STUDIA MATHEMATICA, T. LXXV. (1983)

Superspaces of (s) with basis

bу

LASSE HOLMSTRÖM (Helsinki)

Abstract. The sequence space (s) is characterized as the unique nuclear Fréchet space F with basis and a continuous norm such that when F is isomorphic to a subspace of a nuclear Fréchet space E with a basis (x_n) , then a subsequence of (x_n) generates a subspace isomorphic to F. Variations of this result are considered in the context of stable D_1 and D_2 spaces.

- 1. Introduction. A superspace of (s), the space of rapidly decreasing sequences, is a nuclear Fréchet space which contains a subspace isomorphic to (s). The simplest way to construct such a space is to take an arbitrary nuclear Fréchet space E and form the cartesian product $E \times (s)$. We will show that if the superspace is assumed to have a basis, it actually always has this simple form. In fact, the basis of the superspace can be divided into two disjoint subsequences one of which generates a (necessarily complemented) subspace isomorphic to (s). Among nuclear Fréchet spaces with basis and a continuous norm this property of superspaces characterizes (s). We make a generalization to arbitrary stable D_1 spaces and consider as a natural dualization a stable D_2 space as a quotient space.
- **2. Preliminaries.** If not otherwise stated, the subscripts and superscripts appearing are assumed to run through $N = \{1, 2, ...\}$. The symbol K stands for the scalar field (real or complex numbers).

We refer to [12], [3] and [8] for the undefined concepts and the basic results used.

Let E be a nuclear Fréchet space and let the topology of E be defined by an increasing sequence (p_k) of seminorms. Suppose the sequence (x_n) of E is a basis, that is, for every $x \in E$ there is a unique sequence (ξ_n) of scalars such that

$$(1) x = \sum_{n} \xi_n x_n.$$

By the absolute basis theorem ([12], 10.2.1) (x_n) is absolute, i.e. in (1),

$$\sum_{n} |\xi_{n}| \, p_{k}(x_{n}) < \infty$$

for all k. Denote $a_n^k = p_k(x_n)$,

(2)
$$K(a) = \{(\xi_n) \in K^N | |(\xi_n)|_k = \sum_n |\xi_n| a_n^k < \infty \ \forall k \}.$$

If the sequence space K(a) is equipped with the topology defined by the seminorms $|\cdot|_k$, then the assignment $x \mapsto (\xi_n)$ defines an isomorphism $E \rightarrow K(a)$. The space K(a) is called the Köthe space associated with E, (x_n) . The infinite matrix $a=(a_n^k)$ is called a Köthe matrix representing (x_n) and it has the properties $0 \leqslant a_n^k \leqslant a_n^{k+1}$, $\sup_k a_n^k > 0$, for each k there is l with $(a_n^k/a_n^l) \in l_1$ (we agree 0/0 = 0). Conversely, every such matrix defines through (2) a nuclear Fréchet space with (e_n) , the sequence of coordinate vectors, as a basis. In particular, $(s) = K(n^k)$.

Consider another Köthe space

$$K(b) = \{(\eta_n) | \sum_{n} |\eta_n| b_n^k < \infty \, \forall k \}$$

and let $T: K(b) \rightarrow K(a)$ be a continuous linear mapping. If T is represented by the matrix (t_{in}) , that is,

$$Te_n = \sum_i t_{in} e_n$$
,

then the adjoint $T': K(a)' \rightarrow K(b)'$ is represented by the transpose of the matrix (t_{in}) ,

$$T'e'_i = \sum_n t_{in}e'_n$$
.

Here (e'_i) (resp. (e'_n)) is the sequence of coordinate functionals of the coordinate basis (e_i) of K(a) (resp. (e_n) of K(b)). One easily checks that (e'_i) and (e'_n) are weak bases. We will use the identifications

$$K(a)' = \{(\xi_n) | \exists k, C \colon |\xi_n| \leqslant Ca_n^k\}, \quad K(b)' = \{(\eta_n) | \exists k, C \colon |\eta_n| \leqslant Cb_n^k\}.$$

Here C denotes a positive constant. Now

$$T'(\xi_i) = \left(\sum_i t_{in} \xi_i\right)_n.$$

In comparing two Köthe matrices (a_n^k) and (b_n^k) we use the following notations: $(a_n^k) \lesssim (b_n^k)$ means for all k there is l with $(a_n^k/b_n^l) \in l_{\infty}$, $(a_n^k) \sim (b_n^k)$ means $(a_n^k) \lesssim (b_n^k)$ and $(b_n^k) \lesssim (a_n^k)$. If $(a_n^k) \sim (b_n^k)$, then K(a) = K(b).

A Köthe matrix (a_n^k) is regular if the sequence (a_n^k/a_n^{k+1}) is non-increasing for every k. We say that (p_n^k) is a D_1 matrix if it is regular, $p_n^1 = 1$ and $((p_n^k)^2) \lesssim (p_n^k)$. Correspondingly, (q_n^k) is a D_2 matrix if it is regular, $q_n^k > 0$, $\lim q_n^k = 1$ and $(q_n^k) \lesssim ((q_n^k)^2)$. The definitions of the types D_1 and D_2 are equivalent to those in [1].

Let E be a locally convex space and denote by \mathscr{U}_E its neighborhood basis at 0 consisting of barrels. Denote by $d_n(V, U)$ (n = 0, 1, 2, ...)the n^{th} Kolmogorov diameter of $V \in \mathcal{U}_E$ with respect to $U \in \mathcal{U}_E$. Suppose (p_n^k) is a D_1 matrix. We say that E is K(p, N)-nuclear if for every U and k there is V such that $(p_n^k d_{n-1}(V, U))_n \in l_{\infty}$. If (q_n^k) is a D_n matrix, E is said to be K(q)-nuclear if for every U there is V and k such that $((1/q_n^k)d_{n-1}(V, U))_n \in l_{\infty}$. The K(p, N)-nuclearity was introduced in [13] -with the type G_{∞} in place of D_1 . These two types are however equivalent and so are, respectively, G_1 and D_2 ([14], [16]). The above definition of K(q)-nuclearity is consistent with the general concept of λ -nuclearity ([4], [15]).

