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Abstract. This paper introduces the notions of a weakly %,-movably and a %,-movably
regular convergence of compacta lying in a metric space X, where %), is an arbitrary class of
metrizable pairs. The definitions are motivated by the desire to get conditions under which will
the limit in Borsuk’s fundamental metric of a sequence of compacta in X be (weakly) %,-
movable, a shape invariant property generalizing the notion of the (FANR) pointed FANR.

We prove a number of results which describe properties of {weakly) %,-movably regularly
converging sequences of compacta and present several examples of situations where these types
of convergences appear.

The main theorems show that it is possible to define a metric on the collection of all
(weakly) %,-movable compacta in X which preserves (weakly) %,-movably regular convergence.

1. Introduction. This is the third paper in a series in which we study
various types of globally regular convergences of compacta. In the previous
two we considered %-movably regular convergence [C3] and %-calmly
regular convergence [C4].

The present paper first introduces, motivated by [C5], shape invariant
properties weak %,-movability and %,-movability for compacta, where %, is
a class of metrizable pairs. They represent generalizations of the notions of
the fundamental absolute neighborhood retract (FANR) and of the pointed
FANR, respectively. On the other hand, they include the notions of %-
movability [€S] and %-calmness [C2].

Then we define the concepts of a weakly %,-movably regular (or
mo (%,)-regular) convergence and of a %,-movably regular (or mo (%7)-
regular) convergence of compacta in a metric space X. The idea is to require
that the sequence {4, A, ...} of compacta in X approximate the limit 4,
more and motre closely in the sense of (weak) %,~-movability.

The definitions of the mo (%,)-regular and mo (%7)-regular convergence,
besides providing generalizations of many theorems about (weak) %,-
movability (see § 3 and 4), is justified by the new information that these
notions give about the collections mo (%,, X) and mo (%}, X) of all weakly
%,-movable and %,-movable compacta in X, respectively. The main results
(6.6) and (6.7) of this paper show that one can define metrics d; on
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mo (%,. X) and d, on mo (%6, X) such that A, — A, with respect to d, iff 4,
— Ay mo (%,)-regularly and lim dz(4,, Ag) =0, and A, — A, with respect to
d, iff A, A, mo (¢3)-regularly and lim dy(A,, Ag) = 0. Here d, denotes the
metric on the hyperspace 2% of all non-empty compacta in X closely related
to Borsuk’s fundamental metric d (see § 3).

Our proof that metrics d, and d;, exist is based on the idea from [C3]
and [C4] and thus also relies heavily on Begle’s method from [Bel.

In § 3-5 we prove many interesting properties of sequences {d,} of
compacta in X that converge (weakly) %,-movably regularly to a compactum
Ao in-X. We present several examples of situations where such sequences
appear naturally. In doing this, we improve some results in [C3], [C4], and
[C5] and also introduce new concepts (metrics dz, dz» Z-domination, and
quasi-domination for metrizable pairs) which generalize corresponding no-
tions defined recently by Borsuk.

The paper is self-contained but it is preferable if the reader is familiar
with author’s papers [€3], [C4], and [C5].

2. Preliminaries. Throughout the paper % and & will be arbitrary (non-
empty) classes of topological spaces. By 2 (#") we denote the class of all
compact ANR'’s for the class .# of all metrizable spaces (of dimension < n),
and %" denotes the class of spheres {S°, S%, ..., S"}. A map will be called a
%-map provided its domain is a member of a class 4.

We reserve 4, and &, for arbitrary (non-empty) classes of metrizable
pairs (ie., pairs (K, Ko) where K is a metrizable space and K, is a closed
subset of K). We restricted ourselves to metrizable pairs only because we
need in our arguments the homotopy extension theorem (HET) [H, p. 1171
Hence, as long as this theorem is true for members of a class %, of pairs of
topological spaces our results remain true for these more general classes .
The special classes of pairs used in the paper are &, (the class of all pairs of
compact ANR’s), 2" (the class of all pairs of compact ANR’s of dimension
< n), A" (the class of all pairs (K, Ko) where K is a finite simplicial complex
of dimension <n and K, is a subcomplex of K), and 4, (the class
{(B', 8%, (B% SY), ..., (B", 8" ")}, where B* is the k-dimensional unit solid
ball and S*~! is its boundary (k- 1)-sphere).

Let %, be a class of pairs. We associate to it two classes of spaces as
follows. %, = {K| 3K, such that (K, Ko)e%,] and %, = (Ko} 3K such that
(K, Ko)€%6,}. Conversely, if ¢ is a class of spaces, let % denote the class of
pairs (K x 1, KxT0)UK x [1})] Ke%}, where I = [0, 1] is the unit interval.

A map of pairs is a %,-map provided its domain is a member of a
class .

Let U and V be subsets of a space X, V < U. Then iy denotes the
inclusion of V¥V into U. Two maps of pairs f, g: (K, Ko) = (U, V) are
homotopic in (U, V) if there is a map of pairs H: (K xI, Ko xI)—=(U, V)
such that Hy = f and H, =g.
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We shall say that maps f and g of a space Z into a metric space (Y, d)
are &-close provided d{f(2), g(2)) <& forevery zeZ. f Z is a subset of Y and
f is e-close to the inclusion i, y, we call /' an e-map. We shall repeatedly use
the following property of a compact ANR Y [H, p. 111]. For every ¢ >0
there is an 5 > 0 such that every two n-close maps f and g of a space Z into
Y are z-homotopic in Y, i, there is a homotopy H: ZxI - Y (called an &-
homotopy) between f and g with Hy and H, being s-lose for every tel. In
particular, there is an & > 0 such that every two g-close maps into Y are
homotopic in Y.

If not stated otherwise, we reserve X for an arbitrary metric space with
a fixed metric d; Ao, Ay, Ag,... are compact subsets of X; dy is the
Hausdorfl metric on the hyperspace 2% of all non-empty compacta in X; M
is an ANR for the class of all metrizable spaces which contains X metrically;
a neighborhood means an open neighborhood; and N (e, Ag) denotes the e-
neighborhood of 4, in M.

3. %,~movably regular convergences. Let B be a subset of a space M and
let U and V, V < U, be neighborhoods of B in M. We denote by 4 (U, V; B),
%,(U, V; B), and %,(U, V; B) the following statements.

%(U,V; B) For every neighborhood W of B in M and a %-map
f: K-V there is a homotopy f;: K—U, 0<t<1, with f, =f and
J1(K) = W.

%,(U, V; By For every neighborhood W of B in M, there is a
neighborhood W, of B in M, W, = VnW, such that ¢-maps into W, which
are homotopic in ¥ are also homotopic in W.

%,(U, V; B) For every neighborhood W of B in M, there is a
neighborhood W, of B in M, W, = VW, such that for every %,-map
1 (K, Ko) = (V, W,) there is a homotopy f;: K-> U, 0<t< 1, with fo = f,
fi(K) = W, and f;|Kq = f1K,. ) :

We shall denote by 63 (U, V; B) a stronger statement which differs from
the statement %,(U, V; B) only in the fact that the homotopy f, maps K,
into W, ie. f, is a homotopy of pairs f;: (K, Ko) = (U, W).

