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A boundary set for the Hilbert cube containing no arcs
by
Jan van Mill (Amsterdam)

Abstract. There is a o-Z-set B« Q so that Q—B ~ [, but B contains no arcs.

0. Inroduction. A boundary set for the Hilbert cube Q is a o-Z-set B = Q for
which Q — B = I,, the separable Hilbert space. This concept is due to Curtis [4].
Well-known examples of boundary sets are Anderson’s [1] capsets and fd-
capsets. In this paper we present an example of a boundary set for Q containing
no arcs. This answers a question of Curtis [4]. Our result implies that in every Q-
manifold M there is a -compact o-Z-set B such that M — Bis an [,-manifold but
B contains no arcs.

I am indebted to the referee for many valuable comments.

o0
1. Triple-convex subspaces of Q. As usual, Q =[] [—1, 1];. We use the
. 1
metric d(x, y) = sup {27 " x,—y,|: neN}on Q. Define a function u: Q* — Q by
u(x,y, z), = the middle one of x,,y, and z,.

Clearly, u is continuous and u(x, x, y) = u(x,y, x) = u(y, x, x) = x for all
x,yeQ. The function u is called the standard mixer on Q, [8], and a subset
X = Q is called triple-convex provided that u(X?®) = X, [9]. Notice that the
intersection of an arbitrary family of triple-convex subspaces of Q is again
triple-convex. Therefore for each X < Q, the intersection of all triple-convex
subsets of Q containing X is the smallest triple-convex subset X of Q that
contains X. The “triple-convex closure” X of X can also be found in a more
constructive way. Inductively, define subsets X, = Q by

X, =X, Xn+1=“(X3)'

o0
Notice that X; < X, < .... and that clearly X = ) X,. The closure of X in Q
1

will be denoted by X. Observe that by continuity of y, X is triple-convex and
that X is the smallest triple-convex closed subset of Q containing X.

The proof of the following lemma is.implicit in the proof of [8, Theorem
1.3] and a sketch of the proof will only be included for completeness sake.


GUEST


94 J. van Mill

1.1. LEMMA. Let X = Q and let f: S" — X (n = 1) be continuous. Then f can
be extended to a map f: B""' > X, = X.
Proof. We use the standard representations

8" = {(xo's ey X)ER"L: Z x? = 1},

_i=0
B ={(xo,...,x)eR" Y x2< 1),
. i=0

" Let ueB"*! be defined by
ugp=1 and =0 for 1<i<n.

For each veB"*! the equation

i=0
has exactly two solutions y =g,(v) > 0 and y = g,(t) <0 each depending
continuously on v. For each veB""* —{u} the line through u and v meets
S"—{u} in exactly one point gs(v) depending continuously on ». We put
gs(u) = u for convenience. This leads us to a function

g= (91: g2, 93): Bn+ ! - (Sn)3
which is continuous in all points v # 1. Define f: B™"! - X, as the composition

Bt L(S")3 S X3 AXZ’

where the map in the middle is ( £, £, /). Then fextends f since for each v eS", two
points out of g, (v), g, (v) and g5 (v) equal v. The easy check that fis continuous is
left to the reader (for details see the proof of [8, Theorem 1.3]). =

We claim that any closed and connected triple-convex subspace of Q is an
Absolute Retract. This is known. Since any closed triple-convex subspace of Q
has a binary normal subbase (this will not be defined here), [9], and since any
.continuum with a binary normal subbase is an AR, [5], our claim follows. For
the readers convenience we will give another proof of this fact using standard
apparatus only. So, let X =Q be a triple-convex continuum. First, the
connectedness of X implies that X is locally connected, [8, Lemma 1.17. Second,

if Y =[] H,, where H; = [—1, 1] is an interval for all ieN, then clearly X N Y

1
is triple-convex, hence each map f: §" > X Y(n>=1) is null-homotopic
(Lemma 1.1). Now let % be an open cover' of X. Let ¥ be an open star-
refinement of % consisting of open subsets of X which are the intersection of
some basic open (hence triple-convex) subset of Q with X. Let 3 be an open
refinement of ¥~ consisting of connected open subsets only. Such a refinement
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exists since X is locally connected. Let P be a polyhedron and let P, be a
subpolyhedron of P containing all the vertices of P, and let f: Py — X be
continuous so that the partial image of every simplex of P under fis contained in
some He . Using the fact that each He # is path-connected and using the
above remark on the possibility to extend maps, by a straightforward partial )
realization argument we can extend f to a map f: P — X so that for every
simplex ¢ in P there is a U e % containing f'(s). Consequently, X is an ANR, [2,
Theorem 8.1], and since by Lemma 1.1, X is C®, X is even an AR.