A locally convex space E is stable if $E \times E \simeq E$. If (p_n^k) is a D_1 matrix, the stability of K(p) is equivalent to $(p_{2n}^k) \lesssim (p_n^k)$ and if (q_n^k) is a D_2 matrix, the stability of K(q) is equivalent to $(q_n^k) \lesssim (q_{2n}^k)$ (see [17]); we also call the Köthe matrix in question stable.

The following is proved in [5]:

PROPOSITION 2.1. (i) If (p_n^k) is a stable D_1 matrix, K(a) is K(p, N)nuclear and $a_n^1 = 1$, then there is a strictly increasing sequence (i_n) of indices such that $(p_n^k) \lesssim (a_{i_n}^k)$ and $\sup i_n/n < \infty$.

(ii) If (q_n^k) is a stable D_2 matrix, K(a) is K(q)-nuclear and $0 < a_n^k < 1$, then there is a strictly increasing sequence (i_n) of indices such that $(a_{i_n}^k) \lesssim (q_n^k)$ and $\sup i_n/n < \infty$.

We will also need an important result from combinatorics called Hall's

THEOREM 2.2. (Hall) Let A be a set and suppose $(A_i)_{i\in I}$ is a family of finite subsets of A. There is a system of distinct representatives $a_i \in A_i$, $i \in I$, if and only if the following condition is satisfied: for all distinct $i_1, \ldots, i_k \in I$ the set $A_{i_1} \cup \ldots \cup A_{i_k}$ has at least k elements.

For a proof and a thorough discussion of theorems of this type we refer to [9].

3. Superspaces of (s). We begin with a general result on imbedding one nuclear Fréchet space with basis into another.

PROPOSITION 3.1. Let E and F be nuclear Fréchet spaces with bases (x_n) and (y_n) , respectively and suppose F has a continuous norm. If F is isomorphic to a subspace of E, then there are representations (a_n^k) and (b_n^k) of (x_n) and (y_n) , respectively, such that for each k there is an injection $n\mapsto j_n^k$ and scalars $\mu_n^k > 0$ with

$$b_n^k \leqslant \mu_n^k a_{j_n^k}^{k+1}, \quad n \in \mathbf{N},$$

(ii)
$$\mu_n^k a_{j_n^k}^l \leqslant b_n^{l+1}, \quad l, n \in \mathbf{N}.$$

Proof. Let (c_n^k) and (d_n^k) , $d_n^k > 0$, be representations of (x_n) and (y_n) , respectively, and let $T: K(d) \to K(e)$ be an imbedding (i.e. isomorphism into) represented by a matrix (t_{in}) . Set

$$U_k^* = \{(\xi_n) \in K(c) | \sup_n |\xi_n| c_n^k \leq 1\}, \quad V_k^* = \{(\eta_n) \in K(d) | \sum_n |\eta_n| d_n^k \leq 1\}.$$

It is a consequence of nuclearity that the scalar multiples of the neighborhoods U_k^* form a neighborhood basis of $0 \in K(e)$. Since T is an imbedding, there are strictly increasing sequences (j_k) and (l_k) of indices and decreasing sequences (C_k) and (D_k) of positive constants such that

(3)
$$T(D_{k+1}V_{j_{k+1}}^*) \subset T(K(d)) \cap (C_kU_{l_k}^*) \subset T(D_kV_{j_k}^*)$$

for all k. Set $a_n^k = C_k^{-1} c_n^{i_k}$, $b_n^k = D_k^{-1} d_n^{i_k}$. We may assume that $a_n^{k+1}/a_n^k \ge 2$. Let $U_k = C_k U_{i_k}^k$, $V_k = D_k V_{i_k}^k$. Then

$$U_k^{\bigcirc} = \big\{ (\xi_n) \in K(a)' \big| \ \sum_n (|\xi_n|/a_n^k) \leqslant 1 \big\}, \qquad V_k^{\bigcirc} = \{ (\eta_n) \in K(b)' | \ |\eta_n| \leqslant b_n^k \}.$$

By (3),

$$(4) T(V_{k+1}) \subset T(K(b)) \cap U_k \subset T(V_k).$$

Polarizing the right side of (4) we get

$$(T(K(b)) \cap U_k)^{\circ} \supset (T')^{-1}(V_k^{\circ})$$

which by the surjectivity of T' gives

$$V_k^{\bigcirc} \subset T'(T(K(b)) \cap U_k)^{\bigcirc}$$
.

It then follows from the Hahn-Banach theorem that

$$(5) V_k^{\circ} \subset T'(U_k^{\circ}).$$

From (4) we also obtain

$$\sum_{n} |\eta_{n}| b_{n}^{k} \leqslant \sup_{i} \Big| \sum_{n} t_{in} \eta_{n} \Big| a_{i}^{k} \leqslant \sum_{n} |\eta_{n}| b_{n}^{k+1}$$

for all $(\eta_n) \in K(b)$. Setting $(\eta_n) = e_n$ we get

$$(6) b_n^k \leqslant \sup |t_{in}| a_i^k \leqslant b_n^{k+1}.$$

Fix now k and define

$$I_n = \{i \mid b_n^k \leqslant 2 | t_{in} | a_i^k \}.$$

By (6) the set I_n is non-empty and since $\lim_{i} |t_{in}| a_i^k = 0$ and $b_n^k > 0$, I_n is finite. We will show that the family $(I_n)_{n \in \mathbb{N}}$ satisfies the condition of Theorem 2.2.

