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STUDIA MATHEMATICA, T. LXXV. (1983)

Superspaces of (s) with basis
by
LASSE HOLMSTROM (Helsinki) '

Abstract. The sequence space (s) is characterized as the unique nuclear Fréchet
gpace F with bagis and a continuous norm such that when ¥ is isomorphic to a sub-
space of a nuclear Fréchet space B with a basis (w,), then a subsequence of () generates
a subspace igomorphic to F. Variations of this result are considered in the context
of stable D; and D, spaces.

1. Introduction. A superspace of (), the space of rapidly decreasing
sequences, is a nuclear Fréchet space which contains a subspace isomorphic
to (s). The simplest way to construect such a space is to take an arbitrary
nueclear Fréchet space B and form the cartesian product F X (s). We will
show that if the superspace is assumed to have a basis, it actually always
hag this gimple form. In fact, the basis of the superspace can be divided
into two disjoint subsequences one of which generates a (necessarily com-
plemented) subspace isomorphic to (s). Among nuclear Fréchet spaces
with basis and a continuous norm this property of superspaces character-
izes (s). We make a generalization to arbitrary stable D, spaces and con-
sider as a natural dualization a stable D, space as a quotient space.

2. Preliminaries. If not otherwise stated, the subscripts and super-
seripts appearing are assumed to run through N = {1, 2, ...}. The symbol
K stands for the scalar field (real or complex numbers).

We refer to [12], [3] and [8] for the undefined concepts and the
basic results used. '

Let B be a nuclear Fréchet space and let the topology of E be defined
by an increasing sequence (p,) of seminorms. Suppose the sequence (x,)
of 7 is u basis, that is, for every » e E there is a unique sequence (&,) of
gealars such that

1) &= D &,
n
By the absolute basis theorem ([12], 10.2.1) {x,) is absolute, i.e. in (1),

a
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for all k. Denote a* = p,(w,),

@) E(a) = {(&) € K| (&)l = ) balaf < o0 Vi)

If the sequence space K (a) is equipped with the topology defined by the
seminorms |-], then the assignment x(&,) defines an isomorphism
E—K(a). The space K(a) is called the Kithe space associated with B,
(2,). The infinite matrix a = (af) is called a Kothe matriw representing
(a,) and it has the properties 0 < af < altl) sup,ak > 0, for each k there
is 1 with (ak/a}) el, (we agree 0/0 = 0). Conversely, every such matrix
defines through (2) a nuclear Fréchet space with (¢,), the sequence of co-
ordinate vectors, as a basis. In particular, (s) = K (n).

Consider another Kothe space

{(n,) ZmW<mwg

and let T': K (b)—K(a) be a continuous linear mapping. If T' iy reprosonted
by the matrix (1), that is,

Te, = Z Tinfn s
7

then the adjoint 7': K(a)'-~K(b)' is represented by the transpoge of
the matrix ({,,), '
T, = Zt,-,,e;,.

Here (e;) (resp. (e)) is the sequence of coordinate functionals of the co-
ordinate basis (ei) of K(a) (resp. (e,) of K(b)). One easily checks that
(ef and (e;) are weak bases. We will use the identifications

{ )| 370 C: [€al S.Gaﬁ y b)' = {(nn)l 3’57

Here ¢ denotes a positive constant. Now

= (Ztmfi)"-

In comp'uino two Kothe matrices (af) and (b%) we usw the following
notations: (af) < (b%) means for all % there is 1 with (a%/b) e lm, (aff) ~ (b%)
means (af) < (b%) and (b%) S (af). Tt (af) ~ (bfi), then K( = K (b).

A Kothe matrix (af) is wgulm if the sequence (ak/af") is non-im,r(msing
for every k. We say that (pf) is a D, matriz if it is vegular, pl = 1 and
(#5035 ) (0. Correspondmgly, (¢%) is & D, matriz if it is regular, ¢¢ >0,
hm gk =1 and (g8 5 ((¢%) *}. The definitions of the types D, and D, are

eqmvalent to those in [1].

