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Products of hereditarily
indecomposable continua are A-connected

by
Charles L. Hagopian * (Sacramento, Ca.)

Dedicated to the memory of
Professor Kazimierz Kuratowski

Abstract. Suppose X and Y are continua. The product X x Y is arcwise connected only
when both X and Y are arcwise connected. However X x Y may be A-connected while X and ¥
are not A-connected. We prove that X x Y is- l-connected when X and Y are hereditarily
indecomposable.

A continuum is 2 nondegenerate compact connected metric 'space. A
continuum is decomposable if it is the union of two proper subcontinua;
otherwise, it is indecomposable. A continuum is hereditarily indecomposable if
each of its subcontinua is indecomposable.

Kuratowski [6, p. 262] defined a continuum M to be of type A if M is
irreducible between two points p and g is of type 4 if and only if there is a
condensation. Gordh [1, Theorem 2.7, p. 650] proved that a continbum M
irreducible between two points p and g is of type A if and only if there is a
decomposition & of M into continua of condensation such that each element
of 9 not containing p or g separates M. Furthermore 2 is upper semi-
continuous and M/2 is an arc {1, Corollary 2.1, p. 648]. Additional
information about continua of type A is given in [7] and [8].

In [5] Knaster and Mazurkiewicz used this concept to generalize
arcwise connectivity. They defined a continuum M to be i-connected if for each
pair p, g of points of M, there exists a continuum of type A in M that is
itreducible between p and g. The author [2, Theorem 2] proved that if Misa
A-connected plane continuum, then each pair of points of M can be joined by
a hereditarily decomposable subcontinuum of M. Hence every planar con-
tinuous image of a A-connected plane continuum is A-connected [2, Theorem
5]. However, unlike arcwise connectivity, A-connectivity is not a continuous
invariant for nonplanar continva. The continuous image of a A-connected
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continuum may even be hereditarily indecomposable. Knaster and
Mazurkiewicz [5, Example 2, p. 89] established this fact by showing that the
product of a pseudo-arc and a circle is A-connected. They used the natural
projection function to map this product onto a pseudo-arc.

In a recent conversation Howard Cook raised the question of whether
the product of two pseudo-arcs is A-conmected. The following theorem
answers Cook’s question in the affirmative.

THeoREM. If X and Y are hereditarily indecomposable continua, then
X xY is A-connected.

Proof. Let (x(0), y(0)) and (x(1), y(1)) be distinct points of X x Y. We
shall define a continuum of type 4 in X x Y that is irreducible between
(x(0), y(0)) and (x(1), y(1)). According to Gordh’s characterization (above) it
suffices to construct a disjoint collection & of subcontinua of X x Y whose
union M is a continuum irreducible between (x(0), y(0)) and (x(1), y(1)) such
that each element of Z has void interior relative to M and each element of
& that misses (x(0), y(0)) and (x(1), y(1)) separates M.

To accomplish this let C be the Cantor ternary set in the unit interval
[o, 11.

Let D be the set of numbers in C\{0, 1} that are of the form i/3" with
integers i and n. Note that D consists of the points of €' that are accessible
from [0, I\NC [7 p..175].

Let E be the set of all numbers in D that are of the form i/3" with i odd.

For each number r in E having simplest form i/3" let r* be the number
(i+1)/3" in D\E. Note that r* is the successor to r in C. We shall refer to r
and r* as opposite accessible points of C.

Let F be the set of all numbers in E having simplest form i/3" with n
odd.

We assume without loss of generality that x(0) # x(1) and X is irredu-
cible between x(0) and x(1).

Let o be the unique arc from {x(0)} to X in %(X), the hyperspace of
closed connected subsets of X [4, Theorem 8.4, p. 34]. The elements of &/
are ordered by inclusion. Let d, be the Hausdorff metric on .

Let dy be the metric on X. Assume without loss of generality that
dx (x(0), x(1)) > 2.

Let h be an order-preserving homeomotphism of C into & such that
d.,(h(0), {x(0)}}) =1, h(1) = X, and for each number  in E that has simplest
form i/3"

) a. (w0 0(5)) <5

and

P (h ), h (i+_2>) < %.
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Since X is hereditarily indecomposable, it follows from (1) and (2) that
there exist points x(3) of hE\Uh(): r<% and reC‘ and )-(3') of
h3\U {h(r): r <% and reC} such that dy(x(0), x(3)) = dy (x3), x(1)) = [7,
Theorem 2, p. 209 and Theorem 5, p. 212].

