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Generalizations of Lasnev’s theorem
by
Jozef Chaber (Warszawa)
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Abstract. Lasnev’s theorem asserts that any closed mapping defined on a metric space can be
decomposed into the union of a perfect mapping and a mapping with a o-discrete range. We prove
that the theorem holds if the domain is a regular o-space or a Cech complete space satisfying certain
additional conditions. We construct examples showing that the assumption that the domain is a
Hausdorfl o-space or a p-space is not sufficient.

We investigate spaces X with the following property:
(%) for any Y and any closed mapping f: X =Y, Y=Y,u U Y,, where
nz1
f71(y) is compact for yeY, and Y, is closed and discrete in Y for n > 1.
It has been proved by La¥nev [L] that metric spaces satisfy (). A list of
generalizations of La¥nev’s result with exact references may be found in [B,
section 4] (see also [W1], [A] and [D]).

In the first section we prove that regular o-spaces satisfy (*) and construct a
Hausdorff ¢-space and a g-compact space which do not satisfy («).

In the second section we prove that in the class of Cech complete spaces (=)
is a consequence of the following property:

(*#) for any closed subset X’ of X and any closed mapping f of X’ onto a
compact space Y’, Frf~!(y) is compact for yeY'.

From the results of the first section (see [W1]), it follows that (*) does not
imply (%) in general.

The difficulties in replacing Cech completeness by the p-space property
seem to be connected with the fact that p-spaces are not preserved by perfect
mappings. We modify the example of a perfect mapping not preserving the p-
space property from [W2] in order to construct a p-space which does not satisfy
(%).

In the third section we discuss a property (') which is a weakening of (*)
obtained by replacing the condition of compactness in () by the Lindeldf
property. We obtain results explaining why the mappings in. the examples
constructed in the first two sections have the Lindelof fibers.
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We use the terminology and notation from [E]. All mappings arc assumed
to be continuous and onto. All spaces are assumed to be regular unless it is
stated otherwise.

A space X is said to be a a-space if it has a o-locally finite closed network
[0].

A space X is said to be a strong Z-space [N] if it has a sequence {&,},5 , of
locally finite closed collections and a cover . consisting of compact sets such
that if K e " and U is an open set containing K then K < E < U for a certain
Ee L>Jl &,. Any sequence {#,},> , satisfying the above conditions will be called a

nz

a-locally finite network for A

1. LaSnev’s theorem for o-spaces. The main result of this section is
TueoreMm 1.1. If X is a o-space, then X satisfies (x).
Proof. Let {¢,},>, be an increasing sequence of locally finite closed covers

of X such that () &, is a network of X.
nz1
) Forn > lput‘ F, = {f(E): Ecé,}and F,(y) = () [FeF,: yeF! . Since
Jis a closed mapping, it follows that &, and, consequently, {F,(y): y& Y} are
closure-preserving. Therefore, Y, = {ye ¥: Fy(y) = {y}} is closed and discrete
in Yfor n> 1. '

It remains to prove that f~'(y) is compact for ye Yy, where Yol
=1\ U ¥,

nz1

Fix a point yeY, and observe that

1) {F,(3)}>1 is a decreasing network on yin Y. Thus ye Y, and the fact
that Yis a Ejspace imply that each F,(y) is an infinite set. Therefore, we can
choose a sequence {y,},»; of distinct points of Ysuch that Va€F, (). F,rom the
definition of the sets F,(y) it follows that for n > m = l”. "

2) E€é, and Enf™'(y) # @ imply Enf~1(y,) % @.

We shall first show that f~1(y) has the Lindelof -property (in fact, a
countable network). This will follow from the fact that ’F‘e:"‘ :
Ean“l(y);é@} is finite for n > 1. e

ssume that for an m > 1 the above set is infinite LB, E G
distinct elements of &, intersecting f ™! (y). From 2) itef;III(?V\}: ltlj;e,t';;‘ fl;;’t11> :16
E,nf~*(y,) # @. Therefore, since f, is a closed mapping, {y,} doés/ 110;
have any accumulation point in Y. This is a contradiction, for 1) r;lzgv';s that this
;erc(l)lll)(g-lfye‘ converges to y. thc contradiction shows that f ~! (y) has the Lindelsf

Assume that f~!(y) is not compact. Then t ists :
family % of open subsets of X coverinI; S () suc}tlir}fateElst;n‘iltecﬁﬁgzbcl)ﬁl:’

the closures of elements of % covers F71(»). Thus we can construct an in-

o
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creasing sequence {Ucbes, of open subsets of X covering f~*(y) such that
)N U, \Uy # . _

Choose x,.ef “*(3) N Uyy 1 \Uy and E,€é,, for an m > m_, such that
x.€E, = X\U,.By virtue of 2), E, nf ™! () # 9. Let z, be an element of this

intersection. The sequence { f (z)}x» 1, s a subsequence of {y,},» 1, converges to
y. Thus {z,},>  has an accumulation point z&f ™' (y). Then ze U, for a certain
ko 2 1 and x.¢U,, for k > ko. The contradiction shows that f~ L) is
compact.