Consider a union $I=I_{n_1}\cup\ldots\cup I_{n_{m+1}}$, where n_1,\ldots,n_{m+1} are distinct and $m\geqslant 1$. We assume that $I=\{i_1,\ldots,i_q\}$ with $q\leqslant m$ and show that this leads to a contradiction. Denote $D=\{z=(z_1,\ldots,z_{m+1})\in K^{m+1}|\ |z_s|\leqslant b_{n_q}^k\}$. Note that since $b_{n_q}^k>0$, the set D is a compact neighborhood of $0\in K^{m+1}$. Pick $z\in D$ and define $(n_n)\in V_{\nu}^k$ by

$$\eta_n = \begin{cases} z_s, & n = n_s, \\ 0, & n \notin \{n_1, \dots, n_{m+1}\}. \end{cases}$$

By (5) there is $(\xi_i) \in U_k^{\circ}$ with $(\eta_n) = T'(\xi_i)$. Hence,

$$z_s = \eta_{n_s} = \sum_i t_{in_s} \xi_i = \sum_{i \in I} t_{in_s} \xi_i + \sum_{i \notin I} t_{in_s} \xi_i, \quad s = 1, \dots, m+1.$$

Denote $u_p = (t_{i_p n_1}, \ldots, t_{i_p n_{m+1}}) \in K^{m+1}, \quad p = 1, \ldots, q, \quad w_s = \sum_{i \notin I} t_{i n_s} \xi_i,$ $w = (w_1, \ldots, w_{m+1}) \in K^{m+1}.$ Then

$$z = (z_1, \ldots, z_{m+1}) = \sum_{p=1}^{q} \xi_{i_p} u_p + w.$$

Here

$$\begin{split} |w_s| \leqslant & \sum_{i \not\in I} |t_{in_S}| \; |\xi_i| \leqslant \sum_{i \not\in I_{n_S}} |t_{in_S}| \; |\xi_i| = \sum_{i \not\in I_{n_S}} |t_{in_S}| \; a_i^k(|\xi_i|/a_i^k) \\ \leqslant & \left(\sum_i |\xi_i|/a_i^k \right) \sup_{i \not\in I_{n_S}} |t_{in_S}| a_i^k \leqslant \frac{1}{2} b_{n_S}^k, \end{split}$$

where the last estimate follows from $(\xi_i) \in U_0^{\wedge}$ and the definition of I_{n_s} . Thus, $w \in \frac{1}{2}D$. Since z was arbitrary, $D \subset L + \frac{1}{2}D$, where $L = \sup\{u_1, \ldots, u_q\}$ is a subspace of K^{m+1} of dimension at most $q \leq m$. That this is impossible can be seen for example by polarizing, $L^{\circ} \cap D^{\circ} \subset \frac{1}{2}D^{\circ}$, and choosing a linear form $z' \in (K^{m+1})'$ with $L \subset \operatorname{Ker}(z')$, $\max\{|\langle z, z' \rangle| \mid z \in D\} = 1$.

Applying now Theorem 2.2 we choose distinct representatives $j_n^k \in I_n$, $n \in \mathbb{N}$. By the definition of I_n and the assumption $a_n^{k+1}/a_n^k \geqslant 2$ we then obtain

$$b_n^k \leqslant 2|t_{j_n^{kn}}|a_{j_n^k}^k \leqslant |t_{j_n^{kn}}|a_{j_n^k}^{k+1}, \quad n \in \mathbf{N}.$$

Setting $\mu_n^k = |t_{j_n^{kn}}|$ we get (i). For (ii) we use the right side of (6),

$$\mu_n^k a_{j_n^l}^l = |t_{j_n^{kn}}| a_{j_n^k}^l \leqslant \sup_i |t_{in}| a_i^l \leqslant b_n^{l+1}, \qquad l, \ n \in \mathbb{N}. \quad \blacksquare$$

COROLLARY 3.2. Suppose a nuclear Fréchet space F with a basis (y_n) and a continuous norm is isomorphic to a subspace of a nuclear Fréchet space F with a basis (x_n) . Then there are representations (a_n^k) and (b_n^k) of (x_n) and (y_n) , respectively and injections $n\mapsto j_n^k$, $k\in \mathbb{N}$, such that

(7)
$$\frac{a_{j_{n}}^{k-1}}{a_{j_{n}}^{l+1}} \leqslant \frac{b_{n}^{k}}{b_{n}^{l}} \leqslant \frac{a_{j_{n}}^{k+1}}{a_{j_{n}}^{l-1}}, \quad n \in \mathbb{N}, k, l \geqslant 2.$$

Proof. Using the notations of Proposition 3.1 we obtain

$$\frac{a_{j_{l}}^{k-1}}{a_{j_{n}}^{l+1}} = \frac{\mu_{n}^{l} a_{j_{n}}^{k-1}}{\mu_{n}^{l} a_{j_{n}}^{l+1}} \leqslant \frac{b_{n}^{k}}{b_{n}^{l}} \leqslant \frac{\mu_{n}^{k} a_{j_{n}}^{k+1}}{\mu_{n}^{k} a_{j_{n}}^{l-1}} = \frac{a_{j_{n}}^{k+1}}{a_{j_{n}}^{k}} \quad \text{for} \quad n \in \mathbb{N}, \, k, \, l \geqslant 2. \quad \blacksquare$$

Formula (7) could be regarded as a refinement of Dubinsky's fundamental inequality for subspaces ([3], III (1.3)) in that now the sequences $(j_n^k)_n$ are known to have no repetitions. For a similar result in a different context see [7], Lemma 5.*

THEOREM 3.3. Let E be be a nuclear Fréchet space with a basis (x_n) . If (s) is isomorphic to a subspace of E, then a subsequence of (x_n) generates a subspace isomorphic to (s).

