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Usihg the maximal inequality (1) and the reverse maximal inequality
(2), we can prove the following dominated ergodic theorem,

THEOREM 3. Let (X, F, p) and (T,: g €2Z%) be as in Theorem 1. Then
FeR,(pu) if ond only if f* € Rypi(n).

Proof. By Fubini’s theorem we have

()

ff*(log(f*/t))“’dy: fd,u(a?)f ([10g(s/t)]“’~E-tw[log(@/t)]“""1)ds

{r*>t} {f%>t} ¢
= [ (Dog(s/t)1°+tw[log (s/6) 1~ w{f* > s}ds.
i

Thus we may apply (1) together with a well-known argumont (see e.g,
[5], p. 676) to infer that f ¢ R, (#) implies f* € B, (u). Sinilarly, (2) may

be applied to infer that f* e R, (u) implics f e By, 1 (p). The details are
omitted. (Cf. [10].)
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Applications of autoreproducing kernel moduli to
the study on interpolability and minimality of
a class of stationary Hilbertian varieties

by
B. TRUONG-VAN (Toulouse)

Abstract. The autoreproducing kernel modulus o (F) of an operator-valued
spectral measure F' is constructed. All of its elements are operator-valued MeAsUres.
These measures are said (as suggested by the results obtained in [23]) to be He?lmger
square integrable relative to F. Then the class of Hilbert spa;cejvz:nlued stationary
processes (X,)yeq having operator valued spectral densities is cohsidered. For s.uch
processes, some characterizations of # () are given and compared to that obtained
by Makagon in the recent paper [9] on Hellinger square integrable vector measures.
From the results on #(F), the interpolable and minimal processes (X;)yeq ave then
analytically characterized.

Introduction. Tt is shown in [23] the impossibility for a minimal
(U, H)-valued stationary processes to be of full rank. However this
notion can be defined for Banach space-valued stationary processes. So
a gpecial class of these processes is congidered here. )

First it is constructed from a spectral bimeasure a unique auto-
reproducing kernel Loynes modulus # (F), all the elements of. which are
operator-valued measures (cf. Theorem 2). When F' is a spectl_'al meagure,
by analogy with the results obtained in [23], the measures in i (F) are
said to be Hellinger square integrable with respect to (w.r.t.) F'. )

Then, Hilbert space-valued stationary processes (X;)eq possessing
operator-valued spectral densities are considered. The olrerator time-
domaing of these processes are proved to have the Radon-Nikodym prop-
orty w.r.t. F (Theorem 4)and some characterizations of # (F) are obtaufle.d
(Theorem B). Afterwards, analytic conditions for interpolability and mini-
mality studied by [19], [20], [23], [24], [27] are extended ﬁt? 1':he processes
(X,)per and a criterion for such processes (Xy)geq 0 be minimal of full
rank is also given. o L

We learned quite recently that Makagon in [9] has given a definition
and a criterion for vector measures to be Hellinger square integrable W.I‘.1.i.
a gpectral measure. Elis definition is proved to be equivalent to our. Defi-
nition 3 (cf. Theorem 3) whereas our criterion (Theorem 5) may be considered
a8 an operator version of Makagon’s critexion ([9], Theorem 1.5).
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Netations. All the vector spaces congidered in this study are complex
veetor spaces and the following notations will be used:

Let U, V be two Banach gpaces.

O(V, U) is the space of all linear operators from V into ¥,

Z(V, U) is the space of U-valued bounded linear operators defined
on V.

U* is the Banach adjoint space of U, ie.
means the complex conjugate of f and U’ iy the topologieal dual of .

Let o e Z(V, U); then the ‘ulJmnt. a* of u is the bounded linear op-
erator belonging to £ (U*, V*) that is defined by a*(v¥)= v*.q VYo¥e V*,

o e Z(U, U*) is said to bo a hermitian operator it for any w,, w, e U

Generally a hermitian operator is not self-adjoint, but if U is a reflex-
ive Banach space (specially if U is a Hilbert space) then the notion of
hermitian operators and self-adjoint operators are equivalent (when U is
retlexive, it will be identified U** with U).

o e Z(U, U*) is said to be a noii-negative operator it a is a lwrnutmn
operator such that for any we U ( a(w )) () = 0.