We proceed inductively. Assume that for each positive integer m less
than a given integer n, if reE and r has simplest form i/3™, then points x(r)
and x(r*) have been defined such that

(3m) x(r)eh(r\J {h(s): s <r and seC},
(4m) x(r*)eh(r*\U {h(s): s <r* and seC},
and

(5m) dy (x o), x(‘;—l» = dy <x ™, x(%?)) -L

For each number r in E that has simplest form i/3", let x(r) and x(r¥) be
points satisfying (3n)~(5n). Note that since (i—1)/3" and (i+2)/3" are not in
simplest form, x((i—1)/3") and x((i+2)/3") in (5n) have been defined. By
induction, for each number r in E, there exist such points x(r) and x(r*).

Let 4 be the unigue arc from {y(0)} to Y in %(Y). The elements of 2
are ordered by inclusion. Let d, be the Hausdorfl metric on .

Let I(0, 1) and J (0, 1) be nonempty disjoint open subsets of Y.

Let k(0) be an element of #\{Y} that intersects I(0, 1) and J(0, 1).

Let p(0), p(1), ¢(0), and g(1) be points .of Y such that
p(0)eI(0, Nk(0), q(0)eJ(0, )nk(0), p(1)el(0, 1)nY, g(1)eJ(0, )nY,
and {p(1), ¢(1)} misses |J {B: Be#\{Y}}.

Let 1(0,4) and I(%, 1) be open subsets of Y whoses closures are disjoint
sets in (0, 1) with diameters less than  such that p(0)eI(0, §), p(1)eI(3, 1),
and k(O)nI%, 1)=@.

Define elements k(3) and k(3) of #\{Y} and points p(3),
of Y such that k(0)ck@®) k@, d,{k(0), k( 3'))<3, (k('g) Y)<4i,
kB I3, 1) =0, pdek@nI0,3), pAek@nIG, 1), ¢Bek@BnJ (0, 1),
{r#), ¢})} misses | {B: B <k(3) and Be#}, and k3 1s irreducible be-
tween p(3) and k(3). Let () = q(3).

Let J(0,4), J3, %), and J(§, 1) be open subsets of Y whose closures are
disjoint sets in J (0, 1) with diameters less than § such that q(0)eJ (0, 5,
a®)eJ@, Y, q)eJ@ 1), k(0nJG, ) =9, and kGHnJ(E 1)=10. Let
JG.H=769. _

Define elements k (%), k(3), k(3), and k(§) of #\{Y} and points r®), 9%,
4@, p@), 9@3), and q(§) of Y such that

(i) k(0) = k(y) = k(@) < k(3) ck@) k@)= k(y)
(i) for r=[, %, %, and &, dy(k(r), k¢ +9)) <% (k() =7).

p3), and ¢(3)
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(iif) for r =% and §, k()T (r+3. r+3) =60
pek@)nIr—4r+d, a@ek@nIr—3, 1)
and {p(r), ()} rmsses U{B B < k(r) and Be %}, and
(iv) for » =% and §, q(rek()nJ(r, r+3%).
Let p(3) = p(;) and p@§) =p@)-
{70, %), J 3,

Let S, = ,3), 1(3, 1)} and ¢, =
Let S=10,4,% % %% & 1}. Let K; = {k(r): reS}, Py =

Q, ={q(): res}.
Proceeding inductively, assume that for each positive integer m less than
a given integer n we have defined two collections

2 2i+1 2i
I = {1<32m—1’ 32".—1): 321 EC}
2% 2i+1 2i
Fm = {J (3_2;’ 32m ) 32m C}

of open sets in Y, a set
i
_ne

of elements of %, and two subsets

Pm:{p<3§m) 32me_=C} and Qm={q(3im> 3TmeC}

of Y such that

5, J3, 39, JG 1}
{p(r): reS}, and

and

(6m)  each element of .,,u ¢, has diameter less than 1/3%"7 1,
(7m) the closures of dlstmct elements of #,u ¢, are dlSjOlnt ]

(8m) each element I(r, s) of #,_; contains the closure of each element
I(t,u) of #, with t>r and u<s,

(9ni) each element J(r, s) of #,_, contains the closure of each element
J(t,u) of #, with t>r and u<s,

(10m) for each number —— 3 . in C\{1}, k(32m) is a proper subcontinuum
: 1

of k (%,;)
and k

2 , ,
(11m) for each number 72w in C, d, (k (;%), k(z;:'—ml» <§-1;,
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Also for each number r in E of the form i/3%m

(12m)  {p(), q(r)} misses |J{B: B <k(r) and Be#}.
And for each number r in C of the form i/3*"

(13m) pek()nI(s, H(s<r<t and I(s, )e.7,).