1.2. Lemma. If X is a continuum (resp. Peano continuum) then so is X, for all
ieN.

Proof. For i >2, X, is a continuous image of X;_,.

Observe that this lemia implies that ¥ e AR if X = ( is a continuum. A

subcube of @ is a product [] H,, where, for each neN, H, < [—1, 1] is an
1

interval (not necessarily closed).
Let S = Q be a compact subcube. It is easily seen that the function r: Q-3
defined by '
r(x), = the middle one of x,, min=,(S) and max 7, (S),

isa retractioq of Q onto S. We will call r the canonical retraction of Q onto S.
This type of retraction was studied in van Mill and van de Vel [8].

13. Lemma. If S, and S, are intersecting compact subcubes in Q and
;1 Q —S; denote the canonical retractions, then the formula

r(x) = p(ryory(x), ry0r (%), x)  for xeQ

defines the canonical retraction Q — 8, N S,.
Proof. Left to the reader. m
If X < Q, let I(X) denote the smallest closed subcube of Q containing X, ..

I1(X) = ﬁ [infx,(X), sup =, (X)].
1

1.4. Lemma. For any set X in Q we have X < I(X) and hence, for all n,

diam X < diam X,, < diam X < diam X

Proofl. This is clear since each subcube is triple-convex. m

1.5. LemmA. If X = Q.and x€ X,,, then there is a set F < X with xe1(F) and
|F| < 3%

Proof. If n = 1 then there is nothing to prove. So assume the statement to
be true for n and take x€ X, arbitrarily. There are p, g, 7€ X, with u(p, g, r)
= x. Find, by induction hypothesis, sets F, G, H = X with |F|, |G|, |H| < 3"~!
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and pel(F),qel(G) and rel(H). Then
{p,a, 1} < I(F)VI(GYVI(H) < I(FLGUH),

and consequently, x = u(p, ¢, ) el (F UG U H). Clearly [FUGUH|<3" m

1.6. LEMMa. Let F be a finite set in X and r: Q —I(F) be the canonical
retraction. Thenr(X) = X and hence, r(X) = X.If F in addition is an &-net in X
then d(r(x), x) <e¢ for all xel(X).

Proof. Suppose that |F| = n+1 and that the first statcmem is true for sets
of cardinality n. Pick yeF and let ro: Q—»I(F— {y}) be the canonical
retraction. It is trivial to verify that r(x) = p{x, ro(x), y) for xeQ; hence if xeX
then r(x)eX since ry(x), yeX.

The proof of the remaining part is left to the reader. m

In verifying that certain subsets of Q are boundary sets, we will make use of
the following result due to Curtis [4], the proof of which is based on
Toruniczyk’s characterization of I,.

 1.7. TreorEM. Let B be a o-Z-set in a topological copy A of Q. Then Bis a
boundary set in A iff

(C1) for eache > 0 and each map f: 1" — A, where ne N, there is a compactum
K < B such that for every neighborhood N (K) of K in A there is a map
g: I"—= N(K) with d(g,f) <s,

(C2) for every xe B and for every nezghborhood U of x there is a neighborhood
V of x such that for each compactum K = V N\ B there is a compactum
K’ < U B such that for every neighborhood N (K') in A of K’ there is a
neighborhood N (K) of K in A such that every mapf: 8" — N(K)(n > 0)is
null-homotopic in N(K'). i

Notice that our example shows that condition (C1) in the above theorem
cannot be replaced by the more natural condition: for every ¢ > 0 and for every
map f: I"— A there is a map g: I"— B with d(g,f) <e.

2. Verifying condition (C1). In this section we will show that pairs of the
* form (X, X) always satisfy condition (C1) of Theorem 1.7.

