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Recursion theoretic operators and morphims
on numbered sets *

by
Henk Barendregt (Utrecht) and Giuseppe Longo** (Pisa)
Dedicated to Buffee Lys Nelson on her twelfth birthday

Abstract. An operator is a map ¢: Pw — Pe. By embedding Pw in two natural ways into
the A-calculus model Pow? (and T%) the computable maps on this Jatter structure induce classes
of recursion operators. :

§ 0. Introduction. With the notion of (pre complete) numbered set
Ershov [3] gave a general framework for certain results in classical recursion
theory. In his theory the notion of morphism is central. In [6] there is a
definition of enumeration operators and (implicitly) of Turing operators.
Although enumeration operators (restricted to the r.e. sets as numbered set)
are morphisms, Turing operators are not even partial morphisms.

There is a natural correspondence between these (and other) classes of
recursion theoretic operators and morphisms on an appropriate numbered
set, via the constructive part of the A-calculus models Po? and T®. The
different classes of operators on Pw are effective ¢ontinuous maps obtained
by embedding Pw into Pw? or T* in two natural ways, giving Po either the
Cantor or the Scott topology.

. In particular Turing operators work on Pw with the Cantor topology.
This is implicit in Nerode’s theorem, see [6], p. 154, relating tt-reducibility to
total Turing-operators. Also a different proof will be given of a theorem in

"[6], p. 151, relating enumeration and Turing reducibility. Finally an inter-

polation result, in the sense of algebra, will be proved for total Turing
opérators. )

* This work was supported in part by the National Science Foundation, Grant No.
MCS 8010707, and by a grant to the M.LT. Laboratory for Computer Science by the IBM
Corporation. . ’

** Partially supported by the Mathematical Institute, Rijksuniversiteit Utrecht, while
visiting that Institute, and by a grant of the Italian C.N.R. to work at the Laboratory for
Computer Science, Massachusetts Institute of Technology, Cambridge, MA, US.A.
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§ 1. The models Pw, Pw? and T“. Let w be the set of natural numbers
with Pw as power set. (Pw, ) is a complete partial order (cpo) and so is
(Pw?, ) with <A, BY[C <A, B> iff A< A, B< B'; (these structures are
even complete lattices). Cpo’s X are always considered with the Scott
topology, see [2], § 1 or [1], § 1.2. [X — X7 is the cpo of continuous maps
on X with the pointwise partial ordering. There is a binary operation on Pe
such that (Pw, ‘) is a continuous i-model, ie., a model of the A-calculus in
which exactly the continuous functions are representable, see [1], § 1.2.

Similarly one can make Pw? into a continuous A-model.

L.1. Notation. 4, B,... range over P,; A =w—A; a, b,... range over

w?; if a = (A, B, then a_ = A and a, =B;n, m,..‘,i,j,...,p, q,... range
over w; (n, m) is an effective bijective coding of w? on w; e, is an effective
enumeration of the finite elements of Pw? (ie. of {ala_, a, are finite}), with

eg =<0, B>.

1.2. ProrosiTioN. For a, be Pw? define
a-b={{m3e, b (n, mea_}, {m3e,C b (n, mea,}>.
For fe[Pw? — Pw?] define
graph(f) = {{(n, m)imef(e)_}, {(n, mimef(e)s }>.

Then- : Pw* — Pw? and graph: [Pw* - Pw?*] — Pw? are continuous and

moreover
graph(f)-a =1 ().

In particular (Pw?, -) is a continuous A-model.
Proof. As for Pw. u

In § 3 another continuous A—model will be used, namely Plotkin’s T®.
One has

T ={{A, B)] AnB =0} < Po?;

see [2] for the definition of application (-) and abstraction (graph) in this
structure. These definitions use an effective enumeration by, b,,... of the
finite elements of T°.