A compactum A is (weakly) %,-movable if for some, and hence for every,
embedding of A into an ANR M the following holds. For each neighborhood
U of A in M there is a neighborhood V of A in M, ¥ < U, such that
GHU, V; A) (4,U, V3 A)) is true.

Observe that a Z-set A in the Hilbert cube Q is (weakly) %,-movable iff
Q—A is (weakly) ©,-movable at [C5). Hence, a compactum A is an
FANR (a pointed FANR) iff A is weakly #,-movable (:#,-movable) [Cs,
Theorem (3.3)]. Also, note that every connected compactum is weakly
{(1. {0} u{1})}-movable and that every I(1, 10} L {1})}-movable compactum
must be [§')-movable [C$]. Hence, the dyadic solenoid is an example of a
weakly {(I, {0}U{1})}-movable space which is not {(1, {0} u{1)}-movable.
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(3.1) DerFINITION. A sequence A, A,, ... of compacta in a metric space
X which lies in an ANR M converges (weakly) €,-movably regularly (or
mo (6¥)-regularly (mo (%,)-regularly)) in M to a compactum A, < X pro-
vided for every neighborhood U of 4, in M there is a neighborhood V of 4,
in M, V c U, such that €3(U, V; 4,) (%,(U, V; A4,)) holds for almost all
indices n. ) '

It can be routinely proved that the definition (3.1) is shape theoretic in
the sense that (weakly) %,-movably regular convergence is independent of the
choice of M and the embedding of X into M. We shall write A,—mo (%)
— Ay (A,—mo (%,) = A,) to indicate that the sequence {4,} of comPacta in
X converges (weakly) %,-movably regularly to a compactum 4, in X in
some, and hence in every, ANR containing X.

A careful examination of the proofs of (2.9) in [C3], (24) in [C47, and
(43), (44) in [C4] reveals that they remain true if we replace the con-
dition lim dy(A,, Ag) =0 with weaker conditions lim Z, (A, = 0 and
lim dy (A, Ao) = 0, respectively, which we define next.

Let 4 and B be compacta in a metric space X which lies in an ANR M.
Let Z, n(B) denote the infimum of those & > 0 such that for every neigh-
borhood U of B in M there is an e-map of A into U. Put dz (4, B)
= max {Z, »(B), Zpu(A)}. One easily proves that the value Z4 y(B) (and
therefore also the value dy (A, B)) does not depend on the choice of the
space M. Hence, we can drop M from our notation. It is clear that d; is a
metric on 2% which is stronger than dy and weaker than the fumdamental
metric dr [B2].

(3.2) THEOREM. Let {A}i% ¢ be a sequence in 2% If lim Z,,(A,) =0 and
(A,—mo (%,) = Ao) A,—mo (%5) — 4o, then Aq is (weakly) %,-movable.

Proof. We shall consider only a slightly more complicated case of the
mo (%,)-regular convergence.

As in [C4], we can assume that 4 = | 4, lies in the Hilbert cube Q.

n=0
Let U be a neighborhood of 4, in Q. Pick a neighborhood V' of Ay in Q
and an index ky. such that %, (U, V'; Ay) holds for all k = ky. Inside V' take
compact ANR neighborhoods V; and ¥, such that V; = int V, «V; < V' and
let & =d(Q—int V;, V,). Put ¥V =int V,. We claim that %,(U, V; Ag) is
true.

Indeed, let W be an arbitrary open neighborhood of 4,. Let W'
W'< V, be a compact ANR neighborhood of Ao, and let & =d(Q~—
— W, W'). Choose an 7 > 0 such that n-close maps into V; are min {g;, &2}~
homotopic in ¥; and then pick k 2 ky. so that Z, (4,) <7 and 4, = W'. Let
W, be a neighborhood of 4,, W5 < WYV, chosen with respect to W using
%,(U, V'; Ay). Pick an n-map f: 4o =Wy and let W, be a neighborhood of
Ag, Wy = WAV, such that f extends to an n-map [: W, — Wg.
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Suppose g: (K, Ko) = (V, W,) is a %,-map. Since foglK, and g|K, are
n-close maps into V;, they are min {¢,, ¢;}-homotopic in ¥; and hence
homotopic in W. By the HET, there is a homotopy g,: (K, Ko) > (Vy, W),
0<t<1/3, such that go=g and g,3/K,=foglK,. Let f: K-U,
1/3 €1 < 2/3, be a homotopy satisfying fy3 = gm,fm (K) = W, and f53| K,
=gy3|Ko. Applymg the HET again, this time to the map fy; and the
partial homotopy g, /Ko, 2/3 <t < 1, we shall get a homotopy h: K — W,
2/3< <1, with hys = fy3 and hy|Ky = g|Ko. The join of homotopies g,
f,» and h, shows that %,(U, V; A,) holds. Hence, A, is weakly %,-movable.

(3.3) ExaMpLEs. (a) A constant sequence {4} converges (weakly) €,-
movably regularly to A iff 4 is (weakly) €,-movable.

(b) In the interval X =[~—1, 1] consider a sequence {A,} where A,
={—=1/mju{l/m} (n=1,2,..). Put A4,={0}. Then lim dz(4,, Ag)=0
and 4, is é,-movable for every class %,, but {4,} does not converge
mo (%,)regularly to A,. Hence, the converse of (3.2) is not true.

(¢) In the interval X = [—1, 1] consider compacta 4 = {0}u{l/n| n
=1,2,...} and B = {0}. The constant sequence {B} converges %,-movably
regularly to A for any class %, such that %, consists of connected spaces.
Since A is not weakly @,-movable for any such class %, satisfying 4, # O,
this example shows that the condition lim Z, (4,) =0 in (3.2) is necessary.

Now we discuss the role of a class %, in Definition (3.1). Theorems (2.8)
in [C4] and (2.6) in [C3] suggest that only quantitative shape properties of
pairs in €, effect (weakly) %,-movably regular convergence. Indeed, using
Fox’s mutations between pairs of metrizable spaces instead of fundamental
sequences in Borsuk’s definitions in [B1], one can introduce a motion of
quasi-domination for classes of pairs of metrizable spaces and prove easily
the following theorem. .

(3.4) TueoreM. Let a sequence {A,} of compacta in a metric space X
converge (weakly) €,-movably regularly to a compactum A, in X and let €,
quasi-dominate a class 9,. Then {A,} also conerges (weakly) %,-movably
regularly to A,.

Recall now definitions of 4-movably and %-calmly regular (or mo (%)-
regular and ca (4)-regular) convergence ([C3] and [C4]). They differ from
Definition (3.1) only in the fact that € (U, V; A,) and %,(U, V; A4,), respect-
ively, replace %5 (U, V; A,).

(3.5) TueoreM. (a) If A,—mo (%,) = Ao, then A,—ca (%) — Ao, where &
is any class for which 2y < 6,.

(b) If A,—mo (¥,) — Ao and A,—ca (%,)— Ao, then A,—mo (€)— A,.

Proof. The proof of (a) is obvious while (b) can be proved by the
method of the proof of Theorem (4.5) in [CS].