O: |l < OB
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Let E be a locally convex space and denote by % its neighborhood
basis at 0 consisting of barrels. Denote by d&,(V,U) (»n=0,1,2,...)
the »** Kolmogorov diameter of V € %5 with respect to U e #5. Suppose
(pL) is a D, matrix. We say that E is K (p, N)-nuclear if for every U and k
there is ¥ such that (pkd,_,(V, U)), €l If (¢f) is a D, matrix, ¥ is said
to be K(q)-nuclear if for every U there is V and % such that
(Afgkya, (V, T ),, €l,. The K(p, N)-nuclearity was introduced in [13]

-with the type G in place of D,. These two types are however equivalent

and so are, respectively, G, and D, ([14], [16]). The above definition of
K(g)-nuclearity is consistent with the gencral concept of A-nuclearity
([4], (15])-

A locally convex space J is stable if Ex I ~ F. If (p%) is a D, matrix,
the stability of K (p) is equivalent to (pf,) < (p¥) and if (¢f) is a D, matrix,
the stability of K (g) is equivalent to (¢¥) < (¢5,) (see [17]); we also call
the Kithe matrix in question stable.

The following is proved in [5]:

PropostrioN 2.1. (i) If (pEF) is a stable Dy matriz, K(a) is K(p, N)-
nuclear and al = 1, then there is a strictly increasing sequence (i,) of indices
such that (pf) S (af) and supi,/n < co.

n

(ii) If (¢%) is a stable D, matriz, K (a ) is K (g)-nuclear and 0 < af < 1,
then there is a strietly increasing sequence (i,,) of indices such that (ali ) S (g5
and supt,/n < oo.

n

We will also need an important result from combinatorics ealled Hall’s
theorem. )

THEOREM 2.2. (Hall) Let A be a set and suppose (A;)er @8 a family
of finite subsets of A. There is a system of distingt representatives a; € A,iel,
if and only if the following condition is satisfied: for all distinet iy, ..., 4 €I
the set A; U ... UA, has at least k elements.

For a proof and a thorough discussion of theorems of this type we
refer to [9].

3. Superspaces of (s). We begin with a general result on imbedding
one ‘nuclear Fréchet space with basis into another.

PrOPOSITION 3.1. Let B and T be nuclear Fréchet spaces with bases
(%) and (y,), respectively and suppose F has a continuous norm. If F is
isomorphic to a subspace of B, then there are representations (ak) and (b’c
of (w,) and ( Jn) respectively, such that for each k there is an injection m-—>j
and scalars uk > 0 with

(1) bk ,una’“,:fl, n-€N,

(ii) ,u,,ajk..{ b;“, l,w e N.
n
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Proof. Let {¢¥) and (d¥), @k > 0, be representations of (,) and (y,),
respectively, and let T: K(d)-—E(c) be an imbedding (i.e. isomorphism
into) represented by a matrix (f,). Set

Up = {(&,) e E(o)] suplé,lf <1}, Vi ={(n) eE(@)] Dlmaldi<1}.
n n

It is a consequence of nuclearity that the scalar multiples of the neigh-

borhoods U} form a neighborhood basis of 0 € K (¢). Since 7' is an. inabedd-

ing, there are strictly increasing sequences (j,) and (I,) of indices and de-

creasing sequences (Cy) and (D)) of positive constants such that

®) T(Dyn V3, ) < TIE@) A (CT}) = T(DV})

for all k. Set a¥ = O7'd%, bE = Dy'dlk. We may assume thati af™/af = 2.
Let U, = U, ¥, = DV Then

UR = {(&) p n<1), VP = {(n) e K@) Im <by}-
By (3),
(4) T(Vip) = Z{E®) 0Ty = T(Vy).

Polarizing the right side of (4) we get
(T(E@®)nT)° =
which by the surjectivity of 1" gives
Ve < (0K (0) n TL°)-
It then follows from the Hahn-Banach theorem that
(5) : V9 <« I(UR).
From (4) we also obtain