1.3. DeriNiTiON. Let X be Pw, Pw? or T°.
() The computable part of X, notation X,, is defined as follows:

Po, = {A| A" is re};
Po? =(Pw)?;
T° = T A Pw?.
Let Po? = {0;}ice-
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(i) A map f: X > X is computable iff Jae X, VxeX f(x) = a'x.
14. LEMMA. Let X be as above and f: X, — X be continuous. Then [ has

~ a unique continuous extension [: X — X.

Proof. Define f(x) = LI {f(»)| y C x, y finite}. This is defined because
the supremum is over a directed set. [ is clearly the unique continuous
extension of f. =

1.5. DeFINITION. A continuous f: X, — X, is called computable if its
unique continuous extension f: X — X is computable.

The following notions are due to Ershov.

1.6. DerFINITION. (i) A numbered set is a structure (X, y) where y: @ —~ X
is a surjective map.

(ii) If (X, y) and (X', ¥) are numbered sets then p: X — X' is a partial
morphism iff for some partial recursive ¥: @ — w one has

Vnp(y () =y (f ().

(i) If (X, y) is a numbered set, then the Ershov topology on X has as
base the collection

(7' (A) A rel.

For the definition of complete numbered set and special elements, see
[3] or [9]. Pw, with the standard enumeration y(n) = W, forms a complete
numbered set with special elements @. Similarly Po?, T, can be numbered
to become complete numbered sets with special element <@, @>.

Morphisms between numbered sets are clearly continuous with respect
to the Ershov topology. On our three numbered sets X,, the morphisms
coincide with the computable maps.

1.7. GENERALIZED RiCE-SHAPIRO THEOREM. Let X be Pw, Po® or T*.
Then on X, the Ershov topology coincides with the (trace of the) Scott
topology.

Proof. See [4], 2.5, where the result is proved in a more general
context. w

1.8. GENERALIZED MyHILL-SHEPHERDSON THEOREM. Let X be as above
and f: X.— X,. Then f is a morphism iff f is computable.

Proof. (=) By 1.7 f is Scott continuous. An easy computation shows
that graph(f)eX,. L

(<=) Let f(a) = b-a with be X,. Then f is a morphism, since an
index of b-a cani be computed uniformly from one of a. w

The following lemma is needed in § 3.

1.9. LEMMA. Any computable f: T® — T® can be extended to a comput-
able {~: Pw? - Po*.
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Proof. Let b =Axf(x); then be T;”. Let h be the recursive function
such that e, = b,. Define
b~ = ({((m), m)(—n; myeb_}, {(h(9), m)(+n; myeb_}>,
ST (@=b""a
See ?[2], § 1 for notation. An easy computation shows that f~|T® =
use [2], Lemma 1.6. =

Remark (Scott). There is a “well founded” coding of pairs [,]: w?
< o and a numbering {e,},., S Po? such that {Pw, "', graph,)> (see Scott
[1976]) and {Pw?", graph) are isomorphic as A-models.

Given (,) as usual, define

[n, 2m} =2(n, m), [n, 2m+1]=2(n, m+1,
e, = (E;, ED,

where, {E,},., are the finite elements of Pw and for 4ePw, we set

in Po?

A® = {n| 2ne 4},
Then define f: Pw — Pw, by
f4) = 4 4%,

Clearly fis an isomorphism of lattices ; moreover an easy computation shows
that f(A) f(B) = f(AB), ie. (Pw,-"y and (Pw%-) are isomorphic as ap-
plicative structures. :

Let now K, So, Iy (K', 8, I') be the interpretation of K, S,I in
Pw(Pw?). Then f(Ky) =K' and f(Sg) = S’ (as for K,:

A% ={n 2n+1ed}.

f(KO)" = {(n! (m: p))l [n, [m, 2}7]] EKO}
= {(n, (m, p))| 2p€E,}
={(n, (m, ) pee,_} =K_.

Similarly for f(Ky), (and I,, S,)).
Let

F = {graph, (/)| fe[Pw - Po]} < P
and

F' = {graph(f)] fe[Po® - Pw?]} < Pw?.