(U, U*) denotes the class of non-negative operators in L(U, U*),

Let {W(D)}ea be a family in L(U) = £(U, U); then Sy, (W)
denotes the right Z(V, U) modulus sp(mnod by the family {W (1)} that
is

def

Smyo (W) ={3 W

i=1

(I)a; 7 € Ay, € Z(V, V), 6 = 1.,

Let H be o Hilbert space and {u;},; be a family in H ; then sp () is
the vector subspace in H, spanned by {u;},; and 8p (w) is ibs closure in H.
The scalar produect and norm in H will be denoted by ., Dusl Iy resp.

1. Autoreproducing kernel Loynes-modulus for £(U, U*)-valued
non-negative kernel. Let 4 be a set, U be a Banach space and U* be its
Banach adjoint space.

DermvreroN 1 (ef. [3], [187, [14]). A map K: AxA->L(U, U*) is
said to be an E(U U*)-valued non-negative kernel on A it

Vn e N* = N—{0},V1, e 4, Yu, € U4 =1, .

S

=1

ey My
(A &) u w) 2 0.

Let I be an £ (U, U*)-valued non-negative kernel on A; then there

U* = {; f e U} where J
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exists a Hilbert space H and a mapping f: A% (U, H) such that
{1) K (%, 2a) = f(A)*B(A) Yy, s € 4

t

(cf. [3], [13], [14]). Let £(U, H) be provided with the weak topologys;
then it is associated with it a uniform structure (%) on.% (U, H) x&£(U, H).
This uniform structure corresponds to the weak topology on Z(U, U*),
more precisely for any family {m}., I }rer I L(U, H) the neb
Wil ner «r converges to zero in (%) if for any vectors vy, v, in U

Limg ez g < @ 02 Yy 2 2 = 0.

Hence if Z denotes the space £ (U, U*), provided with its weak topology
and if #(U, H) is provided with the Z-valued product or simply Z-product
y*x fov o,y € £ (U, H) then £(U, H) is an LVH-space or Loynes space
(ef. [6], [25]).

Let us note that the above proeedure to define the uniform structure
(%) on £ (U, H) is a direct and natural manner, and proceeds in the op-
posite sense of [6].

Now, as in [23], we are interested in construction of an autorepro-
ducing kernel Loynes modulus for K that is more general than grammian
moduli in [23].

Let ¥V be any Banaeh space.

(a) We consider

m
={Dphas neda eV, V)i =

qe=]

LWy m eN*}

and define on o, X, the Z-product [f, g] = g*f. Then the vector space #,
which is provided with the uniform structure (%) admits an unique com-
pletion 5%’: up to an isomorphism (cf. [5], Theorem 2).

(b) Now we show that #, = #(V, H). Let M e #,; then there exists
a sequence {N }.x = #, = £ (V, H) such that
(2) lm{M~—N, M~N,]=0 in Z=

Je—ro0

£V, 7¥) T

provided with the weak topoi()gy and
(3) lim [Nlc"“Nm! Nk'—Nm

kym—c0
hence Vo e V1im|(N,— N,)ol; = 0; consequently there exists an el-
cment N (v) € H such that
(4) lm|Nw—N

Jero0

1=0 in Z,

)z =0.
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But
(5) {Nideew = LV, H).

It follows, according to the Banach-Steinhaus theorem or the uniform
boundedness principle that from (4), (5), we have

(6) Nez(V,H) {N}iew converges to N in Z(V, H).

However it is obvious from (2) and (4) that N = M.

(¢) Let us choose H = H(K) and B(4) = K(4, ') Vied, where
H(K) is the autoreproducing kernel Hilbert space for K, that is the Hilber-
tian completion in Appl(4, U*) of

and

={Zm‘ K2y o3 v, € Uy 4 € Azd ml,...,'n,}

i=1

for the scalar product

k3 w
<2 K (A Yoy D, K(w, - ?71> 22 (A} ) (w5)
i= =1 i=1f=1

go that VfeH(K) f(A)u = {f, KEup,Yu e U (cf. [14]), whero for any
two sets D, T; Appl(T, D) 1s the set of qll mappings from T to D.