V [77,, b2 <<

(I)HVR)

n o=

k Tet-1
z‘n’?nla'i = Zlnnlbn‘
ki3

for all (n,) eK(b). Setting (7,) = ¢, we geb

(6) bE mp [l < DEHL,

Fix now % and deﬁne
= {i| b} < 2l laf}.
By (6) the set I, is non-empty and since lim |4,] af = 0 and b} > 0, I, is
i

finite. We will show that the family (I,),.x satisties the condition of The-
orem. 2,2.
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Consideraunion I = I, U ... UL, .
and m > 1. We assume that I = {i, ..., 1, with ¢ << m and show that this
leads to a contradiction, Denote D = {z= (2y, ..., 1) € B™* |2) < bE o
Note that since b” > 0, the set D is a compact nelghborhood of 0 ¢ K"‘+1
Pick z e D and define (na) € VS by

, where #, ..., n . aredistinet

Zgy N =Ny,
7)"4 =

0: n ¢ {”17 LR nm-}-l}'

By () there is (&) e US with (,) = T'(&;). Hence,

EA “nns"ztmsf “‘2 §i+2h‘ns§i7 S=17"'5m+1‘
7el igl
Denote ., = (tynyy o1 bipnyy, ) eR™ p=1,...,q w,= %,‘ TingEor
Kl

W= (Wyy ..y Wyyy) € K™, Then

&= (zn very By

q
) = 2 Eipup+w.
p=1

Here
> ttingl 16l = ) ing | aX(1 &xlfa)

T LT

0y < D i 1611 <
il
< (X 1&/ak) Ul laf < B,
i Wing

where the last estimate follows from (&) e U7 and the definition of
I, Thus, we %D Since # was arbitrary, D = L-+4D, where L

sp{ul, ...y u} s & subspace of K™™' of dimension  at most
q < m. Tba‘n this is impossible can be seen for example by polarizing,
L°AD° = $D°, and choosing a linear form 2’ & (K™+)’ with I = Ker(2'),
max{|{z, 2'>| |z e D} =1,

Applying now Theorem 2.2 we choose distinet representatives 5% e I,,,
n & N. By the definition of I, and the assumption af*'jak >2 we then
obtain

b 2|t knla’ kS |t knlaHl neN.
Setting pk = (t ,m[ we get (i). For (ii) we use the right side of (6),

Hd Ic = lij;miwjk < 31113 lnld< b, LneN.m v
)'L
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COROLLARY 3.2. Suppose a nuclear Fréchet space B with « basis (y,)
and a continuous norm is isomorphic to @ subspace of a nuclear Fréchet space
B with a basis (x,). Then there are representations (a¥y and (b%) of (m,) and
(v,), respectively and injections > & e N, such that

Ji—1 Ie+1
a; /3 a
L S Nk 12
(1) i S S nelNkiz2
a’l 13 ajk
n n

Proof. Using the notations of Proposition 3.1 we obtain

K1 U k—1 k-1 Jo4-1
@ Bl Bk Ballyle RAY
= S S Tger =g for o nelNhiz2om
ay Haly n B Lo
I n In In

" Formula (7) could be regarded as a refinement of Dubinsky’s funda-
mental inequality for subspaces ([3], IIT (1.3)) in that now the scquences
(%), aTe known to have no repetitions. For a similar result in a different
context gee [7], Lemma 5.*

THEOREM 3.3. Let B be be a nuclear Fréchet space with a basis (2,).
If (s) is isomorphic to a subspace of B, then a subsequence of (x,) generales
o subspace isomorphic to (s).

Proof. Let (af) and (bf) be representations of (z,) and tho coordinate

basis of (s), respectively, as in Proposition 3.1. Since (b5 ~ (n®), there

i8 %, such that b’,i",>/ 1 for sufficiently large n. Set j, = §,% #, = s, By (1)
of Proposition 3.1, ynaj;’“;l for large n. Since ni>j, is injective, I ( ,unafn)
is nuclear. Now K((n""), N)-nuclearity is just ordinary nuclearity so that
we can apply (i) of Proposition 2.1 to find a strictly increasing sequence
(#,) with (") S (w95, ), SUp i,/n < oo. Thus,

(1) S (pnats) S OF) ~ (@) S (09,

where the sicond estimate follows from (ii) of Proposition 3.1. Ilence,
(8) = K (min@i;,) == 8p(a;,).

Rema.rk 3.4, The previous theorem shows in particular that if
T: (s)>F is an imbedding, then 7T'((s)) is isomorphic to a complementod

subspace of . Tt may however happen that T ((s)) itself is not complemen-
ted. For the details of the following example we rvefex to ([10], Chapter 7).