(14m) gq@)ek(@)nJ(s,t) (s<r <t and J(s, )€ #,)-
Furthermore for each number r in F of the form i/3*""!

(15m)  k(r) misses each element I(s, t) of £, with s>r,
(16m) k(r*) is irreducible between p(r*) and k(r),
(17m) q(r*)=q(),

and
i+2 i+5 i+6
32m—1 =1 32m~1’ 32m—1 :

Moreover for each number r in E\F of the form i/3*"

i+5
32m Zm-1

(18m)  if —per

eC, then I(

(19m)  k(r) misses each element J (s, t) of #, with s>r,

(20m) p(r®) =p(n),
and

i+2 i+5 i+6
(21111) f 32m EC then J( 32"‘ ) = J(?;’ ?m-—)

Define two collections .#, and #, of open subsets of Y, a set K, of
elements of %, and two subsets P, and Q, of Y satisfying (6n)~21n). By
induction, for each positive integer n there exist such sets #,, #,, K,, P,,
and Q,.

Suppose 7y, 73, ... and sy, §,, ... are sequences in D that converge to the
same number in C\D. Then by (5m), x(ry), x(rs), ... and x(s;), x(s3), ...
converge to the same point of X. By (10m) and (11m), k(ry), k(r2), ... and
k(sy), k(sz), ... converge to the same continuum in Y. By (6m), (8m), (13m),
(18m), and (20m), p(ry), p(r2), .. and p(sy), p(sz), ... converge to the same
point of Y. By (6m), (9m), (14m), (17m), and (21m), q(ry), q(ry), ... and q(s1),
q(sy), ... converge to the same point of Y.

For each number r in C\(Du{0, 1}), let r,, r5, ... be a sequence in D
converging to r, let x(r) be the limit of x(r(), x(r2), ..., let k(r) be the limit of
k(ry), k(r), ..., let p(r) be the limit of p(ry), p(ra), ..., and let g(r) be the
limit of q(ry), q(ry), ...

By (5m),

(2Q2) {x(): reC} is a Cantor set in X.
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By (10m) and (11m), k is an order preserving homeomorphism of C
into A. .

It follows from (6m)~(9m), (13m), (14m), (17m), (18m), (20m), and (21m)
that ;
(23)  {p(n): reC) and {q(r): reC} are disjoint Cantor sets in Y.

By (8m)~(10m), (13m){15m), and (17m)}~(21m),
(24) for each number r in C\D, |J {k(s): s <r and seC} misses p(r) and

q(r).
For each number r in F, let M(r) be the continuum

(h() = {pM})O({x ()} x k@) (h(*) x {g()})

U({x (")} xk(r*))U(h(r*) x{p(r*)}).
For each number r in E\F, let M(r) be the continuum
() x {aMP({x )} xk@)o(h(*) x {p@)})
L ’ U({x(r*)} xk (M) U (k(r*) x {g(r*)}).

(25) M(r¥) = M(r) for each number r* in D\E.

For each number r in C\D, let M(r) be the continuum
(h)x {p@PL(x0I} x k@) (h0) x g (0}).

Suppose ry, r,, ... is a convergent sequence in C. It follows from (5m)-

(9m), (13m), (14m), (17m) (18m), (20m), (21m), and the definitions of h and k
that

(26)  if ry, r5, ... converges to a number r in C\D, then M (r) is the limit of
M(rl)s M(’z), ey

(27) if ry, ry, ... converges to a number r in E, then the subcontinuum

() % (p})O((x (M) x k(M) U(h() x {g(I}) of M) is the limit of
M(ry), M(ry), ..., ‘

(28) if ry, ry, ... converges to a number r* in D\E, then the subcontinuum
(h(r*)y x {pr®})u({x(r*)} x k() u(h(*) x {q(r*)}) of M(r) is the limit
of M(ry), M(ry), ...

