K)$ with $d(g, f) < \varepsilon$,
- (C2) for every $x \in B$ and for every neighborhood U of x there is a neighborhood V of x such that for each compactum $K \subset V \cap B$ there is a compactum $K' \subset U \cap B$ such that for every neighborhood N(K') in A of K' there is a neighborhood N(K) of K in A such that every map $f: S^n \to N(K)$ $(n \ge 0)$ is null-homotopic in N(K').

Notice that our example shows that condition (C1) in the above theorem cannot be replaced by the more natural condition: for every $\varepsilon > 0$ and for every map $f: I^n \to A$ there is a map $g: I^n \to B$ with $d(g,f) < \varepsilon$.

- 2. Verifying condition (C1). In this section we will show that pairs of the form (\tilde{X}, \hat{X}) always satisfy condition (C1) of Theorem 1.7.
- 2.1. Theorem. Let X be a continuum in Q. Then the pair $(A, B) = (\tilde{X}, \hat{X})$ satisfies condition (C1).

Proof. Fix $\varepsilon > 0$ and a map $f: I^n \to X$ and let $\delta = \varepsilon \cdot 2^{-n-2}$. Take a continuum K in \widetilde{X} which is a δ -net in \widetilde{X} (e.g., let $K = X_k$ for a large k; observe that by Lemma 1.2 X_k is a continuum). The proof will be concluded once we show that

(*) for every neighborhood U of K_{n+1} in \tilde{X} there is a map $g: I^n \to U$ with $d(g,f) < \varepsilon$.

To this end, fix U and using n-times the continuity of μ , take a neighborhood V

of K with $V_{n+1} \subset U$. Since $\widetilde{X} \in AR$, see section 1, there is a Peano continuum Y with $K \subset Y \subset V$. Let \mathscr{T} be a triangulation of I^n such that $\operatorname{diam} f(\sigma) < \delta$ for every $\sigma \in \mathscr{T}$ and let $g_0 \colon \mathscr{T}^0 \to K$ be a map such that $d(g(x), f(x)) < \delta$ for $x \in \mathscr{T}^0$. By the triangle inequality, (*) follows from the case i = n of the following claim (\mathscr{T}^i) denotes the ith skeleton of \mathscr{T} :

(*), there is a map $g_i \colon \mathcal{F}^i \to Y_{i+1}$ extending g_0 and such that diam $g_i(\sigma)$ $< 3 \cdot 2^i \cdot \delta$, for all $\sigma \in \mathcal{F}^i$.

To prove $(*)_i$, first consider the case i=1. Given $\sigma \in \mathcal{F}^1$ let $\{a,b\} = g_0(\partial \sigma)$. Then $L=\mu(\{a\}\times\{b\}\times Y)$ is a Peano continuum in Y_2 containing $\{a,b\}$; moreover $L\subset I(\{a,b\})$ and therefore diam $L\leqslant d(a,b)<3\delta$. Take a map $\sigma\to L$ extending $g_0|\{a,b\}$ and proceed in this way with all $\sigma\in \mathcal{F}^1$ to get the desired g_1 .

Now suppose that $i \ge 1$ and that g_i : $\mathcal{F}^i \to Y_{i+1}$ as described in $(*)_i$ is known. Given $\sigma \in \mathcal{F}^{i+1}$ the map $g_i | \partial \sigma$ extends, by Lemma 1.1, to a map $\sigma \to L$ $= \mu((g_i(\partial \sigma))^2)$. Then $L \subset Y_{i+2}$ and diam $L = \operatorname{diam} g_i(\partial \sigma) < 3 \cdot 2^{i+2} \cdot \delta$. Thus the collection of so obtained maps $\sigma \to Y_{i+2}$ defines the desired extension g_{i+1} of g_i .

- 3. Verifying condition (C2). In this section we will show that pairs of the form (\tilde{X}, \hat{X}) satisfy condition (C2) of Theorem 1.7.
- 3.1. Lemma. Let $X \subset Q$ be a continuum and let $Q' \subset Q$ be a subcube. If $K \subset \hat{X} \cap Q'$ is compact, then there is a continuum $K' \subset \hat{X} \cap Q'$ containing K.