) *Added in proof: Kondakov has reeently reported a rosult essentially
equivalent to Proposition 3.1.
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Denote by 0F[—1,1] the space of infinitely differentiable functions on
the closed interval [ —1, 1] which vanish together with all their derivatives
at the endpoints. When equipped with the topology of uniform convergence
in all derivatives on [—1, 1] this space is isomorphic to (s). By E. Borel’s
theorem the mapping
8: OP[—1,11-KEY,  8(f) = (f(0)),

is surjective; of course it is continuous and linear. There is a natural iso-
mdrphism

871(0) =~ C[—1, 0] x 0F[0, 1].

Also, C[—1,0]~ CP[0,1]==(s) so that 8§7'(0) = (s). If §7'(0) were
complemented, 0F[—1,1] = 87(0)@G, then S|G would be an isomor-
phism G->EY (by the open mapping theorem) which is absurd since G has
2 continuous norm but K has not. '

Next we show that the property of superspaces of (s) demonstrated
in Theorem 3.3 in fact characterizes (s) among nuclear Fréchet spaces
with basis and a continuous norm.

PRropOSITION 3.5. Suppose the nuclear Fréchet space F with dasis
and a continuous norm has the following property: if F is isomorphic to
a subspace of a nuclear Fréchet space B with a basis (z,), then a subsequence
of (w,) generates a subspace isomorphic to . Then I is isomorphic to (s).

Proof. By [2] or [6] F is isomorphic to a subspace of (s)¥. A basis of
(s)" is given by the family (€,,,); €mn = (05 ..., 0, &, 0, ...), Where e, appears
in the m'™ place. Let ‘

Vi = {(777;) € (8)!2]17"“4/‘ < 1}

and set Wy, = (V) x (s)™. Then (W) is a neighborhood basis of 0 & (s)¥
and it gives rise to a representation (a,) of (eny),

g . wk,  1<m<gkneN,
Qi ==
(8) =10, m>k.

By hypothesis, there is an injection i {m(3), n(3) such that K (a0
~ F. Since F has a continuous norm, there is &, With @,y > 0 for
all 4. This implies by (8) that m (i) < k,. Hence ' =~ K (n(4)¥), where each.
value n(4) is repeated at most &, times. Tt then follows that F ~ A (a),
where a = (a,) is a nuclear cxponenf sequence of infinite type, i.e.
sup logm/a, < oco. Tt remains to be shown that sup a,flogn < oo.

n

n B
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We agsume that sup a,/logn = co and show that this leads to a con-

n
tradiction. Choose a strictly increasing sequence (n;) of indices such that
ny =1 and
(9) ani_1+1 < (1/@) anii /L 2 27
(10) itlogn; < @y, ¢eN.
Then define m; = min{m|(1/¢)a,, << a,}. Note that m; =1 and by (9)
and the definition of m,,

(11) N Fl<m<n, 122,

(12) Uy < (1fi}ap, < @y, ‘€N,

Bet Ny =1J {# eN| m<n<n} and N, = N\ N,. Note that by (11),
L=l

N, is infinite. Denote by (el) and (a2) the subsequence of a corresponding
to N, and N,, respectively, that is,

1. .
Q70 Qyy Gy Copg 41y 7o vy Ongy Oy Capg g1y« ovy gy Gy v ey

QP! gy gy vevy Oy 1y By 1 Cpgtng vy Gmg1y Opgpry =oe
Trivially A (a) = A (a?) XA, (a?). Now ot is of finite type. In fact, for
any n, ¢ = . i for some 4 and j > 0, n << m+j < 5y, so that by (12)
and (10),

1
Ay Qp, Uy

(4

1

1 > i#logn,
—
logn = logn,

‘\V

Togn; = ilogng
Consequently, hman/log% co. By ([3], TIT (2.4.5)) there is a stable
finite type exponenb sequence (f,) such that supﬂn/an < co 80 that by