(3.6) Remark. Example (3.3) (c) shows that 4,—mo (%}) — 4, does not
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imply A,—mo (%;) > A, in general. This implication will be true, for
example, if 4,—mo (%y) — Ao, or if the class %, has the property that for
every Ke®, there exists a space Koe%, such that KnKy,=@ and
(KUKy, Ko)e¥,. :

(3.7 CoroLLARY. A,—mo (&)= A, iff A,—mo (P)—> A, and A,—
—ca (2) - Ay,.

We shall give now several examples of situations in which mo (%)
regular and mo (%¥)-regular convergences appear naturally.

A compactum A is %-trivial [CS] if, for some (and hence for every)
embedding of A into an ANR M, for each neighborhood U of 4 in M there
is a smaller neighborhood V of 4 in M such that every ¢-map into V is null-
homotopic in U. Observe that 4 has trivial shape iff 4 is #P-trivial [C1].

We write lim N, (4,) =0 if for every neighborhood U of A, in X
almost all 4, are contained in U.

(3.8) ExampLE. Let {4,}=; be a sequence of connected %, -trivial com-
pacta in X and let 4, = X be a %,-trivial compactum. If lim N, (4,) =0,
then A,—mo (%,) — 4,.

Proof. The assumptions imply A,—mo (%,)— A, and A,~ca (%})
— A,. Hence, we can apply (3.5) (b).

(3.9) ExampLe. Let {4,}, be a sequence of compacta of trivial
shape in X and assume that lim N, (4,) =0. Then 4,—mo (¢}) — 4, for
every class €.

Proof. Assume that a compactum |J 4, lies in Q@ and let U be a

n=0
neighborhood of A, in Q. Pick a neighborhood V of A, inside U which is
homeomorphic to Q [Ch] and let n, be such that n = n, implies 4, < int V.
We claim that €} (U, V; 4,) holds for all n> n,.

Indeed, let n > ny, and let W be a neighborhood of A4, in Q. Select a
Hilbert cube neighborhood W, of 4, in VnW. Clearly, every %,-map
[ (K, Kg) = (V, W) deforms inside (V, W,) (keeping f|K, fixed) to a map
into W,.

(3.10) ExampLe. If {4,}%, is a sequence of *-trivial compacta in X
and lim N, (4,) =0, then 4,—mo ((Z5)*) - 4.

Proof. Since the class X% of all pairs of finite simplicial complexes
of dimension < k quasi-dominates the class 2%, by (3.4), it suffices to prove
that A,—mo ((A%)*) - A,. This will follow, by induction, if we prove that
A,—mo ((B5*) - A,.

Let U be a neighborhood of 4, in M. Pick a neighborhood V of 4, in
U such that every map §™ — ¥, 0 < m < k, is null-homotopic in U and an
index ny so that 4, < V for all n> ny. Using the method of the proof of
Example (3.5) in [C5]), it can be checked that (#%* (U, V; A,) holds for all n
= No. . .
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Our next example improves (7.3) (a) in [CS5] and (2.8) in [C3].

(3.11) THEOREM. Let a sequence (A, )¢, of LC""! compacta in X ‘con-
verge homotopy (n— 1)-regularly [Cu] to an LC"™ ! compactum A, in X. Then
Ay—mo (#)) = Ap.

Proof. Assume that () A, = Q. By (34), it suffices to prove that
i=0

Ay~mo (A}) - A, in Q.

For a compact ANR neighborhood U of A4, in Q, take a compact
neighborhood U’ of 4, in the int U and put « = {int U, Q—U’}. Pick a
refinement f of a with the property described in [H, p. 112]. Since A, is an
LC"™ ! compactum, there is a refinement y of B for which the assertion
E(y, B, m) holds [K, Lemma 1]. Let V* ={J{V'ey|'V N4, # @} and let
V.V < V* be a compact ANR neighborhood of 4, in Q. We claim that
A (U, V; A) holds for almost all k.

Let £¢>0 has the property that s-close maps into U and V are
homotopic in U and V, respectively. Using Lemma (4.1) in [Cu], select an i,
and 9, 0 <6 < 3g/4, such that partial realization of mesh < & in 4; (i = 0 or
i 2 ip) of an at most n-dimensional finite complex can be extended to a full
realization of mesh < /2 in A4;. Let iy > i, be such that dy(4;, o) < ¢/3 and
A;cint V for all i > i,.

Fix an index i i; and let W be a neighborhood of 4; in Q. Pick a
compact ANR neighborhood W' of A; inside VW and then choose a
neighborhood W, of A; with respect to W’ in the same way as V was chosen
with respect to U.

Consider a A ;-map f: (K, Ko) = (V, Wy). The choice of W, gives us a
homotopy f;: (K, Ko) = (V, W), 0<t < 1/5, with fy = f and Jus (Ko) = A;.
Pick a fine triangulation T of K, so that for every simplex o T, Ji5(0) has
diameter < d/3. For every vertex v of o select a point y, in A, such that
d(fys (v), y,) < 6/3. A map which associates the point ¥, to the vertex v of T
is a partial realization of mesh <& in 4, of T. Hence, it extends to a full
realization g: Ko, — A, of mesh < ¢/2. Since g and f,,5]K, are eclose maps
into V, there is a homotopy g,: K -V, 1/5<t<2/5 with g, = f,5 and
925/Ko =g. The choice of V provides us with a homotopy h: K — U,
25 <t < 3/5, with hys = gys, hys(K) < Ay, and h|K, =g for all t. If we
repreat the argument that we applied to the map SyslKo to get g, we see
that there is a homotopy k: K —V, 3/5<t<4/5, such that kyss = hy;s,
kajs(K) < 4;, and kyys|Ko = f;5|Ko. The last fact implies that there is a
homotopy m,: K — W, 4/5 <t < 1, with my;s = ky s and my|Ko = f|K,. The
join of homotopies f,, g, h, k, and m, shows that A (U, V; 4;) holds.

We observed in Example (3.3) (b) that the convergence with respect to
the metric d; to a %,-movable compactum is not sufficient for the mo (%,)-
regular convergence. We shall now introduce a stronger metric d;» on a
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certain subset of 2¥ and prove that if 4, is weakly %,-movable and 4, — 4,
in the metric dj, then A,—mo (%,) — 4,.

A compactum A Z-dominates a compactum B if embedded into ANR’s
M and N, respectively, they satisfy the following condition.

(3.12) For every neighborhood W of B in N there is a neighborhood W’
of A in M such that for every neighborhood Wj of A in W’ there is a
neighborhood W, of B in N and maps g: W, - W; and f: W' — W with
S og homotopic in W to the inclusion iy, y of W, into W.

One can prove that the choice of spaces M and N is immaterial in the
above definition and that 4 will Z-dominate B if A quasi-dominates B [B1].

Compacta A and B are called Z-equivalent if they Z-dominate each
other. For example, this will be the case provided 4 and B are quasi-affinite
[B1]. A class of all compacta in X which are Z-equivalent to a compactum
C will be denoted by X [C];.