2.1. TueoreM. Let X be a continuum in Q. Then the pair (A, B) =
satisfies condition (C1).

Proof. Fix ¢e>0 and a map f: I"> X and let § =¢-27""2 Take a
continuum K in X which is a d-net in X (e.g, let K = X, for a large k; observe
that by Lemma 1.2 X, is a continuum). The proof will be concluded once we
show that

(X, X)

()  for every neighborhood U of K, , in X there is a map g: I" - U with
d(g,f) <e. .

To this end, fix U and using »n-times the continuity of 4, take a neighborhood V'
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of K with V,,, < U. Since X AR, see section 1, there is a Peano continuum Y
with K =« Yc V. Let 4 be a triangulation of I" such that diamf (o) < é for
every o€ 7 and let go: 7° — K be a map such that d (g (x), f (x)) < é for x& 7°.
By the triangle inequality, () follows from the case i = n of the following claim
(7% denotes the ith skeleton of 7): '

(¥); there is a map g;: I — Y., extending g, and such that diamg; (o)
<3-20-6, for all 67"
To prove (#);, first consider the case i = 1. Given ce 7" let {a, b} = yo(0).
Then L = u({a} x{b}xY) is a Peano continuum in Y, containing {a, b};
moreover L < I({a, b}) and therefore diam L < d(a, b) < 36. Takeamap ¢ — L
extending go|{a, b} and proceed in this way with all 0 € 77! to get the desired g, .
Now suppose that i > 1 and that g;: ' — Y, as described in (), is
known. Given 0 € 7% the map g;| ¢ extends, by Lemma 1.1, to amap ¢ — L
= 11((g: (80)F*). Then L = Y, and diam L = diam g, (36) < 3-2"*?- 8. Thus the
collection of so obtained maps ¢ — Y., defines the desired extension g;, of
gi- =

3. Verifying condition (C2). In this section we will show that pairs of the
form (X, X) satisfy condition (C2) of Theorem 1.7.

3.1. LEMMA. Let X = Q be a continuum and let Q' = Q be a subcube. If
K = X Q' is compact, then there is a continuum K' < X n Q' containing K.

Proof. By a result of Curtis [3, Lemma 1.3] it suffices to show that XngQ
is continuum-connected (each pair of its points is contained in a continuum) and
locally continuum-connected. Since sets of the form X m Q,, where ' Q,is a
subcube contained in @, form a neighborhood basis of the points of XnQ,it
thus suffices to prove the assertion in the case where K is a 2-point set, say K
= {x, y}. Then, however, K = X, for some n and, since X, is a continuum
(Lemma 1.2),s0is L = p({x} x Ly} x X,). It is clear that {x,y} c L=< X n Q".

3.2. THEOREM. Let X be a continuum in Q. Then the pair (4, B) = (X, X)
satisfies condition (C2).

Proof. Let xe Q and let U be a neighborhood of x. Let V < U be a subcube
neighborhood of x. Now choose any compactum K < ¥ X. We may assume
that K # ©. By Lemma 3.1, there is a continuum § = V' n X containing K.
Define K' = u($%). Notice that, since ¥ is a subcube and since X is triple-
convex,

KcK cVnXcUnZX.

We claim that for every neighborhood N (K') of K' in Q there is a neighborhood
N(K) of K in Q such that every mapf: S"— N(K)n X (n > 0)is null-homotopic
in N(K') n X. To this end, let N (K') be any neighborhood of K. By continuity
of u there is a neighborhood E of S so that u(E?) = N(K"). Since X ¢ AR there is
a closed neighborhood N(K) of S in Q such that N(K)n X is a Peano


GUEST


98 J. van Mill

continuum while moreover N(K) = EnN(K'). Since K ES= N(K) is a
neighborhood of K, If { {r, g} is a pair of points in N(K)n X, then the local
connectivity of N (K)n X implies that thereis a pathin N K)NnX<NEK)NX
connecting p and g. Now let f: "> N(K)nX (n>1) be any map. By
Lemma 1.1, f can be extended to a map f B"*' —» N(K),~ X. Since