Proof. By a result of Curtis [3, Lemma 1.3] it suffices to show that $\hat{X} \cap Q'$ is continuum-connected (each pair of its points is contained in a continuum) and locally continuum-connected. Since sets of the form $\hat{X} \cap Q_1$, where Q_1 is a subcube contained in Q', form a neighborhood basis of the points of $\hat{X} \cap Q'$, it thus suffices to prove the assertion in the case where K is a 2-point set, say $K = \{x, y\}$. Then, however, $K \subset X_n$ for some n and, since X_n is a continuum (Lemma 1.2), so is $L = \mu(\{x\} \times \{y\} \times X_n)$. It is clear that $\{x, y\} \subset L \subset \hat{X} \cap Q'$.

3.2. Theorem. Let X be a continuum in Q. Then the pair $(A,B)=(\tilde{X},\hat{X})$ satisfies condition (C2).

Proof. Let $x \in Q$ and let U be a neighborhood of x. Let $V \subset U$ be a subcube neighborhood of x. Now choose any compactum $K \subset V \cap \hat{X}$. We may assume that $K \neq \emptyset$. By Lemma 3.1, there is a continuum $S \subset V \cap \hat{X}$ containing K. Define $K' = \mu(S^3)$. Notice that, since V is a subcube and since \hat{X} is tripleconvex,

$$K\subset K'\subset V\cap \hat{X}\subset U\cap \hat{X}.$$

We claim that for every neighborhood N(K') of K' in Q there is a neighborhood N(K) of K in Q such that every map $f\colon S^n\to N(K)\cap \widetilde{X}$ $(n\geqslant 0)$ is null-homotopic in $N(K')\cap \widetilde{X}$. To this end, let N(K') be any neighborhood of K'. By continuity of μ there is a neighborhood E of S so that $\mu(E^3)\subset N(K')$. Since $\widetilde{X}\in AR$ there is a closed neighborhood N(K) of S in Q such that $N(K)\cap \widetilde{X}$ is a Peano

continuum while moreover $N(K) \subset E \cap N(K')$. Since $K \subset S$, N(K) is a neighborhood of K. If $\{p,q\}$ is a pair of points in $N(K) \cap \widetilde{X}$, then the local connectivity of $N(K) \cap \widetilde{X}$ implies that there is a path in $N(K) \cap \widetilde{X} \subset N(K') \cap \widetilde{X}$ connecting p and q. Now let $f: S^n \to N(K) \cap \widetilde{X}$ $(n \ge 1)$ be any map. By Lemma 1.1, f can be extended to a map $\overline{f}: B^{n+1} \to N(K)_2 \cap \widetilde{X}$. Since

$$N(K)_2 \subset E_2 = \mu(E^3) \subset N(K'),$$

this implies that $\overline{f}(B^{n+1}) \subset N(K') \cap \widetilde{X}$.

- **4. Recognizing freely embedded cubes and Hilbert spaces.** A subset $X \subset Q$ is called *free* provided that for any two disjoint finite subsets $F, G \subset X$ there is an $n \in N$ with $\pi_n(F) = -1$ and $\pi_n(G) = 1$ (π_n denotes the projection onto the *n*th coordinate).
- 4.1. Lemma. Let X be a space. Then there is an embedding $f: X \to Q$ so that f(X) is free.

Proof. Let X' be a compactification of X. By van Mill [6, Lemma 1.1] there is an embedding $g\colon X'\to Q$ so that for any two disjoint closed subsets $A,B\subset X'$ there is an $n\in N$ with $\pi_n g(A)=-1$ and $\pi_n g(B)=1$. It is clear that f=g|X is as required.

4.2. Lemma. Let $\mathscr A$ be a finite collection of subsets of $X\subset Q$ so that any two elements of $\mathscr A$ meet. If $r\colon Q\to\bigcap_{A\in\mathscr A}I(A)$ is the canonical retraction, then $r(\hat X)\subset \hat X$, and hence $r(\tilde X)\subset \tilde X$, while moreover $\hat X\cap\bigcap_{A\in\mathscr A}I(A)\supset r(\hat X)\neq\emptyset$.