The sets F and F’ correspond to the “function spaces” in a Scott
domain (see Barendregt [1981], Def. 54.7). It is easy to show that F
= {So(Kolop)A| AcPw} and F' = {§'(K'Id| dePw?}. Then by 5.4.10, in
Barendregt [1981], {Pw,-", graph,> and (Pw?-, graph) are isomorphic
also as A-models.
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§ 2. The 4 e-operators. In order to define the recursion theoretic oper-
ators on P, this set will be embedded in Pw? in two different ways.

2.1. DeriNmION. () Let A€ Pw. Then
A'={4,Q) and A* =<4, A).

(ii) (Pow,:) is the space Pw with the Scott topology (see e.g. [1], p. 10).
(Pw,*) is the space Pw with the Cantor topology (see e.g. [6], p. 270).

4 and e will range over the set {,*}. Po? is the subspace of Pw? (with
the Scott topology) consisting of the image of Pw under the map 4. Note
that 4: (Pw, 4) — Po* is a homeomorphism. A partial map ®: X »Y on
topological spaces X, Y is called continuous if | Dom(®) is continuous on
the subspace Dom (®).

2.2. DeFiNITION. Let f: Pw? —» Pw? be given. The partial A e-operator
induced by f (notation ®7*) is defined as follows.

@2 (4)] < f(4%)ePwr;
(B7 (A)f =1(47).
That is & = e lofod:

o

Py —————Pow
I |

Pw? —— Pw?

If cePo?, write ®f* = &7 with f(a) =c-a for aePw?

2.3. LemMA. A partial map @: (Pw, 4)» (w, @) is continuous iff @ is an
induced A, ® operator by some continuous f; Pw* — Pw®.

Proof. (<) & = o =e 'ofod and we are done.

(=) Define f, =e0®Pod™!: Po?m Pw?® Then f, is a partial -
continnous map. Since Pw? is an injective topological space (it is an
algebraic, hence continuous lattice, see [7]), fo can be extended to a total
continuous f. Then & = &/*. = ’

Write %, = {f: Pw*— Pw?¥ f computable}.

2.4. DeFINITION. Let &: P~ Po.

(i) @ is a partial strong operator (Pe%?) if Ifeb, & = O}F;

(ii) @ is a partial Turing operator (Pc%%) if Afe ¥, & = DF*;

(i) @ is a partial enumeration operator (Pe%7) if Ife¥, & = &};

(iv) @ is a partial weak operator (Pe%r) if Afe¥, & = I}
Write

%, ={fe¥l| fis total} for xe{s, T e, w}.
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ExampLe. The jump operator ®(4) = A/ = {x| @#(x)|} is a partial weak
operator. Namely define

c_ = {((n, m), p)l A4(p, g, n, M) = W,qp},
Cy = $’
then @ = ®*'; see [6] p. 132 for the definition of Wp,.

2.5. DerinmmioN. (i) Let D be some' class of partial operators and
A, BePw. A is D-reducible to B (notation A < pB) if 3®eD ¢ (B) = A.
(i) A is strongly reducible to B (notation 4 <,B) if A <4PB;

A is Turing reducible to B (notation A'< 7 B) if A <¢PB;

A is enumeration reducible to B (notation A <.B) if 4 < _%’B;

A is weakly reducible to B (notation A <, B) if A <P B.
For a, be Pw? write a < b if 3ce Pw? a = cb. then one has

A<,B < A*<B,

A< B < A* < B,
A<,B < AKB,
A<,B < A'<B*

2.6. ProPOSITION. (i) Any partial strong operator can be extend to a total
enumeration operator (notation: €5 »%,),

(i) L%,

(i) €%~ E.,

(iv) €5 »> Gy,

(v) €5 = é7,

(vi) €* = ©*.

Proof. Define i: Pw? - Pw? by i({A4, B)) =<4, ®). Clearly i is
definable.

(i) Note that & < &;;,, since io* =, and this last operator is total

(i(Pw?) = Pw):

o
Po ———— Pow
Pw? ——— Po® ——— Pw?