N(K); = E; = u(E%) = N(K'),
this implies that f(B"*) =« N(K)nX. m

4. Recognizing freely embedded cubes and Hilbert spaces. A subset X < Q is
called free provided that for any two disjoint finite subsets F, G < X there is an
neN with n,(F) = —1 and =,(G) = 1(n, denotes the projection onto the nth
coordinate). )

4.1. LEMMA. Let X be a space. Then there is an embedding - X — Q so that
f(X) is free.

Proof. Let X’ be a compactification of X. By van Mill [6, Lemma 1.1]
there is an embedding g: X' — Q so that for any two disjoint closed subsets
A, B « X' there is an ne N with 7,9 (4) = —1 and =, g(B) = 1. It is clear that f
=g|X is as required. =

4.2. LEMMA. Let o/ be a finite collection of subsets of X < Q so that any two
elements of o meet. If r: Q — ﬂ I(A) is the canonical retraction, then

r(X)< X, and hence r(X) < X, whzle moreover X ﬂ I(A) = r(X) = Q.
Proof. We will induct on the cardinality of .o7. If |szi| = 1,'then Lemma 1.6

can be applied. So suppose that the statement is true for collections of
sets of cardinality n, and let & = lAla ,,H, Let t: Q — ﬂ 1(4;) and

s: Q—1I(A,+,) be the canonical retractlons By Lemma 1.3 for all xeq,
r(x) = (sot(x),tos(x), x)

defines the canonical retraction from Q onto )
i<nti1

() N I{4) # 0.

ispt1

I(A;) provided that

Suppose for a moment that («) is true. If x e X, then, by induction hypothesis
both soz(x) and tos(x) belong to X. Consequently, r(x)eX.

So the only remaining thing to verify is (+). If n = 1 then () is trivially true
since any two elements of ./ meet. Therefore assume that 7 is at least 2. By
induction hypothesis there exist points

xe [} I(4)nX,
isn+1
i#1
ye N IA4)nX, and

isn+1
i#2

icm®
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ze  IA)nX. ‘

Clearly p(x,y,2e ) IA)nX. =

i<n+1
We now come to the main result in this paper.

4.3. TueoreM. If X is a free continuum in Qthena) X~ Q,and b) X is a
boundary set in X.

Proof. As noted before, the connectedness of X implies that X is an AR.
We will show that the identity map on X can be approximated by maps having
disjoint images. Applying Toruficzyk [10] then yields X ~ Q. To this end, let
& > 0 and take disjoint finite e-nets F, G < X. Since X is free, I (F) N I(G) = Q.
The desired result now directly follows from Lemma 1.6. This proves a).

For b), observe that by Curtis’ result Theorem 1.7 and by the results in
sections 2 and 3, it suffices to show that, for each n, X, is a Z-set in X (i.e.,, given
¢ > 0, there is a map /2 X —» X — X, with d(f, id) < &). To this end, fix » and ¢
and let o/ be a family of 2-3""!+1 finite disjoint e-nets in X. Put

B={U& &c . and |& =3""1+1}.

Clearly any two elements of .# meet and each Be# is an e-net. Let

r: @ — () I(B) be the canonical retraction. It is easy to see that if xeI(X)
Be#

then d(x,r(x)) <& We therefore only have to check that
NIB)NX,=0,

Be®

for, by Lemma 4.2, r(X) = X. Take xeX,. By Lemma 1.5 there exists a set

F < X of cardinality 3"~ * such that x I (F). Since ¢ is a disjoint family, at most
3"~ ! elements of .oZ can meet F. Consequently, there is a Be # with F N B = Q.
Since X is free, I(F)nI(B)= . We c¢onclude that x¢ (| I(B). m
Be®

4.4. Remark. In view of the above theorem we only need to find a free
continuum in Q so that X contains no arcs. It turns out, see section 5, that if X is
any free continuum containing no arcs, then X contains no arcs. This gives us a
rich supply of boundary sets containing no arcs. The proof of this fact is, though
elementary, surprisingly complicated.