Proof. We will induct on the cardinality of \mathscr{A} . If $|\mathscr{A}| = 1$, then Lemma 1.6 can be applied. So suppose that the statement is true for collections of sets of cardinality n, and let $\mathscr{A} = \{A_1, \ldots, A_{n+1}\}$. Let $t: Q \to \bigcap_{i \le n} I(A_i)$ and $s: Q \to I(A_{n+1})$ be the canonical retractions. By Lemma 1.3 for all $x \in Q$.

$$r(x) = \mu(s \circ t(x), t \circ s(x), x)$$

defines the canonical retraction from Q onto $\bigcap_{i \leq n+1} I(A_i)$ provided that

$$\bigcap_{i\leq n+1}I(A_i)\neq\emptyset.$$

Suppose for a moment that (*) is true. If $x \in \widehat{X}$, then, by induction hypothesis both $s \circ t(x)$ and $t \circ s(x)$ belong to \widehat{X} . Consequently, $r(x) \in \widehat{X}$.

So the only remaining thing to verify is (*). If n=1 then (*) is trivially true since any two elements of $\mathcal A$ meet. Therefore assume that n is at least 2. By induction hypothesis there exist points

$$x \in \bigcap_{\substack{i \le n+1 \ i \ne 1}} I(A_i) \cap \hat{X},$$

 $y \in \bigcap_{\substack{i \le n+1 \ i \ne 2}} I(A_i) \cap \hat{X},$ and

$$z \in \bigcap_{\substack{i \leqslant n+1 \ i \neq 3}} I(A_i) \cap \hat{X}.$$

Clearly $\mu(x, y, z) \in \bigcap_{i \leq n+1} I(A_i) \cap \hat{X}$.

We now come to the main result in this paper.

4.3. Theorem. If X is a free continuum in Q then a) $\widetilde{X} \approx Q$, and b) \widehat{X} is a boundary set in \widetilde{X} .

Proof. As noted before, the connectedness of X implies that \widetilde{X} is an AR. We will show that the identity map on \widetilde{X} can be approximated by maps having disjoint images. Applying Toruńczyk [10] then yields $\widetilde{X} \approx Q$. To this end, let $\varepsilon > 0$ and take disjoint finite ε -nets $F, G \subset X$. Since X is free, $I(F) \cap I(G) = \emptyset$. The desired result now directly follows from Lemma 1.6. This proves a).

For b), observe that by Curtis' result Theorem 1.7 and by the results in sections 2 and 3, it suffices to show that, for each n, X_n is a Z-set in X (i.e., given $\varepsilon > 0$, there is a map $f : \tilde{X} \to \tilde{X} - X_n$ with $d(f, \text{id}) < \varepsilon$). To this end, fix n and ε and let $\mathscr A$ be a family of $2 \cdot 3^{n-1} + 1$ finite disjoint ε -nets in X. Put

$$\mathscr{B} = \{ \bigcup \mathscr{E} : \mathscr{E} \subset \mathscr{A} \text{ and } |\mathscr{E}| = 3^{n-1} + 1 \}.$$

Clearly any two elements of \mathscr{B} meet and each $B \in \mathscr{B}$ is an ε -net. Let $r \colon Q \to \bigcap_{B \in \mathscr{B}} I(B)$ be the canonical retraction. It is easy to see that if $x \in I(X)$ then $d(x, r(x)) < \varepsilon$. We therefore only have to check that

$$\bigcap_{B\in\mathscr{B}}I(B)\cap X_n=\emptyset,$$

for, by Lemma 4.2, $r(\tilde{X}) \subset \tilde{X}$. Take $x \in X_n$. By Lemma 1.5 there exists a set $F \subset X$ of cardinality 3^{n-1} such that $x \in I(F)$. Since \mathscr{A} is a disjoint family, at most 3^{n-1} elements of \mathscr{A} can meet F. Consequently, there is a $B \in \mathscr{B}$ with $F \cap B = \emptyset$. Since X is free, $I(F) \cap I(B) = \emptyset$. We conclude that $x \notin \bigcap I(B)$.

- 4.4. Remark. In view of the above theorem we only need to find a free continuum in Q so that \hat{X} contains no arcs. It turns out, see section 5, that if X is any free continuum containing no arcs, then \hat{X} contains no arcs. This gives us a rich supply of boundary sets containing no arcs. The proof of this fact is, though elementary, surprisingly complicated.
- 5. \hat{X} contains no arcs. In this section we will show that \hat{X} contains no arcs, provided that $X \subset Q$ is a free continuum which contains no arcs. For the remaining part of this section, let X denote a fixed free continuum in Q. We will often use without explicit reference the fact that for any two disjoint finite subsets $F, G \subset X$ it is true that $I(F) \cap I(G) = \emptyset$. If $A \subset X$ then, for convenience, put $h(A) = I(A) \cap \hat{X}$.