Proof. Let (a_n^k) and (b_n^k) be representations of (x_n) and the coordinate basis of (s), respectively, as in Proposition 3.1. Since $(b_n^k) \sim (n^k)$, there is k_0 such that $b_n^{k_0} \ge 1$ for sufficiently large n. Set $j_n = j_n^{k_0}$, $\mu_n = \mu_n^{k_0}$. By (i) of Proposition 3.1, $\mu_n a_{j_n}^{k_0+1} \ge 1$ for large n. Since $n \mapsto j_n$ is injective, $K(\mu_n a_{j_n}^k)$ is nuclear. Now $K((n^k), N)$ -nuclearity is just ordinary nuclearity so that we can apply (i) of Proposition 2.1 to find a strictly increasing sequence (i_n) with $(n^k) \lesssim (\mu_{i_n} a_{j_n}^k)$, $\sup_i j_n / n < \infty$. Thus,

$$(n^k) \lesssim (\mu_n a_{i_n}^k) \lesssim (b_{i_n}^k) \sim \left((i_n)^k \right) \lesssim (n^k),$$

where the second estimate follows from (ii) of Proposition 3.1. Hence, $(s) = K(\mu_{i_n} a_{i_{i_n}}^k) \simeq \overline{\operatorname{sp}}(x_{i_n})$.

Remark 3.4. The previous theorem shows in particular that if $T: (s) \rightarrow E$ is an imbedding, then T((s)) is isomorphic to a complemented subspace of E. It may however happen that T((s)) itself is not complemented. For the details of the following example we refer to ([10], Chapter 7).

Denote by $C_0^{\infty}[-1,1]$ the space of infinitely differentiable functions on the closed interval [-1,1] which vanish together with all their derivatives at the endpoints. When equipped with the topology of uniform convergence in all derivatives on [-1,1] this space is isomorphic to (s). By E. Borel's theorem the mapping

$$S: C_0^{\infty}[-1,1] \to K^N, \quad S(f) = (f^{(n)}(0))_n$$

is surjective; of course it is continuous and linear. There is a natural isomorphism

$$S^{-1}(0) \simeq C_0^{\infty}[-1, 0] \times C_0^{\infty}[0, 1].$$

Also, $C_0^{\infty}[-1,0] \simeq C_0^{\infty}[0,1] \simeq (s)$ so that $S^{-1}(0) \simeq (s)$. If $S^{-1}(0)$ were complemented, $C_0^{\infty}[-1,1] = S^{-1}(0) \oplus G$, then S|G would be an isomorphism $G \to K^N$ (by the open mapping theorem) which is absurd since G has a continuous norm but K^N has not.

Next we show that the property of superspaces of (s) demonstrated in Theorem 3.3 in fact characterizes (s) among nuclear Fréchet spaces with basis and a continuous norm.

PROPOSITION 3.5. Suppose the nuclear Fréchet space F with basis and a continuous norm has the following property: if F is isomorphic to a subspace of a nuclear Fréchet space E with a basis (x_n) , then a subsequence of (x_n) generates a subspace isomorphic to F. Then F is isomorphic to (s).

Proof. By [2] or [6] F is isomorphic to a subspace of $(s)^N$. A basis of $(s)^N$ is given by the family $(e_{mn}), e_{mn} = (0, \ldots, 0, e_n, 0, \ldots)$, where e_n appears in the m^{th} place. Let

$$V_k = \left\{ (\eta_n) \in (s) \middle| \sum_n |\eta_n| n^k \leqslant 1 \right\}$$

and set $W_k = (V_k)^k \times (s)^N$. Then (W_k) is a neighborhood basis of $0 \in (s)^N$ and it gives rise to a representation (a_{mn}^k) of (e_{mn}) ,

(8)
$$a_{mn}^{k} = \begin{cases} n^{k}, & 1 \leq m \leq k, n \in \mathbb{N}, \\ 0, & m > k. \end{cases}$$

By hypothesis, there is an injection $i \mapsto (m(i), n(i))$ such that $K(a^k_{m(i),n(i)}) \simeq F$. Since F has a continuous norm, there is k_0 with $a^{k_0}_{m(i),n(i)} > 0$ for all i. This implies by (8) that $m(i) \leq k_0$. Hence $F \simeq K(n(i)^k)$, where each value n(i) is repeated at most k_0 times. It then follows that $F \simeq A_{\infty}(a)$, where $\alpha = (a_n)$ is a nuclear exponent sequence of infinite type, i.e. sup $\log n/a_n < \infty$. It remains to be shown that $\sup a_n/\log n < \infty$.

^{*}Added in proof: Kondakov has recently reported a result essentially equivalent to Proposition 3.1.

147

We assume that $\sup_{n} a_n/\log n = \infty$ and show that this leads to a contradiction. Choose a strictly increasing sequence (n_i) of indices such that $n_1=1$ and

(9)
$$a_{n,-1+1} < (1/i) a_n, \quad i \ge 2,$$

$$i^2 \log n_i \leqslant a_n, \quad i \in N.$$

Then define $m_i = \min\{m|(1/i)\,a_{n_i} \leqslant a_m\}$. Note that $m_1 = 1$ and by (9) and the definition of m_i ,

$$(11) n_{i-1}+1 < m_i \leqslant n_i, \quad i \geqslant 2,$$

(12)
$$a_{m_i-1} < (1/i) a_{n_i} \leqslant a_{m_i}, \quad i \in \mathbb{N}.$$

Set $N_1 = \bigcup_{i=1}^{\infty} \{n \in \mathbb{N} | m_i \leqslant n \leqslant n_i\}$ and $N_2 = \mathbb{N} \setminus N_1$. Note that by (11), N_2 is infinite. Denote by (α_n^1) and (α_n^2) the subsequence of α corresponding to N_1 and N_2 , respectively, that is,

$$a^1$$
: a_1 , a_{m_2} , a_{m_2+1} , ..., a_{n_2} , a_{m_3} , a_{m_3+1} , ..., a_{n_3} , a_{m_4} , ..., a^2 : a_2 , a_3 , ..., $a_{m_{n-1}}$, $a_{n_{n+1}}$, $a_{n_{n+2}}$, ..., $a_{m_{n-1}}$, $a_{n_{n+1}}$, ...