(i) Similarly ¢F* = o,

(i) Now &} < P, since ior =,
(iv) Similarly @} = o¥,

(v) Now @ = &%, since io* =,
(vi) Similarly ¢f = &f,;. =
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2.7. COROLLARY.

AL B == A<,B

| J
A<,B === A<,B. u

It is not true that ¥f»m %, or €7 »m%,, see 2.14 and 2.16 below.
The classes %,, %, and %} turn out to consist of known recursion
theoretic operators.

2.8. THEOREM. P €%, iff @ is an enumeration operator as defined in [6),
p. 147.

. Proof. (=) By definition ¢(B)= F-B for some FePw, = #E. Define
b = {{((# 0), m)| (n, m)eF}, @). Then bePw} and & = &y,

(=) Let @®=@; be total and bePw?. Define F
= {(n, m)| ((n, 0), m)eb_}ePw,. Then ¢(B)=F-B for all Be Pw. m

In order to describe weak and partial Turing operators, two lemmas are
needed.

29. LEMMA. (i) There is a recursive function g such that for all iew and
A, Be Pow

Q:,* B)y=A4 = c,= (Pf(i)-

(i) There is a recursive function h such that for iew with &}/ total and all
A, Be Pw

BBy =A = A=Wp.

Proof. (i) Define
1 if 3¢, B*(n, mew,_;

YU, m =1 0 if 3¢, CB*(n, mew;
T else.
By the relativised s—m—n theorem (i, m) = @f,(m) for some
recursive g. This g works. (Note that if ;B*ePw* then

T13AmAe, [ B*(n, mew;- Nw;4).
(ii) Similarly let h be a recursive function such- that
) 1 if 3e,C B*(n, mew,;_;
: (Pi.i(i) (m) = XB('a m) =
T else.
Then h works. m

2.10. LEMMA. (i) There is a recursive fuhction g such that for all iew and
all A, BePw )

cy= oF <« &8 (B) = A.
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(ii) There is a recursive function h such that for all iew and all A, Be Pw
A=W < o}, (B)=A4. .
Proof. (i) Given any regular re. set W, cf. [6], p. 132, define

a= <{((p: ‘1): m)l (m’ 0, P, q)evvati)}: {((P: q)7 m)} (ma 17 D, q)EVVe(i)}>'
‘ Clearly aePw? and an index for a is uniformly effective in i. Moreover
cy = @f iff A* =aB* for all 4, B.

(ii) Similarly with

a= <{((p7 q)’ m)l Hn(m, n, pa Q)EW;;(.')}: ¢> L
From 2.9 and 2.10 one obtains the following.
2.11. THEOREM. (i) €5 = {¥o, ¥1,...}, where

B if cg=of;
1T else.

7=

(ii) 6, = {To, I'y,...}, where I';(A) = WA, =

Now the reducibility notions can be characterized.

2.12. THEOREM. Let A, Be Pw. Then

() A<.B < A is enumeration reducible to B, cf. [6], p. 146;
(i) AS,B < A<,B and A<.B; ‘

(iii) 4 €7 B < A is recursive in B;

(iv) A<,B < A is re in B, ¢f. [6] p. 133.

Proof. (i) By 28.

(i) («=) Let F, GePw, be such that 4 = FB and A = GB. Define

a = {((n, o), m) (m, myeF}, {((n, 0), m) (n, }eG}>.

Then aePw? and ¢*(B) = A.
: (=) Let &*(B)=A. Define F = {(n, m)| ((n, 0), m)ea..} and G
= {(n, m)| ((n, 0), m)ea}. Then A =FB, A = GB.

(ii)) By 2.11().

(iv) By 2.11(i). =

Now it is shown why partial Turing and strong operators cannot always
be made total.