([3], IIT (2.4.4)) there is an imbedding /lw(al)—ull(ﬂ). It follows that
Ae(a) ~ F iy isomorphic to a subspace of A,(f)X4d,(a?). By the hy-
pothesis, a subsequence of the basis of A,(8) x4, (a?) (the union of the
eoordinate bases of 4,(8) and A (a?) generates a subspace isomorphic
t0 Ay (e). This subsequence containg only finitely many bagis vectors of
4,(f) since otherwise 4,(a) would contain a subspace iromorphic to a finite
type power series space and this is impossible ([8], IIT (2.4.3)). Thas
A, (a) is isomorphic to & subspace of L x A, (a?), where L is a finite dimen-
sional subspace of A, (f). If dim L = n,, we obtain by computing the Kolmo-
gorov diameters both in A (a) and L xA,(e?) and using ([3), T (6.2.2))
that o} < (/a,”no, 7 €N, where € is a constant. But suppose ¢ )n0+2
and that a) = a,, 41 Binee n<<my—i4-1 we get by (12),

2
O g Gy 1 a
- i b ny .
= = = > 4.
au+'n(, ap +ng am,,;—l am4—l

icm
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Thus wo arrive at the contradiction supel/a,., = co. &
K

+ng

Remark 3.6. Proposition 3.5 holds if we only assume that F is
isomorphic t0 a complemented subspace of any of its superspaces. In
fact, if ' is isomorphic to a complemented subspace of (s)V, we can use
([1], Theorem 2.2) to obtain a mapping fu—+( (4), n (1)) (not necessarily
injective) such that F o~ K(ak, ..) and, as before, m(i)<k,. By the
nuclearity of F each value % (i) occurs only for finitely many different ¢
8o that F ~ A (a). We conclude that 4,,(a) is isomorphic to a complemen-
ted subspace of 4,(8) x A, (e?). By ([11], Proposition II. 1.6) there is n,
and a confinuous linear surjection Aw(az)—->/lw((an)n>no). The contradic-
tion follows from. ([3], I (6.2.3)).

4. A generalization and a dualization. We get immediately the fol-
lowing genecralization of Theorem 3.3.

TEEOREM 4.1. Let (pk) be a stable D, matriz and suppose Bis a K (p, N)-
nuclear Fréchet space with a basis (v,). If K (p) is isomorphic to a subspace
of I, then a subsequence of (z,) generaies a subspace isomorphic to K (p).

Proof. Let (af) and (b%) ~ (pk) be representations of (z,) and the co-
ordinate basis of K(p), respectively as in Proposition 3.1. As in Theorem
3.3, we find &, an 1n]ect10n n—>j, and sealars u, > 0 such that ,unak"“ =1
for large n. Since K (,unaj ) is K (p, N)-nucleaxr, there ig a strietly increasing
sequence (i,) with (pf) 5 (3,073, supzn/fn< oo, Thus,

(#5) 5 (1) S (0F) ~ (2%) < (28,

where in the second estimate (ii) of Proposition 3.1 was used and the last
one follows from the stability of (p¥) and the fact that (p¥), is non-decrea-
sing, m

To obtain a dualization of the previous theorem we first prove the
quotient space analogue of Proposition 3.1.

PropOSITION 4.2. Let E and F be nuclear Tréchet spaces with bases
(2,) and (y,), respectively, and suppose F' has a continuous norm. If F is
isomorphio to a quotient spave of B, then there are representations (aX) and (b¥)
of (,) and (y,), respectively, such that for each & there is am injection n—>mf
and scalars vF > 0 with

(1) : vﬁa’;k L i+, neN,
k]
(i) b < vna”l n,leN.

Proof. Let (¢f) and (dF), @ > 0, be representations of (x,) and (y,),
respectively, and let 7't K(c)->K(d) be a continuous linear surjection


GUEST


148 L. Holmstrém

with.a representing matrix (£;,). Seb

Ui={(&) € E(o)| Dlalek <1}, Vi = {(m)  K(d)] sup 7l < 1}

The nuclearity of K(d) implies that the scalar multiples of the neighbor-
hoods V7 form a neighborhood basis of 0 e K (d). Since T is open :1jnd con-
tinuous, there afe strictly increasing sequences (i) and () of indices and
decreasing sequences (Cy) and (D) of positive congtants such that