Trivially, $\Lambda_{\infty}(a) \simeq \Lambda_{\infty}(a^1) \times \Lambda_{\infty}(a^2)$. Now a^1 is of finite type. In fact, for any n, $a_n^1 = a_{m_i+j}$ for some i and $j \geqslant 0$, $n \leqslant m_i+j \leqslant n_i$, so that by (12) and (10),

$$\left|rac{a_n^1}{\log n} \geqslant rac{a_{m_i}}{\log n_i} \geqslant rac{a_{n_i}}{i} \cdot rac{1}{\log n_i} \geqslant rac{i^2 \log n_i}{i \log n_i} = i.
ight.$$

Consequently, $\lim_n a_n^1/\log n = \infty$. By ([3], III (2.4.5)) there is a stable finite type exponent sequence (β_n) such that $\sup_n \beta_n/a_n^1 < \infty$ so that by ([3], III (2.4.4)) there is an imbedding $A_\infty(a^1) \to A_1(\beta)$. It follows that $A_\infty(a) \simeq F$ is isomorphic to a subspace of $A_1(\beta) \times A_\infty(a^2)$. By the hypothesis, a subsequence of the basis of $A_1(\beta) \times A_\infty(a^2)$ (the union of the coordinate bases of $A_1(\beta)$ and $A_\infty(a^2)$) generates a subspace isomorphic to $A_\infty(a)$. This subsequence contains only finitely many basis vectors of $A_1(\beta)$ since otherwise $A_\infty(a)$ would contain a subspace isomorphic to a finite type power series space and this is impossible ([3], III (2.4.3)). Thus $A_\infty(a)$ is isomorphic to a subspace of $L \times A_\infty(a^2)$, where L is a finite dimensional subspace of $A_1(\beta)$. If dim $L = n_0$, we obtain by computing the Kolmogorov diameters both in $A_\infty(a)$ and $L \times A_\infty(a^2)$ and using ([3], I (6.2.2)) that $a_n^2 \leq Ca_{n+n_0}$, $n \in \mathbb{N}$, where C is a constant. But suppose $i \geq n_0 + 2$ and that $a_n^2 = a_{n_i+1}$. Since $n \leq m_i - i + 1$ we get by (12),

$$rac{a_n^2}{a_{n+n_0}} = rac{a_{n_i+1}}{a_{n+n_0}} \geqslant rac{a_{n_i+1}}{a_{m_i-1}} \geqslant rac{a_{n_i}}{a_{m_i-1}} > i$$
 .

Thus we arrive at the contradiction $\sup a_n^2/a_{n+n_0} = \infty$.

Remark 3.6. Proposition 3.5 holds if we only assume that F is isomorphic to a complemented subspace of any of its superspaces. In fact, if F is isomorphic to a complemented subspace of $(s)^N$, we can use ([1], Theorem 2.2) to obtain a mapping $i\mapsto (m(i), n(i))$ (not necessarily injective) such that $F'\simeq K(a^k_{m(i),n(i)})$ and, as before, $m(i)\leqslant k_0$. By the nuclearity of F each value n(i) occurs only for finitely many different i so that $F'\simeq \Lambda_\infty(a)$. We conclude that $\Lambda_\infty(a)$ is isomorphic to a complemented subspace of $\Lambda_1(\beta)\times \Lambda_\infty(a^2)$. By ([11], Proposition II. 1.6) there is n_0 and a continuous linear surjection $\Lambda_\infty(a^2)\to \Lambda_\infty((a_n)_{n\geqslant n_0})$. The contradiction follows from ([3], I (6.2.3)).

4. A generalization and a dualization. We get immediately the following generalization of Theorem 3.3.

THEOREM 4.1. Let (p_n^k) be a stable D_1 matrix and suppose E is a K(p, N)-nuclear Fréchet space with a basis (x_n) . If K(p) is isomorphic to a subspace of E, then a subsequence of (x_n) generates a subspace isomorphic to K(p).

Proof. Let (a_n^k) and $(b_n^k) \sim (p_n^k)$ be representations of (x_n) and the coordinate basis of K(p), respectively as in Proposition 3.1. As in Theorem 3.3, we find k_0 , an injection $n \mapsto j_n$ and scalars $\mu_n > 0$ such that $\mu_n a_{j_n}^{k_0+1} \geqslant 1$ for large n. Since $K(\mu_n a_{j_n}^k)$ is K(p, N)-nuclear, there is a strictly increasing sequence (i_n) with $(p_n^k) \lesssim (\mu_{i_n} a_{j_n}^k)$, $\sup i_n/n < \infty$. Thus,

$$(p_n^k) \lesssim (\mu_{i_n} a_{j_{i_n}}^k) \lesssim (b_{i_n}^k) \sim (p_{i_n}^k) \lesssim (p_n^k),$$

where in the second estimate (ii) of Proposition 3.1 was used and the last one follows from the stability of (p_n^k) and the fact that $(p_n^k)_n$ is non-decreasing.

To obtain a dualization of the previous theorem we first prove the quotient space analogue of Proposition 3.1.