As for any 1ed, K, = K (A4 ): A2 (U, U*), so any elenment
N es#, can be considered cither as an operator in & (V, H) or ag & mapping
N: A=2(V, U*).

Now we show that we can choose #, in Appl (4, £ (V, U*)). Indeed,
let {N;}rew e a Cauchy sequence for (%) in #°, and Me #, be the limit
of {Nlien for (%). Set M(A) = KM Vie 4; then according to (b),
M e Appl{d, Z(V, U*)). Moreover, for any A in A, any (o, %) in Vx U

lim (N, (A)0) (w) = lim <N, Bqud = (H (A)v) (v).
koo F-r00 .

Hence M nniquely represents the class of Cauchy sequences one represen-
tative of which is {N;}r.n-

I #py(K) denotes the spuce of such M, then it is obvious that one
can extend, as for #, the uniform structure (%) to #y (K). From now
on, ¥y (K) is provided with the structure (%). And it is oasy to verify
that
(T (), Kyu, ) =1im { Npw, Kyu) = lim(N,(2)

It->o00 J-»00
that is for any o in V, M (-)o e H(K).

Now we sum up all the previons results in the following theorem, which

is an extension of Theorem 2 and Proposition 2 in [23].

(Ayo)u = (FL(2)v)(w).
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TuroREM 1. Let A be a set, V and U be two Banach spaces and K be an
Z(U, U*)-valued mapping defined on A xA.

Then K is a non-negative kernel if and only if (iff) there ewists a unique
Loynes right Z(V)-modulus H# ,,(K) that is the completion of #,in the
2(V)-modulus Appl (4, £ (V, U*)) for the uniform structure (%) which satis-
fies the following autoreproducing property:

(8) VM el#yy(K)Vied M(2) =K1 M
where Appl(d, 2(V, U*)) is the £(V)-modulus of all mappings from A
into Z(V, U*),

Hpy(K) will be called the autoreproducing kernel Loynes (a.k.Li)
modulus of K.

We now establish a deep relationship between #,,(K) and H(K).

ProrosrrioN 1. (i) Let v be any non null vector in V'; then the Hilbert
space H (K) is ewactly the linear space H (v) spanned by the subset {Mv; M
eHpy(K)} in H(K).

(ii) Hpy(K) = £ (V, H(K)).

Proof. (i): Let o, € V, v, # 0; then there exists v, ¢ V' such that
vy (v,) = 1. For any « e U, let uy agsociate with it the operator ¢ defined
by a(®) = v, (v)u. It is obvious that a € £(V, U). Hence, given any vector

" ~
g = > KA yu, € H,(K), it will be associated with it the operator N
zx=1

= E K (A ")a; in .
i=
Now let f be any vector in H(K); then there exists 2 sequence {g,}nen
< H,(K) such that im |g, —¢ulgi = 0. Hence
N M—+00

lim I.N.n'v“‘ vaH(K) ==
Ty TH—+00

g ()| Lim g, — gmlmm = 0;
n,Mer00

i.c. there exists an operator I & #,y, (K) such that Iv, = f. Consequently
H(v,) == H(K).

(i): ¥ #py(E) c2(V, H (K)) then there exists an operator M in
e
&V, H (X)) and a vector v, in ¥ such that
9 VN el py(K) Nv, # Mu,.

But Mo, € H(K), hence from (i) there exists N, € #py(K) such that
N, = Mu,. This contradicts assertion (9). So the proposition is proved. m
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Remark. Let us notice from the previous proof that:
(a) sp{Mov; M e #py(K), v eV} =H(K).
(b). For any f e H(K), v, & V, the operator M = af, witha(v) = v,(0)f,
belongs .t0 Hpy(K).
We now apply the previous results to deduce autoreproducing kernel
Loynes moduli for spectral measures. :
Let (D, #) be a measurable space, U and V be two Banach spuces
and H be a Hilbert space. ;
PrOPOSITION 2 (cf. [22], ch. T). (i) Let g be an 2 (U, H)-valued weakly
countably additive (c.a.) measure on (D, %); then there exists « unigue
P(U, U*)-valued set function @ defined on B x & by the relation:
(10) (O(A x B)w)(v) = <B(4)u, B(B)v), YA,Be® Nu,velU.
Turthermore, the previous set function @ possesses the following
properties:
(BM1) @ is an £ (U, U*)-valued non-negative Lernel on #.
(BM2) @ is additive. ‘
(BM3) Vu,0eU, lLm (@(4,xB,)v)(w)=0, for any decreasing se-

My N—+CO
quences {4, },on @nd {Bylnen Of Sets in B with void intersection.