2.13. LEMMA. Let ®e%F and @ e Dom ®. Then for all Be Dom @ one has
& (B) = (D). Moreover ®(Q) is recursive.

Proof. First note that A*[_ B* = A =B. Let <I>=<P}*‘, ie @(A)*
=f(A') for Aedom®. Then by monotonicity

2(Q)* = fKD, O C (KB, 0)) = #(B)*
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for BeDom®. Hence @(B)=&(@®) on Dom®. Moreover &(@)*
= {P(QD), ¢(P))ePw?, since f if computable. Hence & (@) is recursive. =
2.14. CoROLLARY. BE A>Fs.
B Pl_'OOf. Let K be a non recursive re. set. Note that K<.K and
K <,R. Hence by 2.12(ii) one has K <,K, ie. &(K) = K with §e%5. By
2.13 @ cannot be made total. =
2.15. TueoreM (Nerode). Let <, denote truth table reducibility, cf. [6],
p. 110. Then for all A, Be Pw

A<, B < Abe%, &(B)=A.

For a proof, see [6], Th. 9, XIX. The idea is that (Pw, *) is a compact
metric space, hence a continuous & on it is uniformly continuous. This
provides the required (effectively uniformly bounded) truth table conditions.

2.16. COROLLARY. €% A @y -

Proof. By 2.15, 2.12(iii) and the fact that <p = <, cf. [6], Cor. 9,
XVII. =

A concrete example of a partial Turing operator that cannot be made
total is the following. Define

> 4) {g—p} if p, q are the first two elements of 4,
) = i) if A has at most one element.
By Church thesis and 2.11 ® is a partial Turing operator. @ cannot be
extended to a total Turing operator @~ because, by the compactness of
(Pw, *), ~ has to be uniformly continuous, which is impossible.

§ 3. The Turing—Rogers operators. In [6] anothier class ‘é’ﬁ of partial
operators is suggested. It will be shown that #hg = 4%.

31. DerNITION. Let X, Y be sets and let i: X — Y be an injective map.
Let g: Y- Y. Then f: XmY is defined by g via i if f=i""ogoi with
Dom(f) = [x| g(i(x)e€i(X)}:

X . x

Ll

Y —— Y

3.2. NotaTiON. (i) Z =0wm@; Poy = wm{0,1}; 2R ={pe? ¢ is
partial recursive}.
(ii) ©: #— Pw is defined by
() = {(n, m)| p(n) =m}.

(i) ¢: Po— Poy 18 defined by
¢4 = ¢(A) = characteristic function of A (equals O if argument in A).
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3.3. DEFINITION. (i) @: @™ P is a partial recursive operator, notation
®ec%r if & is defined by some total Y%, via v: 2 — Po.

(i) @: Pw~ Pw is a partial Turing-Rogers operator, notation @ € %4z, if
@ is defined by some total Y e%, via ¢: Pw — .

34. LemMa. Let g: Pw?~ Pw® be computable such that g(T®)< T®.

Then g| T® is computable in T. ;

Proof. Let f=g| T*.fis continuous since T® is a subspace of Pw?. An
easy computation shows that if a = graph(f) as defined for T, then
acT?®. m :

Now we need yet another characterization of %h. .

3.5. ProposiTION. ®e%F iff @ is defined by some computable f: T® — T®
via *: Po— T

Proof. (=) By 2.9 (i) there is an index i such that for all A€ Pw

c(®(4)) = ot
Define d = {d_, d,)> with

df = {((ps q)’ m)l (m: 0, p, Q)EVVQ(I:)}’
dv ={((p, @, m) (m, I, p, )e W},

where Wy, is the “regularization” of W, as defined in [6], p. 132. Define g(a)
=da in Pw?® Clearly g is computable and & is defined by g via x: Pw
— Pw?. By the regularity of W, it follows that
VaeT?g(a)eT".
~ By 34 f=g/ T® is computable.
via *: Pw— T,

(<) Let f: T® > T be computable. By 1.9 f can be extended to a
computable /'~ : Pw? - Pw® Then ¢ defined by f via * is also defined by
[~ viax, ie. et m

Remark. Similar results hold for the classes 47 and %7. However not
for the strong operators: the only partial strong operators defined via T* are
the constant ones. X

3.6. LemmMa. (i) Define SG: #— 2 by SG(y) =sg'y. Then SGe%,,
SG(P) = Po, and VP, SG() = y. |

(i) If D%, then it may be assumed that & is defined by a Y e %P with
Y(P) & Py, - .