PROPOSITION 4.2. Let E and F be nuclear Fréchet spaces with bases (x_n) and (y_n) , respectively, and suppose F has a continuous norm. If F is isomorphic to a quotient space of E, then there are representations (a_n^k) and (b_n^k) of (x_n) and (y_n) , respectively, such that for each k there is an injection $n \mapsto m_n^k$ and scalars $v_n^k > 0$ with

$$\nu_n^k a_{m^k}^k \leq b_n^{k+1}, \quad n \in \mathbb{N},$$

$$(ii) \qquad \qquad b_n^l \leqslant r_n^k a_{m_n^l}^{l+1}, \qquad n, \, l \in {\bf N}.$$

Proof. Let (c_n^k) and (d_n^k) , $d_n^k > 0$, be representations of (x_n) and (y_n) , respectively, and let $T: K(c) \to K(d)$ be a continuous linear surjection

with a representing matrix (t_{in}) . Set

$$U_k^* = \big\{ (\xi_n) \in K(c) \big| \sum_n |\xi_n| c_n^k \leqslant 1 \big\}, \qquad V_k^* = \big\{ (\eta_n) \in K(d) | \sup_n |\eta_n| d_n^k \leqslant 1 \big\}.$$

The nuclearity of K(d) implies that the scalar multiples of the neighborhoods V_k^* form a neighborhood basis of $0 \in K(d)$. Since T is open and continuous, there are strictly increasing sequences (j_k) and (l_k) of indices and decreasing sequences (C_k) and (C_k) of positive constants such that

(13)
$$T(C_{k+1}U_{l_{k+1}}^*) \subset D_k V_{j_k}^* \subset T(C_k U_{l_k}^*)$$

for all k. Set $a_n^k = C_k^{-1} c_n^l k$, $b_n^k = D_k^{-1} d_n^{j_k}$. We assume that $b_n^{k+1}/b_n^k \geqslant 2$. Let $U_k = C_k U_{l_k}^*$, $V_k = D_k V_{l_k}^*$. By (13),

$$(14) T(U_{k+1}) \subset V_k \subset T(U_k).$$

For every i, $(1/b_i^k)e_i \in V_k$, so that by the right side of (14) there is $(\xi_n) \in U_k$ with $T(\xi_n) = (1/b_i^k)e_i$. Thus,

$$(15) 1/b_i^k = \sum_n t_{in} \xi_n.$$

Choose k_0 with $\lim_n a_n^{k_0}/a_n^2 = \infty$. Fix $k \geqslant k_0$ and define

$$N_i = \{n | a_n^k < 2|t_{in}|b_i^k\}.$$

We show that N, is non-empty and finite. By the left side of (14),

(16)
$$\sup_{i} \left| \sum_{n} t_{in} \xi_{n} \right| b_{i}^{k} \leqslant \sum_{n} |\xi_{n}| a_{n}^{k+1}$$

which, by setting $(\xi_n) = e_n, k = 1$, gives

$$|t_{ln}|b_i^1 \leqslant \sup |t_{ln}|b_i^1 \leqslant a_n^2$$

for all i and n. Since $b_i^1 > 0$, $t_{in} \neq 0$ implies $a_n^k \ge a_n^2 > 0$. On the other hand, since T is surjective, there are indices n for which $t_{in} \neq 0$. By summing over these n we get from (15),

$$\begin{split} 1/b_i^k &\leqslant \sum |t_{in}| \ |\xi_n| = \sum (|t_{in}|/a_n^k)|\xi_n|a_n^k \\ &\leqslant \left(\sum |\xi_n|a_n^k\right) \sup (|t_{in}|/a_n^k) \leqslant \sup (|t_{in}|/a_n^k) \end{split}$$

since $(\xi_n) \in U_k$. Thus, for some n, $|t_{in}|/a_n^k > 1/2b_i^k$. If $t_{in} \neq 0$ for infinitely many n, then (17) implies

$$\lim_{\substack{n\to\infty\\t_{i_n}\neq 0}}(a_n^k/|t_{i_n}|)\geqslant \lim_{\substack{n\to\infty\\t_{i_n}\neq 0}}b_i^1(a_n^{k_0}/a_n^2)=\infty$$

so that N_i is finite.

By deleting the k_0-1 first rows from the matrices (a_n^k) and (b_n^k) we can assume that $k_0=1$.

We show that the family $(N_i)_{i \in N}$ satisfies the condition of Theorem 2.2. Consider a union $N = N_{i_1} \cup \ldots \cup N_{i_{m+1}}$, where i_1, \ldots, i_{m+1} are distinct and $m \geqslant 1$. We assume that $N = \{n_1, \ldots, n_q\}$ with $q \leqslant m$ and show that this leads to a contradiction. Denote

$$D = \{z = (z_1, \ldots, z_{m+1}) \in \mathbf{K}^{m+1} | |z_s| b_{i_s}^k \leq 1\}.$$

Since $b_{i_s}^k > 0$, D is a compact neighborhood of $0 \in K^{m+1}$. Pick $z \in D$ and define $(\eta_i) \in V_k$ by

$$\eta_i = egin{cases} z_s, & i = i_s, \ 0, & i
otin \{i_1, \dots, i_{m+1}\}. \end{cases}$$

Thus, by (14) there is $(\xi_n) \in U_k$ with $(\eta_i) = T(\xi_n)$ so that

$$z_s=\eta_{i_s}=\sum_n t_{i_sn}\xi_n=\sum_{n\in N} t_{i_sn}\xi_n+\sum_{n
eq N} t_{i_sn}\xi_n, \quad s=1,\ldots,m+1.$$

 $\begin{array}{ll} \text{Denote} & u_p = (t_{i_1 n_p}, \dots, t_{i_{m+1} n_p}) \in K^{m+1}, \quad p = 1, \dots, q, \quad w_s = \sum\limits_{n \notin N} t_{i_s n} \xi_n, \\ w = (w_1, \dots, w_{m+1}) \in K^{m+1}. \text{ Then} \end{array}$

$$z = (z_1, \ldots, z_{m+1}) = \sum_{p=1}^{q} \xi_{n_p} u_p + w.$$

Here

$$|w_s|b_{i_s}^k \leqslant \sum_{n \neq N} |t_{i_s n}| \ |\xi_n|b_{i_s}^k \leqslant \sum_{n \neq N_{i_s}} |t_{i_s n}| \ |\xi_n|b_{i_s}^k \leqslant \tfrac{1}{2} \sum_{n \neq N_{i_s}} |\xi_n|a_n^k \leqslant \tfrac{1}{2}$$

since $(\xi_n) \in U_k$. Hence, $w \in \frac{1}{2}D$ and because z was arbitrary, $D \subset \operatorname{sp}\{u_1, \ldots, u_q\} + \frac{1}{2}D$. As in the proof of Proposition 3.1, this is impossible since $q \leq m$.