(ii) -Reciprocally, given any £ (U, U*)-valued set function O defined on
B xB, and provided with properties (BML), (BM2), (BM3), then there caists
a Hilbert space H and an £ (U, H)-valued wealkly c.a. measure f§ on (D, &)
which verifies relation (10). ‘

DerINTTION 2. Let 8 be any & (U, H)-valued weakly c.a. measure on
(D, #); then the Z (U, U*)-valued set function @ associated with it in
Proposition 2 will be called its spectral bimeasure.

THEOREM 2. Let @ be an £ (U, U*)-valued spectral bimeasure on %
and f be an £ (U, H)-valued weakly c.a. measure on (D, &) associated with @,
If M (4,2 (V, U*) denotes the space of all £(V, U)-valued weakly c.a.
measures on B and My (B) the completion up o an isomorphism for (%) of

b

def
Sy (B) ={ Blddas a,e2(V, U) ;e dyi=1,..., ’”;

-

=
then
() The & (V)-modulus Iy (@) ds contained in (B, LV, U¥).
(i) The Loynes &L (V)-moduli M pyp(B) and oy, (@) are dsomorphic
and the following relationship holds:

(11)  For cach M € #yy(0), there exists a unique X in 1y (f) such

that for any A in %

M(A) = [X, f(4)] = p*(4) X.
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Proof. Let us define

" n
ul
J| L O} = 3 (4w
i= . =1

forany n e N*, A, e B, u; € U (i =1, -+, ) where 6, denotes @(4 x -);
then flel’n relation (10) and the definition of the uniform structure (”2/)’
we easily conclude that J is an isomorphism from Hyp(0) onto A, ()
Hence for each M & # -, (0) there exists a unique X & 4y (5) suc}Z U%hai;
for any 4 € # and any (v,u) e Vx U, e

(LM, 6 4]0)(u) = {Xv, B(4)u).

But from the autoreproducing property we have M(A) — M,
the theorem is establivhed. m ' . =D 0, w0
Remarks 1. (a) The previous theorem means that any element of
the modulus'.ﬂvu(ﬂ) canl be regarded as an Z(V, U*)-valued weakly c.a.
measure defined on (D, #) by relationship (11). ’
So, in partieular, if f is the measure asscciated with a V-bounded

g(.U, H)-valued process (Xp)pew 0ver a locally compact abelian group
, i.e.

&gy by = [ g, HA(B(A)u, b))  Vue U, he H, ge ¢
D

with D being the dual group of @, # the Borelian o-algebra of D and
<y A is a character on @, then the time-domain of (X ) gey Bhat is, Ay ()
may be avantageously interpreted in some cases as the modulug 0%
Z(V, U*)-valued measures on (D, &), verifying (11).

(b) Let A e and f(A)T =sp{f(4)u; uw e U} be the closure of
B(4) U in H(= H(®)). Consider an clement ¥ & H yy(0) and v € V; then
from Theorem 2, ’

(BL(A)v)(w) = (Mo, B(Aydy VueT.
Bat, for fixed M € #;.,,(0), v € V, the previous relationship defines a con-
tinuous fnnctionﬁl on. the Hilbert subspace f(4) U; hence there exists
a veetor £(w) € f(A) U such that ‘
(M (A)o) () = <&(v), BlA)udy = (B*(4) () (w)
Consequenily,

Vuel.

VM espy(@) YoeV, VAes M(d)w e f*(4){p(4)U}.
From now on, we consider the special case where @ is defined by
(12) O(AxB)=F(AnB) VA4,Beca

5 — Studia Math. 75.2
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where F is an ZH(U, U*)-valued weakly c.a. measure on (D, 4). The
measure ¥ is then said to be an operator-valued spectral measure or shortly
a spectral measure on (D, %). (Notice that in [9], F is called a semi-spectral
measwre. )

In this case, any & (U, H)-valued measure on (D, %) associated with
O by (10) is a quasi-isometric measure W (cf. [12]). Heneeforth we shall
denote Hpy (F) (vesp. Mypp(W)) instead of #pp(0) (resp. My ().