Proof. (i) Let A= {(n. (0, 59(@))| En=1{(p,q)}} and &,(B)=A-B de-
fined in Pe. Then &,€%, and SG is defined by &, via 1, ie. ®e%,. The rest
is clear. : \

(ii) By (i). =

Moreover & is defined by f
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Let 0: T® — 2 be defined by

0 if ned;
({4, BY)(n) = {1 if neB;
T else.

That is, o(a) is the partial characteristic map of a.

3.7. LemMMA. Let f: T® — T®. Then f is computable iff f is defined via ¢
by a total ®e%b, with &(P) < Po;.

Proof. (=) Take y = too and let h, I be recursive functions such that
enm = by and Eygy = x(by). Define

D = {(I(m), (m, D) (—h(n); m)edx-f(x)- A= 0) v
v (+h(n); medx-f(x)- Ai= 1}

Then De Pw,, hence ¥ = A4-DA€%,. An easy computation shows that fis
defined by ¥ via x (use ey, T iff Ey < x(a)).

/Tm : / ’
4"‘4 ----- x.—'f-u———w]‘\/ x

; \ \
Pw-—e e - +YPw

Let ®c%” be defined by y via 7. Since by definition ¥(z(#)) < ©(Po1)s

it follows that & is total and ®(P) & Py, .
(<) Let f=0""0Po0 =g~ '0SGodoo. By it suffices to show that f;

=f| T is computable. But f is the composition of the morphisms
o|Te, @ P# and o~ '0SG|PA® hence itself a morphism. Therefore we are
done by the generalized Myhill-Shepherdson theorem 1.8. m

3.8. THEOREM. Bhg = #7.
Proof. (<) Let @ be defined by ¥ %, via c.
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By 3.6 (ii) it may be assumed that @ (%) S P, . Define fi T — T* by &
via o. Then f is computable by 3.7. By a diagram chase, one sees that @ is
defined by f via*.

(2) By an even simpler diagram chase, using also 3.5. =

§ 4. Interpolation. Given finitely many distinct elements B,,..., B,€ Pow,
then for each A,,...,4,&Pw there is a total Turing operator &, such that
®(B) = A;, 0 < i< p, provided that each B; can be mapped onto 4; at all
(ie. A;<yB; for o <i<p). o

4.1. INTERPOLATION THEOREM. Let Bo,...,B, be a collection of pairwise
different sets. Assume
A;<yB viaf,, for o<i<p.
Then 3P ¥, Vi < p®(B) = 4;.
(In classical notation, for distinct B/’s,i=1,...,p:
Vi pIz(Cy, = (pf" A @it is a characteristic function)
implies
BVi<p(Cy, = @2 A @2 is a characteristic function).)
Proof. Since (Pw, *) is an Hausdorff space there are disjoint clopen

neighborhoods «,, = {a€Pw? e, L a} such that B,e.s, for o <i<p. Let
o =)o, Note that o7 is also open and o ={4| Vi< pgA N(ey)+ #O) v

_iep
Vv (A m(eni)— ;é (Z))}'

Let fi{g) be (the index of) the tr-condition {{m,,...,m.>, a?>. Let j

k; i
range over {0, 1}". Define
() = ey U imyl h<h A jy =1}, {myl h<k A Jjy =0},

Note that
m MGTBr = h=i.
Finally define

e ={ <pFef
e ={m, g 3 < pFe{

where
%

D = {(m, g)l Vi<p(((em- N (en)s # D) v ((em)+ Ney)- # D)) A gew}.
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CLamMm 1. Af = cBf for 0 < i< p. Indeed
qe(cB¥). < Je, [ B¥(m, g)ec-
< de, CB*An< p e, = A af() =1