(13) T(ChsaUt,,) = DV, © T(CU)

for all k. Set af = O5'dk, bt = Di*dik. We assume that BEFLBE 22 9. Lot
U, = OlcU;ki Vlc = chv;kk By (13),

(14) T(Ups) © Vi = T(Uy)-
For every i, (1/b%)e, & Vy, so that by the right siQe of (14) there is (&,) € Uy,
with T(&,) = (1/b%)¢;. Thus,

(15) CARE = b,

Choose k, with lima,’ja% = co. Fix k> k, and define

,

N, = {m a’lr: < 2|tin-lb']£€}',
We show that N; is non-empty and finite. By the left side of (14),

(16) sup| 3tk |0 < ) 16alal™
: n % .

which, by setting (£,) = e, k =1, gives
(17) I8 107 < SUPIL, b} < 0y
k3

for all ¢ and n. Since b} >0, £, =0 implies af > o] > 0. On the other
hand, since T' is surjective, thereareindices n for which ¢, 0. By summ-

ing over these n» we get from (15),
16 < ) il 1al = D) (i) k) &l
< D180k sup (ftia fak) < sup (tin | faF)

since (&,) € Uy Thus, for some n, [i,l/ak > 1/2b%. If 1, # 0 for infinitely
many n, then (17) implies

lim (a}/lt,) > lm b} fad) = oo

n—oo T=> 00

lin#0 tin#0

so that N, is finite.
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By deleting the &, —1 first rows from the matrices (a¥) and (b%) we
oan assume that &, = 1.

We show that the family (N,);.n satisfies the condition of Theorem.
2.2. Consider a union N= N, U ... N, where 4y, ..., 4, are distinet
and m > 1. We assume that N = {ny, ..., n,} with ¢ < m and show that
this leads to a contradiction. Denote

D = {2 = (21 ...y 8y1) € K™H| Ezslbi <1}.

Since b,.’; > 0, D is a eompact neighborhood of 0 e K™, Pick z ¢ D and
define (n;) € V), hy

Zy 1=y,
0, ¢ {ly.uryipr}.

Thus, by (14) there is (£,) € U, with (n;) = T(&,) so that

Ny =

Y =Ny, = Ziisngn = Zti81L§7z+ th'snEM s =1, .., m+1.
2 neN n¢eN

= (1 ' re — _ .
Denote Uy = “‘1@177 ci tim+1"p) ek ’ p=1, ey s W = Z‘isném
W= (Wi, .00y Wypa) € K7L Then neN

q
&= (Z1; «ovy Bpp1) = Z Enpup-[-w.
p=1

Here
oy lbf < 3 Ml 16,005 < ) Mol 1E0E <3 Y EdaE<
neN néNg, néN g

since (£,) € U,. Hence, w € £D and because 2z was arbitrary, D < sp{t,, ...
-vey Ugr+4D. As in the proof of Proposition 3.1, this is impossible since
qg<<m. ' '

* By Theorem 2.2 we can find distinet representatives m¥ e N, 4 e N.
By the definition of v,

vf‘a’;? < 20F < b, ieN,

where we defined »f = 1/lt, .| and used the condition bf*'/bF > 2. This
i imi i

proves (i), For (i) we use (16) with (&,) = e
£
(1/vE)BE = ]zﬁmyb}g s?p |tjmf]b}< a;t;, i,leN.

COROLLARY 4.3. Suppose a nuclear Fréchet space F wilth a basis (y,)
and a continuous norm 18 isomorphic to a quotient space of a nuclear Fréohet
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space B with o basis (z,). Then there are representations (af) and (bY) of (@,)
and (y,), respectively, and injections ni—mk, &k & N, such that

~1 o1
“fnk pe %l
3 n n
(18) T S < —m neNEI=2.
" b, & 3
. ‘

Proof. We use the same notation as in Proposition 4.2 except that
the injection corresponding to % is denoted by ml+'. Then

Je—-1 k—1 k—1 I~1 k41 k-1
“m’“ Yo @ ) bk Vn a’ml a’ml

n__ n n n___ n P
TS g S S pEigsr = Tmr for o neNk, 1220w
a Vo @ g n Yy @ ay

My " my, my,

Formula (18) should be compared to Dubinsky’s fundamental in-
~ equality for quotient spaces ([3], IV (1.4)).