CoroLLARY 1.1 [W1]. Moore spaces satisfy (%).

Remark 1.1. A space obtained by adding to a countable discrete space N a
maximal family of almost disjoint infinite subsets of N [E,3.0.1] is a o-space (in
fact, a Moore space) which does not satisfy () [K]. Thus (x) does not imply: (**)
in general. However, there is a connection between () for o-spaces and some
properties of the type (+#), for the last part of our proof, showing that f ~* () is
compact provided that it has the Lindeldf property, can be deduced by
considering the restriction of fto X' =f~*(y)u U f~*(y,) and using either

nz1

Lemma 3.7 from [WW] or, as observed by T. Przymusiniski, the fact that any
countable discrete collection of points of f ~*(y) has an expansion open and
discrete in X' [SA].

We shall illustrate Theorem 1.1 by constructing two spaces which can be
mapped onto the interval I = [0, 1] by a closed mapping with no compact
fibre. Thus these spaces will not satisfy (x). The spaces will be obtained by
modifying the topology of I x I and the mapping will be the projection onto the
first factor. The modifications resemble the construction of the Alexandroff
double circle [E,3.1.G]. ]

The first example shows that Theorem 1.1 does not hold for Hausdorff o~
spaces. :

Exampve 1.1, A Hausdorff space X with a countable network and a closed
mapping f of X onto the interval with no compact fibre.

The space X is obtained from I x I by adding to the collection of the closed
subsets all the sets of the form {s} x (0, 1]. Clearly, X and the projection fof X
onto the first factor have the above properties. ‘

The next example shows that (*) does not hold for o-compact spaces. In
particular, it follows that (x) does not hold for strong Z-spaces.

ExaMmpLE 1.2. A ocompact space X having a closed mapping f onto the
interval with no compact fibre.

The space X is I xI with a topology such that the intervals of the form
{s} x(0, 1] are open subsets of X and have their usual topology while the base of
neighbourhoods of (s, 0)& X consists of the sets of the form V'xI\({s} x (0, 1),
where V is a neighbourhood of s in I.

It is easy to check that I x ({0} w [1/n, 1]) is a compact subset of X. Thus X
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is a g-compact space. Clearly, the projection f of X onto the lirst factor is o
closed mapping.
Observe that the space X is not a perfect preimage of any g-space.
ProBrem 1.1. Do perfect preimages of o-spaces satisfy (%)?
Do perfect strong Z-spaces satisfy (%)? (see [Chl,3.3]).

2. LaSney’s theorem for Cech complete spaces. We shall usc property (#x)
in order to generalize and unify the known results asserting that Cech complete
spaces satisfying certain additional conditions satisfy (x).

Assume that /: X — Y is a closed mapping and # is an open cover of X,
Let Y (%) denote the set of points ye& ¥ such that no finite subcollection of #
covers f~1(y).

Lemma 2.1 If Fr f~'(y) is compact for yeY, then Y(#) is closed and
discrete in Y.

Proof. If ' is a finite subcollection of # covering Fr f~!(y), then
{y}. Uy eY f7(y) < U %'} is a neighbourhood of y containing at most one
point of Y(%).

TreoreM 2.1. If a Cech complete space X satisfies (xx), then X satisfies (x).

Proof. Letf: X — Y be a closed mapping and let {#,},,, be a complete
sequence of open covers of X [E,3.9.2].
. PutA Y, = Y(”Z{") and observe that Lemma 2.1 and (xx) imply that the
Intersection of ¥, with any compact subset of Yis finite. Since Yis a k-space, it
follows that ¥, is closed and discrete in Y. ,

IfyeY, = Y\nL>j1 Y,, then £~ (y) has a complete sequence consisting of

finite open covers, which implies that f~1(y) is compact.

) ldSpac:es satisfying (+) are discussed in [SA,1.10]. In particular, Theorem 2.1
yields

CoroLLary 2.1 [D,3.8]. Dieudonné complete, Cech complete spaces satisfy

(#).