< HeGTBr ~af(h=1  (by (1)
<> B, satisfies the tt-condition f;(q)
< geA4;.
Similarly (cB¥), = A;, since for no (m, q) one has e, _ Bf A (m, g)eD
(because ey, C BF). ’
CLAIM 2. VBePw  c¢B*ePow*.
Case 1. Bes/. Then e, [ B* for some i < p, hence
Vqaje {0, 1} () C B .
Now if a?(j} = 1 then ge(cB¥). else ge(cB*).. So (cB¥)_ U(cB*), = w.
If ge(cB*_ n(cB*), then @) =1 A a?() =0, a contradiction. Thus
cB* € Pw*.
Case 2. BesZ. Then by the definition of D it easily follows that cB*
={(Q, w)>e Po* u
4.2. Remarks. (i) By an even simpler technique one can also show that
if {B;};ev is @ set of isolated elements in (Pw, *) and for some recursive f

Vidk AF = w, B,

then for some ®e%}

Vid; = ®(B).

Moreover one may assume that dom(®) is not meager. (By assumption
3N ViB;¢o/y; let Bied, S o, for all i — this is possible since .=/, is also
closed. Then the following aePw? will do the job:

a. = {(mn p)l 3134((‘], p)e(wf(i))— A em = eq ue,,i) \4 (m = h, A pG(D)},V

a, = {(m, p)l idq ((‘1, P)e(a’f(i))+ A €y = € Qeni)}-

The last clause in the definition of a_ gives the non meagerness of
dom (®), making ¢ defined (equal w) on &) .

(i) In the same way as in (i), under similar assumptions, one can find
an interpolating ®c%%. By 2.6 (iv), ¢ may actually be taken in %,.

(iif) It is not difficult to see that 4.1 canriot be extended to a result as in
(i). (Take the B; a converging sequence and the 4;(<, B;) not converging.)
Also (i) cannot be strengthened by dropping the isolatedness or the
uniformity.
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Miller’s theorem for cell-like embedding relations
by

Frederick C. Tinsley (Colorado)

Abstract. Let G be an uppersemicontinuous cell-like decomposition of a boundaryless

manifold M" (n > 5) and g be the identification map. If we denote the inverse of g by R, then R
is a relation which assigns a cell-like set to each point of the decomposition space. J. W. Cannon
called R a cell-like embedding relation. We obtain a generalization of the approximation
theorem of R. T. Miller for embeddings of codimension three disks to a theorem for cell-like
embeddings of codimension three disks. We give applications to decomposition space theory.

0. Introduction. Much progress in the study of decompositions of mani-

folds resulted from J. W. Cannon’s novel idea of studying decompositions of
manifolds “in reverse”. Suppose M" is a topological n-manifold (n = 5)
without boundary and G is an uppersemicontinuous cell-like decomposition
of M". Cannon considered the inverse relation #~!: (M"/G) - M™. The image
of each point, =~*(y), is a cell-like set; also if x # y then (x™!(x) Nz~ ()
= (). Appropriately, Cannon called these objects cell-like embedding relations
and noted that they in many respects like functions. He developed this idea
into a theory; he used an approach in which results for functions are
generalized to results for cell-like relations ([Ca®, Appendix I7J). This theory
has been quite fruitful. F. Ancel and Cannon exploited it in using Stanko’s
process ([St?]) to prove a 1-LCC approximation theorem for embeddings of
codimension one manifolds ([An'] and [An-Ca]). D. L. Everett also used
this notion in obtaining embedding and product theorems for cell-like
decompositions ([Ev]).

At the same time Cannon was aware of a close relationship between

taming theory for embeddings and decompostion space theory. This. meant
that the 1-LC property, which is crucial for taming embeddings, would be
quite important also. Cannon generalized the 1-LC taming theorem for
embeddings of §""! in S" to obtain the following:

Tueorem ([Ca', Theorem 55)). If R: §"~' — 8" is a_cell-like embedding

relation such that S"—R(S"" ') is 1-LC at each point-image of R, then R
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