Let C be a compactum, let 4, Be X [C],, and assume that X lies in an
ANR M. Let Z% )(B) denote the infimum of those ¢ > 0 such that (3.12) for
M =N holds with / and g required to be e-maps. Put dys (4, B)
=max {Z% y(B), Z} u(4)}. It can be proved that the value Z% ,(B) (and
therefore also the value dj« (A, B) does not depend on the choice of a
space M. Hence, we can omit M from our notation. Clearly, dz is a metric
on X[C], which is stronger than the metric d; and is weaker than the
strong fundamental metric dgr (when restricted to X [C], the class of all
compacta in X shape equivalent to C) [C7].

(3.13) THEOREM. Let A, be a weakly €,-movable compactum in X and let
{4}, be a sequence in X[Ao)z. If lim Z%,(A4,) =0, then A,—mo (%))
— A,. .

Proof. We can assume that X is a subset of Q. Let U be an arbitrary
neighborhood of 4, in Q. Pick a compact ANR neighborhood V of 4, in Q
such that €,(U, V; A,) holds. Let ¢ > 0 has the property that e-close maps
into V are homotopic in V. Choose an index n, such that n> n, implies
A, —int V and Z}O(An) <e.

Consider an index n > ny and a neighborhood W of 4, in Q. Select a
neighborhood W’ of 4, in Q as in (3.12). Then choose a neighborhood W{ of
Aoy, Wy = WAV, using %,(U, V; Ap). Finally, pick a neighborhood W, of
A, in Q, Wo c WAV, and e-maps g: Wy — W3 and f: W' — W such that
fog =iy, w in W.

Suppose h: (K, K¢) = (V, W,) is a €,-map. Observe that maps h' = h}K,
and goh’ are homotopic in V. By the HET, there is a homotopy h: K —V,
0<t<1/4, with hg=h and h;,|K, =goh'. Hence, hy,, is a %,-map into
(V, Wp). The choice of Wy gives us a homotopy k,: K - U, 1/4 <t <1/2,
such that kyjq = hyj4, kyj5 (K) = W', and ky5]Kq = hyj4|K,. Note that fok,,,
and k,,; are g-close maps into V. Hence, there is a homotopy m,: K —V,
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1/2 <t < 3/4, with my,; =ky;; and my, = f okyy;. The map my, maps K
into W and on K, it agrees with fogol'. Since fogoh' =K' in W, we can
apply the HET once more and get a homotopy p,: K - W, 3/4 <t <1, such
that ps, =my, and p;|K, =W = h|K,. The join of homotopies h,, k,, m,,
and p, shows that 4,(U, V; 4,) holds.

(3.14) Remark. With the notation from definitions preceding (3.13), let
Z%*(B) denote the infimum of those & > 0 such that (3.12) for M = N holds
with f and g required to be ¢-maps and the homotopy between fog and
iw,w is an ec-homotopy in W. By an argument considerably more com-
plicated than the one used in the proof of (3.13) one can prove the following.

Let A, be a %,-movable compactum in X and let {4,};; be a sequence
in X[A4o]z If lim Z%*(4,) =0, then A,—mo (%) — 4,.

The last example uses the notion of the approximate fibration [C1].

(3.15) TueoreM. Let p: E— B be an approximate fibration. If Ag, A;,
A,, ... is a sequence of compacta in B such that A,—mo (%7) — Ao,
(A,~mo (6,) > A, and (6;)g =,), then p~*(4)—mo (€})—p ' (Ao)
(p™'(4)—mo (%,) = p~* (Ay)-

Proof. (a) Assume A,—mo (4*) — A,. Let U be an arbitrary neigh-
borhood of p~!(4,) in E. Pick a neighborhood U of 4, in B such that
p~*(U)c U. Inside U select a neighborhocod V of A, in B so that
%x(U, V; A,) holds for almost all n and let V=p (V). We claim that
(U, V; p~*(4,)) is true for almost all n. - _

Indeed, suppose %*(U, V; 4,) holds and let W be a neighborhood of
p~1(4,) in E. Choose a neighborhood W' of 4, in ¥ such that p~' (W') ¢ w.
Inside W’ take a neighborhood W of 4, in B with C1 W — W'. Finally, pick
Wy, Wo = WV, using 4*(U, V; A,) and put W, =p~*(W,).

Consider a %,-map f: (K, Ko)—=(F, W,). Let & denote the cover
{W', U—~cl W) of U. By the choice of n and [C5, Theorem (5.1)], there is a
homotopy fi: K- U, 0<t<1, with fo=pof, fi(K)c= W, and f|K,
=pof|K, for all t. Since p|p~*(U): p"*(U)— U has the approximate
homotopy lifting property with respect to the class %, it also has the regular
approximate homotopy lifting property with respect to the class %, [Cl,
Proposition 1.5]. Hence, there is an &-lift f;: K — p~!(U) of the homotopy f,
such that j}, = f and f|K, = f|K, for all t. But, because f; (K} < W, clearly,
fiK) = W. .

(b) Assume A,—mo (4,) =+ A and (4})g < €,. By [C3, Example (2.10)],
p~'(A,)—mo (%;) — p~*(A4o). Hence, by (3.5)(b), it remains to see that
P~ (A)—ca (%) = pH (Ag).

For a neighborhood U of p~*(4,) in E, pick neighborhoods U and V of
Ao in B and V of p~'(A) in E as we did in (a) so that (%}),(U, V; A4,) holds
for almost all n.

Suppose (%,),(U, V; A,) is true and let W be a neighborhood of
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p~ (A, in E. Now select neighborhoods W’, W, and W, of 4, in B and W,
of p™'(4,) in E as in (a) but this time use (%;),(U, V; 4,) instead of
Gx(U, V; A,).

Consider %,-maps f, g: K — W, and assume that they are homotopic in
V via a homotopy H: K x1— V. Then %,-maps pof and pog into W, are
homotopic in V' via poH. By the choice of ¥ and W,, there is a homotopy
h: K xI - W between pof and pog. On the subset T =K xI x [0} UK xI x
x (1JUK x {0} xI of K xIx1 define a map m into V by m|K xIx [0} =h,
mK xI'x[1) = poH, and m/K x {0} x I = pof. By the HET, m extends to a
map ': KxIxI—V.Wecan reparametrlze ' and thus get a map pu: K x I x
x I — V such that u|T =m and p|K x {1} xI = pog. If we apply the regular
approximate homotopy lifting property of p|p™! (V) with respect to a cover ¢
= W', V-Cl W]}, we shall get an e-lift 7 K x/ xI -V of u such that
AK x !0 xI=f and @K x{1}xI=g. It is clear that @K xIx{0} is a
homotopy in W between f and g.

(3.16) Remark. The characterization of approximate fibrations as com-
pletely movable maps [C2, Proposition 3.6] and (3.15) immediately imply the
following. A surjective proper map p: E — B between locally compact, separ-
able metric ANR’s is an approximate fibration iff p is a mo (#})-regular map
(i.e., iff for every sequence {b;} of points in B converging to a point hye B,
P~ (b)—mo (Z§) — p~* (bo))

4. Operations preserving convergence. In this short section we shall state
three theorems which describe ways of producing mo (%,)-regularly and
mo (% ¥)-regularly converging sequences of compacta. We leave the proofs to
the reader because they are similar to the proofs in § 3 in [C3] and [C4].
For the case of mo(%))-regular convergence, in view of (3.5) (b), they follow
from the corresponding statements in [C3] and [C4].