By (3m}H5m), (Tm)}~(9m), (12m)}~(15m), (17m)}~(21m), (25), and the defi-
nitions of h and k

(29) if r and s are distinct numbers in C and M(r)n M (s) # O, then r and
s are opposite accessible points of C and M(r) = M(s).
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Let M ={J{M(r): reC}. By (26)«(28),
(30) M is compact.

Note that
(31) M is connected.

To see assume the contrary. Then, by (30), M is the union of two
disjoint nonempty closed sets ¥ and W. Since each M (r) is connected, each
(r) is a subset of ¥V or W. Assume without loss of gener'lhty that
M(1) = W. The existence of the least upper bound of {r: M(*) < V and
reC} contradicts (25)-(28). Hence (31) is true.
Next ‘'we show that

(32) if G is a nonempty open subset of M missing M (0) and M (1), then G
separates M between M(0) and M(1).

To accomplish this let T and U be open sets in X and Y, respectively,
such that M ~(T x U) is a nonempty subset of G. Since 1(0, 1)nJ (0, 1) = &
we can assume without loss of generality that U misses I(0, 1) or J(O, 1).

Let P = {(x(r), p(r)): reC} and let Q = {(x(r), q(r)): reC}. By (22) and
(23), P and Q are Cantor sets. Hence we can also assume without loss of
generality that Tx U misses PUQ.

Since (J{M(r): reD)} is dense in M, one of the following three cases
holds. ‘

Case 1. Suppose there is a number ry; in D such that (TxU)n
A(h(ry) x {q(ry)}) # @. By (6m), (9m), and (14m), there is a number r, in F
such that (T x U)n(k(ry) x {q{ry)}) # 3.

The x (r¥)-component L of X\T misses h(r,); for otherwise, Luh(rp) is a
decomposable continuum and this contradicts the assumption that X is
hereditarily indecomposable. Hence there exist disjoint closed sets V and W
such that VOW = X\T, h(r,)\T < V, and x(r¥)e W [7, Theorem 3, p. 170].
By (5my), (6m), (9m), (14m), and (17m), there is a number r; in E\F such that
rp<rs, {x(): ry<r<ry and reClcW, and {q(r): ro<r<r; and
reClcU.

Let H be the union of (U {M(): r <r2 and reCHNT xU), h(r,)x
x{p(rs)}, {x(ra)} xk(ry), and U {(h r)nV)x q()): ra<r<rs and reC}.

Since U misses {p(r): reC}, H is a closed open subset of M\(T x U).
Furthermore H contains M (0) and misses M (1). Hence (32) is true.

Case 2. Suppose there is a number r; in D such that (TxU)n
A(h(r) x{p(ry)}) # @. Let r, be a number in E\F such that (TxU)n
A(h(ry) x {p(ry)}) # @ and follow the argument given in Case 1. ‘

Case 3. Suppose there is a number r; in D such that (TxU)n
A({x(ry)} xk(ry)) # @. By (5m), there is a number r; in F such that


GUEST


224 . Ch. L. Hagopian

(Tx DN ({x(r¥%} xk(rP) # @. By (l6m), k(§) is irreducible between
p(r%) and k(r,). ‘

The p(r¥)-component L of Y\U misses k(r,); for otherwise, LUk(r}) is a
decomposable continuum and this contradicts the assumption that Y is
hereditarily indecomposable. Hence there exist disjoint closed sets ¥ and W
such that VOUW = Y\U, k(r,)\U c V, and p(r$)eW. By (5m), (6m), (8m),
(9m), (13m), (14m), (17m) and (20m), there is a number ry in E\F such that
ry <ry Ap(): ry<r<ryandreC} c W, {g(r): r,<r<ryandreC} cV,
and {x(r): r, <r<r; and reC} < T.

Let H be the union of

(U{M(@r): r <7, and reCH\(TxU), hry)x{p(rs)}, -

U{xm}x(k@nV): ry,<r<ry and reCl,
and .
U{h() x{q()}: ro<r<r; and reC}.

Since H is a closed open subset of M\(T x U) that contains M (0) and
misses M (1), (32) is true.

By (30) and (31), M is a continuum. Since (x(0), y(0))e M (0) and
(x(1), y(1))e M(1), it follows from (26) and (32) that M is irreducible between
these points. By (29), @ = {M(r): reC\(D\E)} is a disjoint collection of
continua whose union is M. By (26)<(28), each element of % is a continuum
of condensation in M and each element of 2\{M(0), M (1)} separates M.
Thus M is a continuum of type 1 [1, Theorem 2.7, p. 650]. Hence X x Y is A-
connected. ‘

QUESTION. Is every product of continua A-connected?