THEOREM 4.4. Let (¢f) be a stable D, matrin and suppose B is o K (9)-
nuclear Fréchet space with & basis (). If K(q) is isomorphic to a quotient
space of H, then a subsequence of (x,) generates a subspace isomorphic to K (9)-

Proof. Let (af) and (bf) be representations of (,) and the coordinabe
basis of K (g), respectively, as in Proposition 4.2. Since lim ¢* = 0, the equi-

n
valence (by;) ~ (¢%) implies lim b = 0 for all k. By injectivity, im m} = oco.

n n
Thus, by (i) of Proposition 4.2 we can select indices 1 = n, << ny < ...
such that

(19) it oy, = ”’i“ifnk for m,<m<my,,keN, then

lim Yn =0,
n n )

200 i M, ={m}| ny<n<m,}, then M,AM, =@ for
Lé{k—1,% k+1}.

Let m, = my;, », =9 for m, <n < m,,, k e N. Note that by (20), each
value in the sequence (m,) occurs for at most two different valuos of n.
Also, by (16),

(L= It lbr, <SPty 1 87 < s = o,
for all ny, < n < My, b € N, Thus,
(21) (gn) ~ (L) < (rath,)-

Further, for afixed land n, < 0 < nyyy, k3> 1,

7 k
pna’mn < Vna’mn == Vn

icm

©

Supersraces of (s) with basis 151

so that lim wnafnn = 0. Using the stability of () it is easy to see that

H
the space K (”n"f‘flnn) is K (g)-nuclear. Hence we can apply (ii) of Proposition
2.1 to find & strictly increasing sequence (7,) with (v ah; ) S (dh), sup i,/n
< oo. Using then (21) we obtain o "

(@) s (4,) s (¥, 0;,) S (4h),

where the first estimate follows from the stability of (¢}) and the fact that
(¢4)y is non-increasing. The proof is completed by deleting possible rep-
etitions (at most two of each) from (m; ) by passing to a subsequence (™, )
with s, < 2n, "

(€h) 5 (65,) S (0,8, ) 5 (dh) 5 (dh).

Thus, K (¢) = K (Vf,,na%uian) o 8§D (Tm; ). W
N
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A reverse maximal ergodic theorem

by
RYOTARO SATO (Okayama)

Abstract. A roverse maximal ergodic theorem is proved for a d-parameter diserete
semigroup (T,: ¢ EZ+) of measure preserving transformations on a o-finite measure
space (X, #, u) which is ergodic in the sense that if B e# with ¥ # X iz Ty-invariant for
allge Z‘l then uF =0 oroco. A continuous version follows from standard approxlmamon
arguments.

1. Introduction. Let (X, #, ) be a o-finite measure space and
(T,): g €Z%) a d-parameter diserete semigroup of measure preserving
transformations on (X, #, u). For 0<feL,(u)+ L,(u), the mazrimal
Junction f* is defined by

F* (=) = sup'rrd 2]’(1’ z) where 7V, ={0,.

0cVy

It is then known (cf. [117], [4], [1]) that the maximal inequality holds:

cyn—1}.

1) pif* > ap <

fau  for any a>0

a {f>Bga}y
where B; is a constant dependent only on the dimension d.

The purpose of this paper is to show that a reverse maximal in-
equality holds provided that the semigroup (7;: geZ ) is ergodicin the sense
that if Pe # with B+ X is T,-invariant for all ge Z% then uE =0 oroc. Here
it should be noted that N. Dang-Ngoc [2] bas shown a similar inequality for
an ergodic d-parameter group (T,: g € Z% of measure preserving transform-
ations on a probability measure space. However, the maximal function f~
he considered is defined by =~
where ,n—1)%,

f (@) = sup(2n—1)~¢ ' f(T,) W, ={—n+1,...

nz=l oEW,

and he remarked that his argument is not modified if f~ is replaced by f*.
Nevertheless, we shall modify his argument to prove our result. For the
particular case (I™: n e Z}) where 7' is conservative and ergodic in the
usual senge, the inequality was already obtained by Derriennic [3] in a
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