(4.1) TueoreM. Let, for eachi=1,2, ..., m (m < ), {4i} be a sequence
of compacta in a metric space X; convergmg mo (% *)—regularly (mo (%,)-

regularly) to a compactum A} in X;. Let A,=[] 4, (n=0,1,2,..). Then

i=1
4, —mo(%F)—~ Ay (A, —mo(%,)— Ao).

‘ (4.2) Tueorem. If A, —mo(%})— Ay, (4, —mo(%,)— A,), where
{A,})52o are compacta in a compact metric space X, then the sequence
{SA,}% | of the (unreduced) suspensions of A, is a sequence of compacta in §X
converging mo (%})-regularly (mo (%,)-regularly) to SA,.

(4.3) TueoreM. If A, —mo (%) Ao (A, —mo(%,)— Ay), then for every
component Cq of Ag there is a component C, of A, such that C, —mo(%})
-+ Cy (C, —mo(%6,)— Cy). Conversely, let every compactum A, (n
=0, 1, 2,...) has precisely k (k < o0) components CL, ..., C* and assume that
Ci, —mo(%¥)— Ch (Cy —mo(%,)— Ch), 1<i<k Then A, —mo(C¥)~ A,
(A, ~mo(%,)~ Ao).
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5. Consequences of mo(%,)-regular convergence. The results in this sec-
tion show that if A, —mo(Z,)— A, and A4, has a certain hereditary shape
property, then almost all A4, also have that property. The following prop-
erties will be considered: %-triviality, #-movability [CS], near 1-movability
[M], (%, %)-tameness, (%, ?)-smoothness [C2], to have the shape ¥-category
cat,A < k [C6], to be Z-dominated by a compactum B, and to have the kth
(cohomology) Betti number p,(4; G) <m [C3].

(5.1) THEOREM. If A, —ca(%)— Ag and A is 6-trivial, then almost all A,
are also %-trivial.

Proof. Pick a neighborhood U of 4, in M and an index n, such that
%,(M, U; A,) bolds for all n > n,. Then select a neighborhood V of A, in U
using %-triviality of 4, and an n; > n, such that 4, < V whenever n = n,.

Let n > n, and let W be an arbitrary neighborhood of 4, in M. Pick a
smaller neighborhood W, of A,, W, « WnV, using %,(M, U; A4,).

Consider a -map f: K — W,. Since W, < V; there is a homotopy F: K x
x I — U with Fy = f and F, (K) = pe U. We can assume that pe W, because
the set F(K x I) is connected. The choice of U and W, implies that there is a
homotopy G: K xI — W satisfying Gy = Fo and G, = F,. Hence, [ is nuil-
homotopic in W.

Recall [CS] that a compactum A4 is 4 -movable provided, for some (and
hence for every) embedding of A into an ANR M, for each neighborhood U
of A in M there is a smaller neighborhood Vof 4 in M such that % (U, V A)
holds.

(5.2) THEOREM. If A, —ca(%)— Ay and A, —mo (%)~ A,, then A, and
almost all A, are 6-movable.

Proof. A, is %-movable by [C3, (2.3)]. In order to prove that almost all
A, are %-movable, select neighborhoods U and V, V < U, of 4, in M and an
index n, such that %,(M, U; A,) and € (U, V; 4,) hold for all n = n,.

Let n > ny and let W be an arbitrary neighborhood of A4, in M. Pick a
neighborhood W, of A4,, Wo =« WV, using %,(M, U; A4,).

Consider a ¥-map f: K - W, and a neighborhood Z of 4, in M. Since
Wy <V and % (U, V; A,) holds, there is a homotopy F: K xI — U with F,
= [ and F,(K) « ZnW,. But, the choice of U and W; gives us a homotopy
G: KxI— W satisfying Gy = Fo, and G, = F,. Hence, 4, is ‘/-movable.

Let #d, denote all pairs of the form (D— U int D, éDu U aD;), where

D is a 2-disc and {D,, ..., D,} is a finite, dls]omt collecnon of dlsc% in int D.
(5.3) Treorem. If A, —mo(#d,)— Ao, lim Z, (4,) =0, and A, is nearly
1-movable [M], then almost all A, are also nearly 1-movable.
Proof. Pick neighborhoods U and V, V < U, of 4, in M (= @) and an
index ng such that U is a compact ANR, V “nearly 1-moves toward A4, in
U” [M], and 2d,(M, U; A,) holds for all n > n,. Let £ > 0 has the property
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that e-close maps into U are homotopic in U. Take an n 3 ny such that
Z4,(4,) < and 4, V.

Let W be an arbitrary neighborhood of 4, in M. Select a neighborhood
W, of A, in W, W, < V, using #d,(M, U; 4,). We claim that W, “nearly 1-
moves toward A4, in W™,

Indeed, let Z be a neighborhood of 4, in M and consider a map f: D
— W,. Let T be a neigborhood of 4, in M for which there is an e-map g: T
— ZW,. Since W, = ¥, there is (K, K,)€#d, and an extension F: K —U
of f such that F(K,—aD) = TnU. But, F|[K,—@aD and goF|K,—@aD are g-
close maps into U. Hence, we can assume that F(K,—dD) = WynZ. Finally,
the way U and W, were chosen gives us a homotopy F,: K—-»M, 0<t<1,
with Fy = F, F,(K) = W, and F,|K, = F|K,. Then F, is a homotopy which
“nearly l-moves f into Z in W™

A compactum A4 is (%, 9)-tame if, for some (and hence for every)
embedding of 4 into an ANR M, for each neighborhood U of 4 in M there
is a smaller neighborhood V of 4 in M such that for every ¢-map f: K —V
there is Le 2 and maps h: K— L and g: L— U with f homotopic to goh
in U. Observe that a compactum A is (2, €)-tame iff 4 is ¥-tame [C5] and
that A is (%, #*)-tame iff do(4) < k, where .#* denotes the collection of all
at most k-dimensional metric spaces and dy(A4) is Nowak’s coefficient of
deformability of 4 with respect to a class 4 (see [N] and [CS]). Hence, the
fundamental dimension Fd(A4) of 4 is <k iff A is (P, #%)-tame.

(54) THEOREM. If A, —ca(%)— Ay, A, —mo(Z)— Ay, and A, is (6, L)-
tame, then almost all A, are also (¢, %)-tame.

Proof. Pick neighborhoods U, V;, and V of 4y, in M, V <V, < U, and
an index ny such that every %-map into V factors up to homotopy in V; by a
Z-map and %,(M, U; 4,) and 2(U, V;; A,) hold for all n > n,.

Let n > ny and let W be an arbitrary neighborhood of 4, in M. Select a
neighborhood W, of A, in W, W, = V, using the choice of U.