5.1. Lemma. If $x \in \hat{X}$ then there is a finite collection of finite subsets $\mathscr A$ of X with $\bigcap_{A \in \mathscr A} h(A) = \{x\}.$

Proof. Clearly the statement is true for points in X_1 . Suppose that the statement is true for points in X_n and take $x \in X_{n+1}$ arbitrarily. There are $p_1, p_2, p_3 \in X_n$ with $\mu(p_1, p_2, p_3) = x$ and by induction hypothesis, there are families \mathscr{A}_i of finitely many finite subsets of X with $\bigcap_{A \in \mathscr{A}_i} h(A) = \{p\}$ $(1 \le i \le 3)$. Put

$$\mathscr{A} = \{ F \cup G : i, j \leq 3, i \neq j, F \in \mathscr{A}_i \text{ and } G \in \mathscr{A}_i \}.$$

We claim that \mathscr{A} is as required. It is clear that $x \in \bigcap_{A \in \mathscr{A}} h(A)$. Let us assume there is a point $y \in \bigcap_{A \in \mathscr{A}} h(A)$ distinct from x. Choose $n \in N$ with $x_n \neq y_n$ and, without loss of generality assume that $x_n < y_n$. Take $s \in (x_n, y_n)$. Without loss of generality we may assume that $\pi_n(p_1) \leq s$ and $\pi_n(p_2) \leq s$. Take $t \in (s, y_n)$. If $B \cap \pi_n^{-1}[t, 1] \neq \emptyset$ for every $B \in \mathscr{A}_1$, then, by Lemma 4.2, $\bigcap_{B \in \mathscr{A}_1} h(B) \cap \pi_n^{-1}[t, 1] \neq \emptyset$, in which case $\pi_n(p_1) \geq t$. So there exists an $F \in \mathscr{A}_1$ which misses $\pi_n^{-1}[t, 1]$. Similarly, there is a $G \in \mathscr{A}_2$ which misses $\pi_n^{-1}[t, 1]$. Then $F \cup G \in \mathscr{A}$ and since $h(F \cup G) \subset \pi_n^{-1}[-1, t]$, this implies that $y_n \leq t$, a contradiction.

If $x \in \widehat{X}$ then a finite subset $F \subset X$ is called a *center* for x provided that there exist $A_1, \ldots, A_n \subset F$ with $\bigcap_{i \leq n} h(A_i) = \{x\}$.

5.2. Lemma. If F is a center for $x \in \hat{X}$ and if $x \in h(A)$ for certain finite $A \subset X$, then $x \in h(A \cap F)$.

Proof. Choose $A_1, \ldots, A_n \subset F$ with $\bigcap_{i \leq n} h(A_i) = \{x\}$. If $x \notin h(A \cap F)$ then, by Lemma 4.2, there is an $i \leq n$ with $A_i \cap (A \cap F) \in \emptyset$. Then $A_i \cap A = \emptyset$ and since $x \in h(A_i) \cap h(A)$, this is a contradiction.

5.3. Corollary. If F and G are centers for $x \in \hat{X}$, then so is $F \cap G$.

Proof. Choose finitely many $A_1, \ldots, A_n \subset F$ with $\{x\} = \bigcap_{i \leq n} h(A_i)$. By Lemma 5.2, $\{x\} = \bigcap_{i \leq n} h(A_i \cap G)$. Since $A_i \cap G \subset F \cap G$ for all $i \leq n$, $F \cap G$ is a center for x.

If $x \in \hat{X}$ then, by 5.1, x has a center. By 5.3,

(*)
$$F(x) = \bigcap \{ F \subset X : F \text{ is a center for } x \}$$

is the smallest center for x. Put $X(m) = \{x \in X : |F(x)| \le m\}$. The hyperspace of nonempty closed subsets of X, with topology generated by the Hausdorff distance, will be denoted by 2^{x} .

5.4. Lemma. Let x_n , $n \ge 1$, be points in X(m) such that $x = \lim_{n \to \infty} x_n \in Q$ and $G = \lim_{n \to \infty} F(x_n) \in 2^X$ exist. Then $x \in X(m)$ and G is a center for x.