A continuum M is aposyndetic at a point p if for each point g of M\{p}
there is a continuum neighborhood of p in M that misses . A continuum is
aposyndetic if it is aposyndetic at each of its points.

Jones [3, Theorem 7, p. 406] proved that the product of any two
continua is aposyndetic. Hence one might hope to answer the question above

by showing that every aposyndetic continuum is A-connected. This approach
fails.

ExampLe. There is an aposyndeti¢ continuum M. in Euclidean 3-space
that is not i-connected. Let K be Knaster's simplest indecomposable plane
continuum [7, Example 1, p. 204]. Let L be the set of all points p in K such
.that p is an endpoint of a semicircle in K. Let M be the tomtinuu
(K x {0, 1) U(L [0, 1]) in K x[0, 1]. '

There is a base & of M with the property that for each element E of &,
M\E is connected. Hence M is aposyndetic. ’

To see that M is not A-connected, let p and g be points of distinct
composants of K. Let ¥ be a continuum in M that contains {(p, 0), (¢, 0)}. It
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suffices to show that V has an indecomposable subcontinuum that contains a
nonempty open subset of M.

Let = be the projection function of K x[0, 1] onto K. Note that (V)
= K. Let W be a subcontinuum of V that is irreducible with respect to being
mapped onto K by =. It follows that W is indecomposable [7, Theorem 4, p.
208].

]Let G be an open set in K whose closure C1 G misses L. Let

A=Wnn Y (CIG)N(Kx{l}) and B=Wnr *(ClGNK x{0}).

- Since 1(A) and 7 (B) are closed sets whose union is Cl G, either m(A4) or n(B)

contains a nonempty open subset of K. Assume without loss of generality
that n(A4) contains a nonempty open subset S of K. Since LNCl G = a3,
Ann~1(S) is a nonempty open subset of M. Hence the indecomposable
subcontinuum W of V contains a nonempty open subset of M. Therefore M
is not A-connected.
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Completely distributive lattices
by
M. S. Lambrou (Iraklion — Crete)

Abstract. If a complete lattice with 0 and 1 satisfies the infinite distributivity laws it is
called completely distributive. In this paper we give simple proofs of known characterizations of
complete distributivity as well as new characterizations in terms of maps from the lattice to itsell
satislying the condition a = \/{b/a & p(b)} for all a in the lattice, where p: L— L is the map.

1. Introduction. Although the motivation for the results of this paper,
whose purpose is to study complete distributivity of lattices, arise from
Functional Analysis, we shall keep the theorems and their proofs lattice

_theoretic. In Functional Analysis, and more specifically in the study of

invariant subspaces of operators on a normed vector space H, one examines
conditions on a set L of subspaces of H to be reflexive in the sense that it
cointides with the family of subspaces that are invariant under each operator
that leaves invariant the elements of the set (see Radjavi and Rosenthal [13]
for the relavant definitions). A necessary, but far from sufficient, condition for
the reflexivity of L is that L is a complete lattice (under the usual lattice
operations on subspaces). There are several sufficient conditions known. For
instance Ringrose in [17] has shown that every complete totally ordered
lattice of subspaces of a Hilbert space (complete nest in his terminology) is
reflexive. Halmos in [7] has shown that complete atomic Boolean lattices of
subspaces are also reflexive. Both these examples are examples of completely
distributive lattices. Longstaff in [12] has shown that in fact complete and
completely distributive lattices of subspaces of Hilbert spaces are reflexive,
and so he extended the previous two cases. A necessary and sufficient
condition for a complete and completely distributive lattice to be a complete
atomic Boolean lattice is given in [10]. Another equivalent condition, but
this time Functional Analytic, is given in [9]. It is easy to see that if the
underlying Hilbert space is finite dimensional then a lattice is complete and
completely distributive if and only if it is distributive. In the finite dimen-
sional Hilbert space case R. Johnson in [8] has shown that a necessary and
sufficient condition for a finite lattice to be reflexive is that it is distributive.
In general Hilbert spaces neither of these two conditions implies the other.
Indeed, Halmos [7] constructed a reflexive lattice which is (lattice) isomor-
phic to the non-modular pentagon M. An example in the opposite direction
is due to Conway ([6]) who constructed a non-reflexive complete lattice
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