By Theorem 2.2 we can find distinct representatives $m_i^k \in N_i$, $i \in N$. By the definition of N_i ,

$$u_i^k a_{m_i^k}^k < 2b_i^k \leqslant b_i^{k+1}, \quad i \in \mathbb{N},$$

where we defined $v_i^k=1/|t_{i_{m_i^k}}|$ and used the condition $b_n^{k+1}/b_n^k\geqslant 2$. This proves (i). For (ii) we use (16) with $(\xi_n)=e_{m_i^k}$,

$$(1/\nu_i^{k})b_i^{l} = |t_{i_{m_i^{k}}}|b_i^{l} \leqslant \sup_{j} |t_{j_{m_i^{k}}}|b_j^{l} \leqslant a_{m_i^{k}}^{l+1}, \qquad i, \ l \in N. \ \blacksquare$$

COROLLARY 4.3. Suppose a nuclear Fréchet space F with a basis (y_n) and a continuous norm is isomorphic to a quotient space of a nuclear Fréchet

space E with a basis (x_n) . Then there are representations (a_n^k) and (b_n^k) of (x_n) and (y_n) , respectively, and injections $n \mapsto m_n^k$, $k \in \mathbb{N}$, such that

(18)
$$\frac{a_{m_{n}^{k}}^{k-1}}{a_{m_{n}^{k}}^{l+1}} \leqslant \frac{b_{n}^{k}}{b_{n}^{l}} \leqslant \frac{a_{m_{n}^{l}}^{k+1}}{a_{m_{n}^{l}}^{l-1}}, \quad n \in \mathbb{N}, k, l \geqslant 2.$$

Proof. We use the same notation as in Proposition 4.2 except that the injection corresponding to k is denoted by m_n^{k+1} . Then

$$\frac{a_{m_{n}^{k}}^{k-1}}{a_{m_{n}^{k}}^{l+1}} = \frac{v_{n}^{k-1} a_{m_{n}^{k}}^{k-1}}{v_{n}^{k-1} a_{m_{n}^{k}}^{l+1}} \leqslant \frac{b_{n}^{k}}{b_{n}^{l}} \leqslant \frac{v_{n}^{l-1} a_{m_{n}^{k}}^{l+1}}{v_{n}^{l-1} a_{m_{n}^{k}}^{l-1}} = \frac{a_{m_{n}^{k}}^{k+1}}{a_{m_{n}^{k}}^{l-1}} \quad \text{for} \quad n \in \mathbb{N}, \, k, \quad l \geqslant 2. \text{ m}$$

Formula (18) should be compared to Dubinsky's fundamental inequality for quotient spaces ([3], IV (1.4)).

THEOREM 4.4. Let (q_n^k) be a stable D_2 matrix and suppose E is a K(q)-nuclear Fréchet space with a basis (x_n) . If K(q) is isomorphic to a quotient space of E, then a subsequence of (x_n) generates a subspace isomorphic to K(q).

Proof. Let (a_n^k) and (b_n^k) be representations of (x_n) and the coordinate basis of K(q), respectively, as in Proposition 4.2. Since $\lim_n q_n^k = 0$, the equivalence $(b_n^k) \sim (q_n^k)$ implies $\lim_n b_n^k = 0$ for all k. By injectivity, $\lim_n m_n^k = \infty$. Thus, by (i) of Proposition 4.2 we can select indices $1 = n_1 < n_2 < \dots$ such that

(19) if
$$\gamma_n = r_n^k a_{m_n^k}^k$$
 for $n_k \leqslant n < n_{k+1}, k \in \mathbb{N}$, then $\lim_n \gamma_n = 0$,

(20) if
$$M_k = \{m_n^k | n_k \leqslant n < n_{k+1}\}$$
, then $M_k \cap M_l = \emptyset$ for
$$l \notin \{k-1, k, k+1\}.$$

Let $m_n = m_n^k$, $v_n = v_n^k$ for $n_k \le n < n_{k+1}$, $k \in \mathbb{N}$. Note that by (20), each value in the sequence (m_n) occurs for at most two different values of n. Also, by (16),

$$(1/\nu_n)b_n^l = |t_{n_m}|_n^k|b_n^l \leqslant \sup_i |t_{i_m}|_n^k|b_i^l \leqslant a_n^{l+1}|_n^k = a_m^{l+1}|_n^k$$

for all $n_k \leqslant n < n_{k+1}$, $k \in \mathbb{N}$. Thus,

$$(21) (q_n^l) \sim (b_n^l) \lesssim (\nu_n a_{m_n}^l).$$

Further, for a fixed l and $n_k \leq n < n_{k+1}, k \geq l$,

$$\nu_n a_{m_n}^l \leqslant \nu_n a_{m_n}^k = \gamma_n$$

so that $\lim_n v_n a_{m_n}^l = 0$. Using the stability of (q_n^l) it is easy to see that the space $K(v_n a_{m_n}^l)$ is K(q)-nuclear. Hence we can apply (ii) of Proposition 2.1 to find a strictly increasing sequence (i_n) with $(v_{i_n} a_{m_i}^l) \lesssim (q_n^l)$, $\sup_n i_n/n < \infty$. Using then (21) we obtain

$$(q_n^l) \lesssim (q_{i_n}^l) \lesssim (\nu_{i_n} a_{m_{i_n}}^l) \lesssim (q_n^l),$$

where the first estimate follows from the stability of (q'_n) and the fact that $(q'_n)_n$ is non-increasing. The proof is completed by deleting possible repetitions (at most two of each) from (m_{i_n}) by passing to a subsequence $(m_{i_{s_n}})$ with $s_n < 2n$,

$$(q_n^l) \lesssim (q_{s_n}^l) \lesssim (\nu_{i_{s_n}} a_{m_{i_{s_n}}}^l) \lesssim (q_{s_n}^l) \lesssim (q_n^l).$$

Thus, $K(q_n^l) = K(\nu_{i_{s_n}} a_{m_{i_{s_n}}}^l) \simeq \overline{\operatorname{sp}}(w_{m_{i_{s_n}}})$.