Consider a ¥-map f: K — W,. Since W, < ¥, there is Le 2, maps h: K
— L and g: L~ V,, and a homotopy k,: K — ¥V}, 0<t<1/2, such that k,
= f and k;,, = goh. But, by the choice of V;, for a $-map g: L — V; there
is a homotopy d,: LU, 1/2<t< 1, with dy, =g and d,(L) = W,. The
join of homotopies g, and d,oh shows that f and d,oh: K — W, are
homotopic in U. The way U was chosen implies that they are also homo-
topic in W. Hence, A4, is (¥, 2)-tame.

By a similar method one can also prove the following two theorems.

(5.5 THeoReM. If A, —ca(%)— A, and A, is (€, D)-smooth [C2], then
almost all A, are (4, Z)-smooth.

(5.6) If A, —ca(6)— Ay and caty(Ag)
almost all n.

<k [C6), then caty(A,) <k for
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(5.7) TueoreM. If A, —mo(P,)— Ao and Aq is Z-dominated by a com-
pactum B, then almost all A, are Z-dominated by B.

Proof Without loss of generality we can assume that X — @ and
B = Q. By (3.7) and [C3, (2.3)], we can select neighborhoods U and V of 4,
in @, VU, and an index ny such that (U, V; Ay), 2,(Q, U; 4,) and
P(U, V; A,) bold for all n = n,.

Let n = n,. We claim that 4, is Z-dominated by B. Indeed, let W be an
arbitrary neighborhood of A4, in Q. Select a compact ANR neighborhood W,
of A, in WnV. Since A, is Z-dominated by B, there is a compact ANR
neighborhood W’ of B in Q such that for every smaller neighborhood Wj of
B in Q, there is a neighborhood ¥, of A, in Q and maps g: V, — Wy and
f: W' =V with fog homotopic in V to the inclusion i ;. The choice of ¥
gives us homotopies h: W, - U, 0<t<1,and k: W > U, 0<¢t<1, such
that ho =iwoy, by (Wo) = Vo, ko=, and k(W) = W,. Thus iy . and
kiogoh, are #-maps into W, which are homotopic in U. Hence, they are
homotopic in W and our claim is proved.

The last theorem in the present section might look out of place to the
reader but in view of (6.13) below it has a similar role as Theorems (5.1}
(5.7).

(5.8) TueoreMm. If a compactum A Z-dominates a compactum B and
p(4; G) < m [C3], then p(B; G) < m.

Proof. We can assume that 4 and B lie in the Hilbert cube and that
{U,y, U,, ...} and {V;, V,, ...} are nested sequences of compact ANR neigh-

borhoods of 4 and B in ‘@, respectively, with ﬁ U;=A and ) V,=B.
i=1 i=1

Observe that H*(4; G) = lim H*(U,; G) and H*(B; G) = lim H*(V;; G).
. — —

If m = oo, then there is nothing to prove. Hence, we assume that m < co.
» [Xm+11} of m+1 elements of
H*(B; G) is linearly dependend over the integers.

For every ie{l, ..., m-+1} there is an index n; and an element x; of

H"(V ; G) representing [x]. If Mo = max {n;}, then we can assume that

X; eH"(V,o, G). Now, select an index s4 such that for every s > s, there is an
n>ny and maps g: ¥V, = U, and f: Uy —~ ¥V, with fog~iy y in V,
Since H*( Uy,: G)isa finite abelian group and the rank of H*(4; G) equals dt
most m, there is an s = s, such that every collection of m+1 elements of
H“(Uso; G) is linearly dependent in H*(U,; G). Then pick n > ny and maps f
and g and put y;=(fog)*(x;) (i=1,...,m+1). It is easy to check that
elements {y;} in H*(V,; G) are linearly dependent and that they represent
classes {[x;]}.
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6. The metrics d, and d,. We can define metrics on the collections
mo(%,, X) and mo(%¥, X) of all weakly %,-movable and all %, -movable
compacta in a metric space X, respectively, in a number of ways. Here we
shall consider how to introduce metrics on these hyperspaces that will
preserve mo(%,)-regular and mo(%})-regular convergence. Using Begle’s
method in [Be] we shall define a metric d, on mo(%,, X) and a metric d, on
mo (%%, X) in such a way that lim d; (4,, 4o) =0 iff lim dz(4,, A¢) = 0 and
A, —mo(%,)~ A, and lim dy(A,, Ao) =0 iff lim dy(4,, Ag) =0 and 4,—
—mo(%3)—> Agp.

In fact, it is clear from the explanation on the page 444 in [Be] that
such metrics can be introduced provided we can prove the analogues of
Lemmas 1, 3, 4, and 5 in [Be] for the functions &(s, 4) and 6* (s, A) (defined
in (6.1)) corresponding to Begle’s function 8, (s, P). The analogue of Lemma 4
was established in (3.2) while Lemmas (6.2), (6.3), and (6.4) below correspond
to Lemmas 1, 3, and 5, respectively.

Throughout this section, without loss of generality, we assume that X
lies in the Hilbert cube Q which has diameter 1 in a metric d defined on it.

(6.1) DeFNiTION. For a compact subset A of Q and an ¢ > 0, let d (¢, A)
be the least upper bound of all numbers &, d<g such that
%,(N (e, A), N(8, A); A) holds. Similarly, 6*(e, A) is the least upper bound of
those 8 < ¢ for which 6¥(N(e, ), N(J, A); A) holds.

1t is clear that for each compactum A in Q, 3(e, 4) and J*(¢, A) always
exist and are non-negative monotone non-decreasing, and hence measurable,
functions on the half-open interval I* = (0, 1]. Observe that A is (weakly)
% ,-movable iff (3(s, 4) > 0) 5*(¢, A) > O everywhere in I*

The connection between Definitions (3.1) and (6.1) is provided by the
following.

(6.2) LEMMA. If lim dy(A,, Ag) =0, then the sequence !A,} converges
(weakly) % ,-movably regularly to A, iff (lim inf é(e, A) > 0} lim inf 6* (e, A4)
>0 for each ¢ in I*.

Proof. The proof is similar to the proof of Lemma (4.2) in [C3].

(6.3) LemMA. Ler lim dy(A4,, 4¢) =0 and let lim AAO(A,,) =0, Then
lim sup d(e, A,) < (s, Ag) and lim sup 6*(g, 4,) < 6% (¢, Ao) for all but
countably many points & in I*,

Proof. We shall consider the function §(—
function 6*(—, —) is similar. .

We shall prove that lim sup é(go, 4,) > 8(gg, 4o) at the point &,&(0, 1)
implies that the function (e, 4o) is not continuous at the point ¢,. Since
d(e, Ao) is a monotone function, there are at most countably many points in
(0, 1) at which this can happen.

Suppose lim sup (g, A,) > d(gg, 4p) and take an e, 0<2e < 1—gq,

, —). The proof for the
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and a subsequence {B;} of {4,} such that &(g,, B;) =
i>0. Let b, 0 <b <e/2, be an arbitrary number.

We claim that % (N(ao-f-b Aqg), N(6(e0, Ao)+(e/8), Ap); Ao) holds. This
would imply that for every b, 0 < b <ef2, d(gg+b, Ag) = 88y, Ag)+(€/8),
ie., that the function d(¢, Ay) has a jump at least e/8 at the point &.