5, X contains no arcs. In this section we will show that X contains no arcs,
provided that X < Q is a free continuum which contains no arcs. For the
remaining part of this section, let X denote a fixed free continuum in Q. We will
often use without explicit reference the fact that for any two disjoint finite
subsets F,Gc X it is true that I(F)nI(G)=®. If A< X then, for
convenience, put h(4) = I(4)n X.
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5.1. LemMma. If xe X then there is a finite collection of finite subsets .« of X
with () h(4) = {x}.
Acod

Proof. Clearly the statement is true for points in X ;. Suppose that the
statement is true for points in X, and take xeX,,, arbitrarily. There are
P1s P2, P3 € X, With p(py, pa, p3) = x and by induction hypothes,is there are
families <Z; of finitely many finite subsets of X with [} h(4) = {p} (1<Kig3)

Aed,
Put :

A ={FUG:i,j<3,i#j,Fed; and Geo,}.

We claim that .« is as required. It is clear that xe )
Aes

is-a point y & ﬂ h(A) distinct from x. Choose ne N with x, # y, and, without

h(A). Let us assume there

loss of generahty assume that x, <y,. Take se(x,,y,). Without loss of
generality we may assume that 7,(py) <5 and =, (p,) <s. Take re(s, y,)
If Bon,'[t,11# 0 every Bes/; then, by Lemma 4.2
N k(B n=x, [, 1]#0 in which case =,(p;)>t So there exists an

Besd |

Fess, which misses = *[t, 1]. Similarly, there is a Ge. o/, which misses
n, * [t,1]. Then F U G € o/ and since h(F U G) ==, ' [ -1, £], this implies that

y,, t, a contradiction. m

If x e X then a finite subset F < X is called a center for x provided that there
s A< F with () h(4) = {x}.

isn
5.2. LemMA. If F is a center for xe X and if x € h(A) for certain finite A = X,
then xeh(AnF).

Proof. Choose 44, ..

exist Ay, ...

A< F with () h(4) = {x}. I x¢ h(4 A F) then,
by Lemma 4.2, there is an i < n with 4, m(;lmF)e(Z) Then 4, A = @ and
since xeh(A4;) " h(A), this is a contradlctlon n
5.3. CoroLLary. If F and G are centers for xe X, then so is F A G.
Proof. Choose finitely many A,,..., 4, = F with {x} = ﬂ h(A,)). By

Lemma 5.2, {x} = | h(4;nG). Since NG < FnGforalli< n,FmGlsa

i<n

center for x. m
If xeX then, by 5.1, x has a center. By 5.3,

(% F(x)=N{F<X: F is a center for x}

is the smallest center for x. Put X (m) = {xe X: |F (%) < m}. The hyperspace
of nonempty closed subsets of X, with topology generated by th
distance, will be denoted by 27, Y the Hausdorl
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'5.4. LEMMA. Let x,, 0= 1, be points in X (m) such that x = lim x,Q and

G = lim F(x,)e2¥ exist. Then xeX(m) and G is a centér for x:
Proof. With k large enough there are sets 4;, ..., 4; = F(x,) with {x,}
= [} h(4) for each n. We may assume that lim A4 exists (in the Hausdorff

i<k n=o

metric) for all i < k and is equdl to, say A4;. Since U Al = F(x,) and since

{F (xa)l <

has the property that dny two of its elements meet. By Lemma 4.2 there is a

| < m. It is clear that the family {4;: 1 < i<k}

point y € ﬂ h(A,). We will show that y = x, which will conclude the proof. If
. i=1

x#y, then we can find an index teN such that, say, m(x)<m,(y)
Take a point se(m,(x), 7, (y)). We may assume that m,(x,) <s for all neN.
Fix neN. If A nn '[s5,1]# @ for all i<k then, by Lemma 4.2,

ﬂ h(A) Nz s, 1] # © or equivalently, =, (x,) = s, which is not the case.

Therefore for all ne N there us an index i(n) < k with

A~ g5, 1] = O.

There is a ko < k so that the set {n: i(n) = ky} is infinite. This implies that
Ay = 7 '[—1,s] and consequently, = (y)<s, which obviously is a
contradiction. =

5.5. COROLLARY. For each m, the set X (m) is compact and the function F: X
— 2% defined by (x) is finite-to-one and continuous on X (m)— X (m-1).