References

[1] C. Bessaga, Some remarks on Dragilev's theorem, Studia Math. 31 (1968), 307-318.

[2] C. Bessaga and A. Pelczyński, On embedding of nuclear spaces in the space of all infinitely differentiable functions on the line, Dokl. Akad. Nauk. SSSR 134 (1960), 745-748.

[3] E. Dubinsky, The structure of nuclear Fréchet spaces, Lecture Notes in Math. 720, Springer-Verlag, Berlin-Heidelberg-New York 1979.

[4] E. Dubinsky and M. S. Ramanujan, On λ-nuclearity, Mem. Amer. Math. Soc. 128 (1972).

[5] L. Holmström, On stable D₁ and D₂ spaces, Arch. Math. 36 (1981); 546-553.

[6] T. Kömura and Y. Kömura, Über die Einbettung der nuklearen Räume in (s)^A, Math. Ann. 162 (1966), 284–288.

[7] V. P. Kondakov, On a certain generalization of power series spaces, in: Actual problems of mathematical analysis, Rostov 1978, 92-99 (Russian).

[8] G. Köthe, Topological vector spaces I, Springer-Verlag, New York 1969.

[9] L. Mirsky, Transversal theory, Academic Press, New York and London 1971.

[10] B. S. Mitjagin, Approximative dimension and bases in nuclear spaces, Uspehi Mat. Nauk. 16 (4) (1961), 73-132 (Russian).

[11] K. Nyberg, On subspaces of products of nuclear Fréchet spaces, Ann. Acad. Sci. Fenn. Ser A I Math. Diss. 31 (1980), 1-56.

[12] A. Pietsch, Nuclear locally convex spaces, Springer-Verlag, Berlin-Heidelberg-New York 1972.

[13] M. S. Ramanujan and B. Rosenberger, On λ(q, F)-nuclearity, Compositio Math. 37, 2 (1979), 113-125.

[14] W. Robinson, Some equivalent classes of Köthe spaces, Comment. Math. Prace Mat. 20 (1978), 449-451.

L. Holmström

[15] - Relationships between λ-nuclearity and pseudo-μ-nuclearity, Trans. Amer. Math. Soc. 201 (1975), 291-303.

- [16] T. Terzioğlu, Die diametrale Dimension von lokal konvexen Räumen, Collect. Math. 20 (1969), 49-99.
- [17] Stability of smooth sequence spaces, J. Reine Angew. Math. 276 (1975), 184-189.

UNIVERSITY OF HELSINKI DEPARTMENT OF MATHEMATICS Hallituskatu 15 00100 Helsinki 10 Finland

152

Received March 19, 1981

(1679)

STUDIA MATHEMATICA, T. LXXV. (1983)

A reverse maximal ergodic theorem

by

RYOTARO SATO (Okayama)

Abstract. A reverse maximal ergodic theorem is proved for a d-parameter discrete semigroup $(T_g\colon g\in Z_+^d)$ of measure preserving transformations on a σ -finite measure space (X,\mathscr{F},μ) which is ergodic in the sense that if $E\in\mathscr{F}$ with $E\neq X$ is T_g -invariant for all $g\in Z_+^d$ then $\mu E=0$ or ∞ . A continuous version follows from standard approximation arguments.

1. Introduction. Let (X, \mathscr{F}, μ) be a σ -finite measure space and $(T_g\colon g\in Z_+^d)$ a d-parameter discrete semigroup of measure preserving transformations on (X, \mathscr{F}, μ) . For $0\leqslant f\in L_1(\mu)+L_\infty(\mu)$, the maximal function f^* is defined by

$$f^*(x) = \sup_{n\geqslant 1} n^{-d} \sum_{g\in V_n} f(T_g x) \quad \text{where} \quad V_n = \{0,\ldots,n-1\}^d.$$

It is then known (cf. [11], [4], [1]) that the maximal inequality holds:

$$(1) \qquad \mu\{f^*>a\} \leqslant \frac{1}{B_{d^a}} \int_{\{f>B_{d^a}\}} f d\mu \quad \text{for any } a>0$$

where B_d is a constant dependent only on the dimension d.

The purpose of this paper is to show that a reverse maximal inequality holds provided that the semigroup $(T_g\colon g\in Z_+^d)$ is ergodic in the sense that if $B\in \mathscr{F}$ with $E\neq X$ is T_g -invariant for all $g\in Z_+^d$ then $\mu E=0$ or ∞ . Here it should be noted that N. Dang-Ngoc [2] has shown a similar inequality for an ergodic d-parameter group $(T_g\colon g\in Z^d)$ of measure preserving transformations on a probability measure space. However, the maximal function f he considered is defined by

$$f^{\sim}(x) = \sup_{n \geqslant 1} (2n-1)^{-d} \sum_{g \in W_n} f(T_g x)$$
 where $W_n = \{-n+1, \dots, n-1\}^d$,

and he remarked that his argument is not modified if f^{\sim} is replaced by f^* . Nevertheless, we shall modify his argument to prove our result. For the particular case $(T^n: n \in Z_+^1)$ where T is conservative and ergodic in the usual sense, the inequality was already obtained by Derriennic [3] in a