Let W be an arbitrary open neighborhood of 4, in Q, let W* be a
compact ANR neighborhood of A, in W, and let 5 = d(Q- W, W¥). Pick an
¢, 0 <& < b/4, such that {-close maps into N (5(co, Ao)+(e/4), Ao) are (1/2)-
homotopic in N(8(zo, Ao)+(e/2), Ag). Select an mteger Jj such that Z, (B))
<&, dy(By, Ag) <&, and B; cint W*. Let Wy, Wy @ W*AN (S (s, B), B)),
be chosen with respect to W using %, (N(ro, B)). N(8(zq. B), B); B;
Finally, pick a neighborhood W, of A4, in Q, Wy = WnAN(6(s0, Ao)+
+(e/8), Ao) for which there is a &-map f: W, - W.

Consider a %,-map g: (K, Ko) = (N (8 (co, Ao)+(e/8), Ao), Wo). Then ¢’
=g|K, and fog' are ¢&-close maps into W* AN (6(gq, Ag)+(e/8)+
+&, A )c W*mN(‘(so, Ag)+(e/4), Ay). Hence, they are (r/2)-homotopic in

d(eg, Ao)+e for all

N(S(eq, Ao)+(e/2), A o) and thus homotopic in W. Applying the HET in
N (8(zo, A +(e/2 Ao), we see that there is a homotopy g,: (K, Ko) —
(N (8 (2o, A0)+(e/2), Ag), W), 0<1<1/3, such that go=g and g,,]K,
= foy.

Since N(3(sq. Ag)+(e/2),
(N (3(eo. B, B), W;).
=N, B), 1/3<t<
= g3/ Ko-

Applying the HET again, this time to the map f;; and the partial
homotopy ¢,-,/K,, 2/3 <t <1, we get a homotopy h: K- W, 2/3<r<1,
such that hy3 = f5,3 and by |Ky = g'. Since Ng,, Bj) = N(eo+h, Ap), the join
of homotopies g,, f;, and h, shows that ’6,,(N(60+b, Ag), N (6(8q, Ao)+
+(e/8), Ao); Ao) indeed holds.

(6.4) Lemma. Let lim dy(A,, Ag) =0 and lim ZA (Ag)=0. If A,—
—mo(6,)— Ao (A, —mo(¢})— Ag), then (s, Ao) < lim inf & (s, A4,)
(0* (g0, Ao) < lim inf 8* (g, A,)) at every point eyel* in whlch the function
d(e, Ay) (6% (s, Ag)) is continuous,

Proof. Let us consider a point goel* at which the function &g, Ao)
is continuous. Suppose that &(gy, 4¢) > lim inf &(gq, 4A,). Then there is an
e, 0 <e <y, and a subsequence (B;] of [A,] such thal §(e, B))+e <
<d(ep, Ag)—e for all i > 0. Since the function §(s, 4,) is continuous at &,
there is a number d, 0 <d <e, such that §(c, Ao)e(ﬁ(.t:o, Ao)—e, sy, Ag)+e)
for all ee(so—2d, 6o+2d)NI*. In particular, & (so—d, Ao) > 6(s0, B;)+e for
all i > 0.

We claim that there is an index k such that %, (N (20, By), N ((gq, Bo)+
+e, By); Bk) holds. This would imply 6(se, By) = 6 (e, B,)+e, an obvious
contradiction.

Ag) = N(J(¢o, By), Bj) gys is a %,map into
By assumption, there is a homotopy f;: K
2/3, with fi3 =943, fys(K)cW, and f3]K,
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By using the fact that 4, —mo(%,)— A,, inside N(eo—d, 4o) pick a
compact ANR neighborhood V of ‘A, and an index iy so that %, (N (g0~
—~d, Ag), V; B)) is true for all j > i,. Then select a compact neighborhood
V* of Ay in int V and let y.=d(V*, Q—V). Let n > ¢ > 0 be such that &-
close maps into V are homotopic in V. Pick an integer k so large that k > iy,
Zy, (Ag) < &, dy(Ao, By) <d, and B, —int V.

Consider now an arbitrary neighborhood W of B, in Q. Select a
neighborhood W of 4, in ¥ AN (8(eq—d, Ag), o) with respect to V using
the fact that %'pr(so—d, Ag), N(6(s9—d, Ay), Ao); Ao) holds. Then pick a
neighborhood W¢ of B, in Q, Wgt < ¥V nW, with respect to W applying
%,(N(eg—d, Ao), V; B,). Finally, we take a neighborhood W, of B, in
N(6(eo, By)+e, Byn Wt and an {-map f: W, - W

Let g: (K, Ko) — (N (5(eo, B)+e, By), Wp) be a %,-map. Since g’ = g|K,
and fog’ are é-close maps into ¥, they are homotopic in ¥ via a homotopy
fir Ko—V, 0t < 1/4. Since N(3(eq, Bi)+e, By) = N(6(so—d, Ag), Ap), we
can apply the HET in N(5(go—d, Ao), 4o) and get a. homotopy f;: K
— N (8(20, 4o)s Ao) With fo =g and f|K,=f, 0<t < 1/4.

By the choice of W;, for a %,-map fm: (K, Ky) —>(N(5 (80—
—d, Ay), Ay), W(;), there is a homotopy g,: K — N(go—d, Ap), 1/4 <t < 1/2,
such that g;,, = fx/m 912(K) =V, and g15/Ko = fi14l Ko-

Now, we consider a map g,,, of K into V and a partial homotopy
Sy 1/2 <t < 3/4, on K, into V. By the HET, there is a homotopy h,: K
-V with hy;, = gy, and h|Ko = fi3/4-1, 1/2 <t < 3/4. This means that h3/4
is a %,-map into (V, W;). Hence, there is a homotopy k,;: K — N(s9—d, Ay),
3/4 <t <1, with kyy = hyy, ki (K) = W, and k|Ko=hyulKo=fo =g

The join of homotopies f;, g,, h, and k, shows that %’,,(N (80—
—d, Ao), N(8(¢0, By)+e, B,); B,) holds. But N(so—d, Ag) = N(eo, By) so
that % (N(ao, By), N{d(eo, B)+e, By); Bk) also holds as claimed. ‘

The proof of the lemma for the function é*(—, —) is slightly different.
In that case we define homotopies f;, g,, and h, over the intervals [0, 1/3],
[1/3,2/3], and [2/3, 1], respectively, while the homotopy g, has the ad-
ditional property that g,/|K, = fog’, 1/3 <t < 2/3. We shall now modify the
join §;: K — N(go—d, Ap), 0 <t < 1, of homotopies f;, g,, and h, as follows.

Consider a map ¢ from the boundary of I x I into I defined by

3s, t=0, 0<s<1/3,
1, t=0, 1/3< 2/3
, 1) =
eE0=13_ 3 (0 23<s<l,
0, t=1,0r s=0, or s=1.

Let @: IxI—1 be a continuous extension of ¢. Then define a partial
homotopy H on a subset KoxIXxTUK xIx{0}UK x {0} x JOUK x {1} x I of
KxIxI by. '
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H(x,s,1) = {5p(x), (x5, g)eKoxIxI,
HIK xIx{0}=¢,
HIKx{0}xI=g,
HEKx{1}xI={;.