Proof. With k large enough there are sets $A_n^1,\ldots,A_n^k\subset F(x_n)$ with $\{x_n\}=\bigcap\limits_{i\leqslant k}h(A_n^i)$ for each n. We may assume that $\lim\limits_{n\to\infty}A_n^i$ exists (in the Hausdorff metric) for all $i\leqslant k$ and is equal to, say A_i . Since $\bigcup\limits_{i=1}^kA_i^i\subset F(x_n)$ and since $|F(x_n)|\leqslant m$ for all $n\in N,$ $|\bigcup\limits_{i=1}^kA_i|\leqslant m$. It is clear that the family $\{A_i\colon 1\leqslant i\leqslant k\}$ has the property that any two of its elements meet. By Lemma 4.2 there is a point $y\in\bigcap\limits_{i=1}^kh(A_i)$. We will show that y=x, which will conclude the proof. If $x\neq y$, then we can find an index $t\in N$ such that, say, $\pi_t(x)<\pi_t(y)$. Take a point $s\in(\pi_t(x),\pi_t(y))$. We may assume that $\pi_t(x_n)< s$ for all $n\in N$. Fix $n\in N$. If $A_n^i\cap\pi_t^{-1}[s,1]\neq\emptyset$ for all $i\leqslant k$ then, by Lemma 4.2, $\bigcap\limits_{i=1}^kh(A_n^i)\cap\pi_i^{-1}[s,1]\neq\emptyset$ or equivalently, $\pi_t(x_n)\geqslant s$, which is not the case. Therefore, for all $n\in N$ there us an index $i(n)\leqslant k$ with

$$A_n^{i(n)} \cap \pi_t^{-1}[s,1] = \emptyset.$$

There is a $k_0 \le k$ so that the set $\{n: i(n) = k_0\}$ is infinite. This implies that $A_{k_0} \subset \pi_t^{-1}[-1,s]$ and consequently, $\pi_t(y) \le s$, which obviously is a contradiction.

5.5. COROLLARY. For each m, the set X(m) is compact and the function $F: \hat{X} \to 2^X$ defined by (*) is finite-to-one and continuous on X(m) - X(m-1).

Proof. By the definition of a center, each $y \in F^{-1}F(x)$ is determined by a family of subsets of F(x); since F(x) is finite, so is $F^{-1}F(x)$. The compactness of X(m) follows from 5.4. To prove the continuity of F on X(m)-X(m-1), fix a sequence $(x_n)_{n=0}^{\infty}$ in X(m)-X(m-1) with $\lim_{n\to\infty} x_n = x_0$. By 5.4, whenever G is a cluster point of the sequence $(F(x_n))_{n=1}^{\infty}$ in 2^X then $|G| \le m$ and G is a center for x_0 . Since $F(x_0)$ is contained in any center for x_0 and $|F(x_0)| = m$, by the assumption on x_0 , it follows that $F(x_0) = G$ and $(F(x_n))_{n=1}^{\infty}$ converges to $F(x_0)$.

We now come to the main result in this section.

5.6. Theorem. If \hat{X} contains an arc, then X contains an arc.

Proof. If \hat{X} contains an arc then, by the Baire category theorem, either X(1) = X contains an arc or, for some $m \ge 2$, X(m) - X(m-1) contains an arc (Corollary 5.5). In the latter case, since an arc is infinite, it follows from Corollary 5.5 that the space

$$H_m(X) = \{A \in 2^X : |A| = m\}$$

J. van Mill

icm[©]

contains an arc. Since $H_m(X)$ is locally homeomorphic to X^m , this implies that X contains an arc.

5.7. Remark. Let $X \subset Q$ be a free pseudo-arc. Then \widehat{X} is a boundary set for $\widehat{X} \approx Q$ containing no arcs. It might be interesting to point out that \widehat{X} is countable dimensional, i.e. a union of countable many zero-dimensional subsets. It is also easy to construct a boundary set containing no arcs which is strongly infinite dimensional. Let $X \subset Q$ be a free strongly infinite dimensional continuum containing no arcs. Then $\widehat{X} \subset \widehat{X}$ is as required. We do not have an example of a boundary set $B \subset Q$ so that either $\dim A = 0$ or $\dim A = \infty$ for all $A \subset B$. If there is a continuum X with the property that for any $n \in N$ and $A \subset X^n$ either $\dim A = 0$ or $\dim A = \infty$ then it is possible to construct a "hereditary infinite dimensional" boundary set. It is unknown whether such a continuum exists. Notice however that there is a continuum with no n-dimensional $(n \ge 1)$ subsets, [11].