CoroLLARY 2.2. If countably compact closed subsets of a normal Cech

complete space X are compact, then X satisfies (x).
Using the method of proof of Lemma 3.7 from WW
: h . , one can s
meta-Lindeldf spaces satisfy (x). This gives (see [[A]) : an show that
CoroLLARY 2.3. Meta-Lindelsf Cech complete spaces satigfy ().
For locally compact spaces we obtain
THEOREM 2.2. If a locally compact s i :
pace X satisfies (++) and f* X — Yis
closed mapping, then the set of the points ye Y such - is e s
, th 1 i
closed and discrete in Y, Y et that J 7Oy is o compactis
The difficulties in extending

the above 1
illustrated by the following results to the class of p-spaces are
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ExampLE 2.1. A p-space X and a closed mapping f: X — Y such that
Fr £~ '(y) is compact for y € ¥ but the set of the points xe Y such that f ~1(y)is
not compact is not g-discrete in Y,

Let Y be a space obtained by adding to an uncountable discrete space
D a maximal almost disjoint family 4 of countable subsets of D. The topology
of Y'is such that the points of D are isolated and each neighbourhood of § €4
contains all but a finite number of points of 4 < D [E,3.61].

Consider X = Yx M\(Dx |0}), where M is a sequence convergent to the
point 0.

The fact that X is a p-space can be proved as in [W2] or [Ch2,3.2].

The projection fof X onto Y is a closed mapping and Fr £~ !(y) is compact
for ye Y. The set D of the elements of Y with a noncompact inverse image is not
g-discrete in Y because, by virtue of the maximality of 4, no infinite subset of D
is closed in Y. ’

Observe that the space X does not have property (x#) because the
composition of f and a mapping identifying 4 to a point maps X onto the
Alexandroff compactification of D and the only non-isolated fibre of this
composition has the noncompact boundary.

Applying the method of proof of Theorem 2.1, one can deduce that X is not
Cech complete. We do not know any example showing that (++) is essential in
Theorem 2.1.

We conjecture that in the class of submetacompact (= 0-refinable) p-spaces
property (*x) implies (). This conjecture is supported by the fact that
submetacompact p-spaces are preserved by perfect mappings [W2]. In fact, one
can modify the proof of this fact in order to show that any closed mapping f
defined on a submetacompact p-space has a decomposition as in () if the
boundaries of the fibres of f are compact.

3. A weak form of Lasnev’s theorem. The mappings defined in the examples
of the first section have Lindeldf fibres. This fact can be explained by the
following two propositions, which can be deduced from the first part of the
proof of Theorem 1.1.

ProrosiTioN 3.1. If X is a T, o-space, then X satisfies (*) (we do not assume
that the Lindeldf fibres are regular).

ProposITION 3.2. If X is a strong Z-space and f:- X — Yis a closed mapping,
then the set of yeY such that f~*(y) does not have the Lindeldf property is
contained in a countable union of closed subsets of Y having a closure-preserving
cover by finite sets and, consequently, is weakly o-discrete [Y].

If X is a k-space, then one can use the reasoning from [F] in order to
improve Proposition 3:2 (in fact, it is.sufficient to assume that X is an av-space
L7D.

PrOPOSITION 3.3. If a k-space X is a strong Z-space, then X satisfies (¥').


GUEST


90 J. Chaber

Proof. Let o be a cover of X consisting of compact sets and Jet {&,},5;

be a o-locally finite network for .

Denote by Y, the set of the points ye Ysuch that {Eed,: Enf "' (y) # &)
is infinite. ' '

If'Y, is not a discrete closed subset of Y, then from the fact that Yis a k-
space it follows that Y, contains a countable subset {y,: m = 1} which is not
closed in Y. This is a contradiction, for one can find a sequence {E,},s, of
distinct elements of &, such that E,, nf ™! (y,) # @ and fis a closed mapping.

It is easy to see that y¢ ) Y, implies that f~*(y) has the Lindeldf

nz1
property. .
The following example shows that locally finite collections cannot be
replaced by closure-preserving collections in Propositions 3.2 and 3.3.

ExampLE 3.1. A paracompact space X with a closure-preserving cover by
compact sets and a closed mapping f of X onto the interval with no Lindeldf
fibre.

The space X is obtained from the space X constructed in Example 1.2 by
isolating the points of Ix(0, 1]. For each te(0, 1], the set K, = I x {0, ¢} is a
compact subset of X and {K,: t(0, t]} forms a closure-preserving cover of X

It is easy to check that the projection fof X onto the first factor is a closed
mapping and the fibres of f do not have the Lindelof property.

The reasoning used in the proof of Theorem 2.1 gives

Prorostrion 34. If a p-space X satisfies (xx), then X satisfies ().

The same reasoning explains why the mapping f defined in Example
2.1 has Lindeldf fibres.

Observe that, by virtue of Proposition 3.3, subparacompact p-spaces
satisfy (+). T

ProsLEm 3.1. Do subparacompact p-spaces satisfy (*)?

Do perfect preimages of Moore spaces satisfy (*)?

Do perfectly subparacompact p-spaces satisfy (*)?
. (see [Ch1,3.2]).
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