Applying the HET in N(go—d, 4,), we sec that g is homotopic rel K, (in
N(gg—d, Ay)) to a G,-map ¢;: (K, Ko) = (V, Wy). This clearly suffices.

Combining the last two lemmas we have the following theorem.

(6.5) Tueorem. If lim dy(A,, Ag) =0 and A, —~mo(%,)— Ao (4,—
—1m0(%F)— Ao), then lim §(e, A,) (lim 6* (e, A,)) exists and equals (e, Ao)
(6* (¢, Ao)) almost everywhere in I*.

We are now ready to introduce metrices dy and d, on hyperspaces
mo(%,, X) and mo (%7, X) of all weakly %,-movable and all %,-movable
compacta in a metric space X, respectively. Let E be the Banach space of all
bounded measurable functions on the interval I'*, the norm of an element f in
E being defined as:

71 = f1f1de.
0

We define a correspondence between mo(%,, X) and a subset of
(2%, d;) xE by assigning to each element A of mo (%,, X) the element
(4, 0(s, A)) of 2Xx E. This correspondence is one-to-one, so a metric d, is
defined on mo(%,, X) by letting the distance between two points in
mo(%,, X) be the distance between the corresponding points in 2¥ xE.

Specifically, if 4, Bemo (%,, X), then

1
dy(A, B) = [d3(4, B)+([15(e, A)— (e, B)lde)]"".
B 0 .

Similarly, we can define a metric d, on mo(%}, X) by

1

dy(A, B) = [d3(A, B)+([10%(e, A)—5*(¢, B)|de)*]"">,
0

for A, Bemo(%},

With obvious modmc,atmm the arEumcnt on the page 444 in [Be]
shows that the metric d; induces the same topology on mo(%,, X) as that
naturally defined in terms of the metric d; and the weakly %,-movable
convergence. Hence, we can prove the [ollowing two theorems.

(6.6) TurOREM. There is a metric d; on the hyperspace mo(%,, X) of all
weakly %,-movable compacta in a metric space X such that, for a sequence
Ay, Ay, Ay, ... in m0(%,, X), lim d,(A4,, Ag) =0 iff lim d;(A,, A¢) =0 and
A, —mo(6,)~ A4,.

7 = Fundamenta Mathematicne CXIX, 3
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(6.7) TueoreM. There is a metric d, on the hyperspace mo (6}, X)
of all %,-movable compacta in a metric space X such that, for a sequence
Ag, Ay, Az, ... in mo (%}, X), lim dz(A,,, Ag) =0 iff lim dz(A4,, Ag) =0 and
A, —mo(6})— A,.

(6.8) Remark. By (3.7) and results in [C3] and [C4], the metric d; on
mo(2,, X) (ie, on the collection of all FANR’s in X) is equivalent to a
metric d0 defined as follows. For 4, Bemo(%,, X), put

do(A, B) = [d3(4, B)+(ﬂw A)—7,(e, B)de)']"?,

where y,(—, —) is a function defined in (4.1) in [C4].

Both d, and d;, are on mo(%,, X) equivalent to the metric dz as the
corollary to our next theorem shows

(6.9) THEOREM. Suppose lim d(A,, Ao) =0 and A, —ca(#)— Ay. Then
there is an index n, such that A,eX[Aolz for all nx=n, and
Him dys(Aps g Ao) =0 .

Proof. We shall prove that almost all 4, are Z-equivalent to A,. The
second part in the conclusion of the theorem will be clear from our proof.

By an improvement of (24) in [C4] involving d; instead of dp, A4 is P-
calm. Assume that X < Q and pick a compact ANR neighborhood V of 4,
in Q and an index n, such that 2,(Q, V; 4,) holds for all n > n, and for n
= 0. Let ¢ > 0 has the property that (2¢)-close maps into V are homotopic i in
V. Finally, select n; > ny so that d,(A4,, Ag) <& for all n>n,.

Let n > n, and let W be an arbitrary neighborhood of 4, in Q. Pick a
neighborhood U of 4, in VAW using 2,(Q, V; 4,). Then take a neigh-
borhood W’ of 4, in Q and an ¢-map f: W' — U. If W; is a neighborhood
of Ay in W', pick a compact ANR neighborhood W, of 4, in U and an &-
map g: Wy — Ws. The maps fog and iy w are (2¢)-close maps of W, into V.
Hence, they are homotopic in V and therefore also in W. This shows that A,
Z-dominates A,. In a similar way one proves that A, Z-dominates A,.

(6.10) CorOLLARY. lim dy(A,, Ag) = 0 and A, —mo(#,)—+ Aq iff there is
an index ny such that A, X[Ay), for all n > ny and lim dze(Apsngr Ao} = 0
and Agemo (2, X).

Proof. Apply (3.7) and (6.9) to prove necessity and (3.13) to prove
sufficiency.

The results in §§ 3 and 5 imply the following corollaries.

(6.11) CorOLLARYs If a metric space (X, d) is homeomorphic to a metric
space (Y, @), then (mo(%,, X), d,) is homeomorphic to (mo (%,, Y), ¢,) and
(mo (%}, X), d;) is homeomorphic to (mo(%}, Y), g).

Proof. The proof is similar to the proof of (4.7) in [C3].

.
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(6.12) CoroLLARY. The inclusions (mo(%,, X), dp)—
(mo(%,, X), di) = (2%, dg), (mo(%}, X), dg) = (2%, dy),
—(mo(%,, X), dy) are continuous.
Proof For the first inclusion use (3 13) while the last three inclusions
are obviously continuous.

(mo(‘ﬁp, X), dl)o
and  (mo(%¥, X), d,)

(6.13) CoroLLARY. Let o be a property preserved by Z-domination or Z-
equivalence. Then the collection of all elements of mo(#,, X) (mo(#%, X))
which have property o constitute a closed and open subset of mo(#, X)
(mo(#¥, X)).

Proof. Use (6.10) and (6.12).

The proofs in § 5 and in [CS, § 2] show that every property considered
in § 5 is preserved by Z-domination. Observe that results in § 5 and in § 5 of
[C3] allow a formulation of results similar to (6.13) for some other classes
G, :
(6.14) CoroLLARY. Let a class %, quasi-dominates a class &,. Then
the inclusions (mo (%,, X), d;) —(mo (%,, X), dy) and (mo (%}, X), d)
—(mo (2, X), d;) are continuous.

Proof. See (3.4).

We leave many questions concerning the topological structure of metric
spaces (mo(%,, X), d;) and (mo(%}, X), d,) open. The most natural problem
would be to see what properties of X are carried over onto (X [4],, d,) and
(X [B]z, d;), where Aemo(%,, X) and Bemo(%}, X). In particular, are
those spaces separable (topologically complete) if X is separable (topologi-
cally complete). The last two questions are in view of (6.12) and the method
of proofs for Theorems 2 and 3 in.[Be] equivalent to the following questions.

(6.15) If X is a separable (topologically complete) metric space and
Aemo(%,, X), is (X [4];, d;) also separable (topologically complete)?
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