Let M be a Q-manifold. Using the fact that $M \times [0, 1)$ embeds in Q as an open subset, it is easy to show that M contains a σ -compact σ -Z-set B such that B contains no arcs and M-B is an l_2 -manifold.

References

- [1] R. D. Anderson, On topological infinite deficiency, Michigan Math. J. 14 (1967), pp. 365-383.
- [2] K. Borsuk, Theory of Retracts, Polish Scientific Publishers, Warszawa 1967.
- [3] D. W. Curtis, Hyperspace of noncompact metric spaces, Comp. Math. 40 (1980), pp. 139-152.
- [4] Boundary sets in the Hilbert cube, in preparation.
- [5] J. van Mill, The superextension of the closed unit interval is homeomorphic to the Hilbert cube, Fund. Math. 103 (1979), pp. 151-179.
- [6] A counterexample in ANR theory, Top. Appl. 12 (1981), pp. 315-320.
- [7] and M. van de Vel, Subbases, convex sets and hyperspaces, Pacific J. Math. 92 (1981), pp. 385-402.
- [8] On an internal property of Absolute Retracts, Top. Proc. 4 (1979), pp. 193-200.
- [9] and E. Wattel, An external characterization of spaces which admit binary normal subbases, Amer. J. Math. 100 (1978), pp. 987-994.
- [10] H. Toruńczyk, On CE-images of the Hilbert cube and characterization of Q-manifolds, Fund. Math. 108 (1980), pp. 31-40.
- [11] J. J. Walsh, Infinite dimensional compacta containing no n-dimensional $(n \ge 1)$ subsets, Topology 10 (1979), pp. 91–95.

DEPARTMENT OF MATHEMATICS LOUISIANA STATE UNIVERSITY Baton Rouge, Louisiana 70803 USA

Current address:

SUBFACULTEIT WISKUNDE VRIJE UNIVERSITEIT De Boelelaan 1081 Amsterdam The Netherlands

Accepté par la Rédaction le 19.2.1981

Zero-dimensional countable dense unions of Z-sets in the Hilbert cube

b

D. W. Curtis (Baton Rouge, La.) and J. van Mill (Amsterdam)

Abstract. We show that every σ -compact, nowhere locally compact, zero-dimensional metric space can be imbedded in the Hilbert cube as a countable dense union of Z-sets, and that there are exactly three such spaces for which all such imbeddings are topologically equivalent.

§ 0. Introduction. It is well know that the Hilbert cube I^{∞} is countable dense homogeneous: for any two countable dense subsets D and E, there exists a homeomorphism $h\colon I^{\infty}\to I^{\infty}$ with h(D)=E. Thus, all dense imbeddings of the space Q of rationals into I^{∞} are topologically equivalent. It seems natural to ask which other σ -compact, 0-dimensional metric spaces share this property. It is easily shown that such a space X admits a dense imbedding into I^{∞} if and only if it is nowhere locally compact. Furthermore, to obtain positive results in the general case when X is uncountable, we consider only imbeddings as countable unions of Z-sets (see § 1). Thus, the question we ask is: which σ -compact, nowhere locally compact, 0-dimensional metric spaces X have the property that all imbeddings of X into the Hilbert cube as countable dense unions of Z-sets are topologically equivalent? In this note we show that there are exactly three such spaces: the space of rationals, the product of the rationals and the Cantor set, and the space which is the union of a copy of the rationals and a nowhere dense Cantor set.

Actually, the question of equivalence of imbeddings $f_1\colon X\to I^\infty$ and $f_2\colon X\to I^\infty$ of a 0-dimensional space X reduces to the question of whether the complements $I^\infty\setminus f_1(X)$ and $I^\infty\setminus f_2(X)$ are homeomorphic (see § 4). This rather curious result is of course strictly limited to the 0-dimensional case (compare for instance with Chapman's complement theorem for Z-sets in I^∞ [3], or with the fact that the complements of both capsets and fd-capsets in I^∞ are homeomorphic to I^2 [1]).

- § 1. Preliminaires. All spaces considered are separable metric. We shall frequently use the following classical characterizations for certain 0-dimensional spaces (for techniques of proof and references, see [6]):
- 1.1. Lemma. $X \approx Q$, the space of rationals, if and only if X is countable and has no isolated points.