Proof. By the definition of a center, each y e F~! F(x) is determined by a
family of subsets of F (x); since F (x) is finite, so is F~* F (x). The compactness of
X (m) follows from 5.4. To prove the continuity of F on X (m)—X (m—1), fix a
sequence (X,)rw o in X (m)— X (m—1) with lim X, = Xo. By 5.4, whenever G is a

cluster point of the sequence (F (x,,)),, Lin 2X then |G| < mand G is a center for
Xo. Since F(x,) is contained in any center for x, and |F(xo) = m, by the
assumption on X, it follows that F(xo) = G and (F(x,)=; converges to
F(Xo) ]

We now come to the main "result in this section.

5.6, TuioreM. If X contains an arc, then X contains an arc.

Proof. If X contains an arc then, by the Baire category theorem, either
X (1) = X contains an arc or, for some m > 2, X (m)— X (m— 1) contains an arc
(Corollary 5.5). In the latter case, since an arc is infinite, it follows from
Corollary 5.5 that the space

H,(X) = {42 |4] =m)
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contains an arc. Since H,,(X) is locally homeomorphic to X™, this implies that X
contains an arc. m '

5.7. Remark. Let X < Q be a free pseudo-arc. Then X is a boundary set
for ¥ ~ Q containing no arcs. It might be interesting to point out that X is
countable dimensional, i.e. a union of countable many zero-dimensional subsets.

It is also easy to construct a boundary set containing no arcs which is strongly

infinite dimensional. Let X = Q be a free strongly infinite dimensional
continuum containing no arcs. Then X < X is as required. We do not have an
example of a boundary set B = Q so that either dim 4 = 0 or dim 4 = oo for all
A < B. If there is a continuum X with the property that for any ne N and
A < X" either dimA4 =0 or dimA = oo then it is possible to construct a
“hereditary infinite dimensional” boundary set. It is unknown whether such
a continuum exists. Notice however that there is a continuum with no
n-dimensional (n > 1) subsets, [11].

Let M be a Q-manifold. Using the fact that M x [0, 1) embeds in Q as'an
open subset, it is easy to show that M contains a g-compact o-Z-set B such that
B contains no arcs and M—B is an l,-manifold.
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Zero-dimensional countable dense unions
of Z-sets in the Hilbert cube

by
D. W. Curtis (Baton Rouge, La) and J. van Mill (Amsterdam)

Abstract. We show that every o-compact, nowhere locally compact, zero-dimensional metric
space can be imbedded in the Hilbert cube as a countable dense union of Z-sets, and that there are
exactly three such spaces for which all such imbeddings are topologically equivalent.

§ 0. Introduetion. It is well know that the Hilbert cube I* is countable dense
homogeneous: for any two countable dense subsets D and E, there exists a
homeomorphism h: I —I™ with h(D) = E. Thus, all dense imbeddings of the
space Q of rationals into I are topologically equivalent. It seems natural to ask
which other o-compact, O-dimensional metric spaces share this property. It is
easily shown that such a space X admits a dense imbedding into I ® if and only if
it is nowhere locally compact. Furthermore, to obtain positive results in the
general case when X is uncountable, we consider only imbeddings as countable
unions of Z-sets (see § 1). Thus, the question we ask is: which o-compact,
nowhere locally compact, 0-dimensional metric spaces X have the property that
all imbeddings of X into the Hilbert cube as countable dense unions of Z-sets
are topologically equivalent? In this note we show that there are exactly three
such spaces: the space of rationals, the product of the rationals and the Cantor
set, and the space which is the union of a copy of the rationals and a nowhere
dense Cantor set.

Actually, the question of equivalence of imbeddings fi: X —I* and
fa: X = I* of a 0-dimensional space X reduces to the question of whether the
complements ™\ f; (X) and I\ f(X) are homeomorphic (see § 4). This rather
curious result is of course strictly limited to the O-dimensional case (compare for
instance with Chapman’s complement theorem for Z-sets in I* [3], or with the
fact that the complements of both capsets and fd-capsets in I* are
homeomorphic to * [1]).

§ 1. Preliminaires. All spaces considered are separable metric. We shall
frequently use the following classical characterizations for certain 0-dimensional
spaces (for techniques of proof and references, see [6]):

1.1. LEMMA. X ~ Q, the space of rationals, if and only if X is countable and
has no isolated points.
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