According to Theorem 2, an extension of the so-called Kolmogorov
isomorphism theorem for Banach space (¢f. [T]) may Do obtained as an
answer to the question whether the Loynes modulus (W) has
the Radon-Nikodym property with respect to (w.ar.t) an 2(U, H)-
valued quasi-isometric measure W.

In [23] it is shown for nuclear operator-valued spectral measure I
that the autoreproducing kernel grammian modulus &, (F) is exactly
the clags of operator-valued measures that are Hellinger square integrable
w.r.b B

So by analogy, we state the following def]mtlons

DEFINITION 3. (i) An £(V, U*)-valued weakly c¢.n. measure M on,

(D, #)is said to be Hellinger square integrable w.r.t. I' it M belongs to # py, (7).

(ii) Let M be a measure in # 5y, (F); then the non-negative operator
[M, M] is ealled the Hellinger square integral of M w.r.t. I

Remark 2. Quite recently Makagon in [9], p. 197 has given a direct
definition for U*-valued meaguresto be Flellinger square integrablo w.r.t. 77,
For the clarity, let u§ quote his definition hereunder:

For any A €&, let [F(A)u]’ = (F(4)u)(w) Yu e U and S(4) be
the closure in U* of F(A4) U in the ||| ;-norm; then any U*-valued measure
m on (D, #) is said to be Hellinger square iniégrable w.r.t. F if

(i) VA e B m(4) e 8(4),

(i) fmlf = SHP lem e < oo

where & is the famlly of all finite measurable pm“tylmons o of D. We remark
that it M € #'py (F) then Vo € V, M () is Hellinger square integrable w.r.t.
F in the previous sense of Makagon.

Indeed, according to Remark 1 (b) and the property that I is
a spectral measure, it follows that M (-)o satisties (i). On the other hand,
from Theorem 1.3 in [9] it is obvious that relation (i) holds for every
M()v.

In other words, a U*-valued measure m is Hellinger square integrable
wrtb. F in the sense of Makagon iff m e H(F). Oonsoquen‘rly, from
Proposition 1, we deduce the next result.

THREOREM 3. An £ (V, U*)-valued weakly c.a. measure M on (D, %)

icm
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is Hellinger square integrable w.rd. F iff Vo e V, M (-)v is Hellinger square
integrable w.ri. F in the sense of Makagon.

In [9]Makagon is interested in the construction of the Radon-Nikodym
derivative of M (*)v w.r.t. ¥, whereas our aim, in what follows, is to show
that under certain conditions the modulus (W) has the Radon-
Nikodym property and also to express under these conditions, for any
M e #py(F), the integral form of the operator [M, M].

2. A special Kolmogorov isomorphism theorem for the modulus ./ ,5;( W).
Let U, V be two separable Hilbert spaces and (D, 4) be a measurable space.
DEeFINITION 4 (ef. [4], [10], [11]). (i) An #(V, U)-valued function
@ on D is said to be #-measurable if there exists a sequence of
Z(V, U)-valued #-simple functions {p,},n such that for any A eD
and any v eV, '

Iim i‘;’n(ﬂ')’u'—‘ (p(l)ﬂl{] =0.

(i) An 0(V, U)-valued function ¢ on D is said to be Z-measurable
if there exists a sequence of £(V, U)-valued #-measurable functions
{Pntnew Such that for any 1eD and any v belonging to ‘rhe domain
Dom (p(4) of p(4),

-

limp, (Dv—@(A)vly = 0.

Let W be a quasi-isometric measure associated with the spectral
measure F (cf. [12]); then the more general Kolmogorov isomorphism the-
orem wag obtained by Makagon in [8] for the vector time-domain

SE{W(A)u; A e uelU}.
Since, herein, we are interested in construction of isomorphisms for the

operator time domain (W) of W, we shall consider more restrictive
assumptions on F. :

Additional assumptions. From now on, we agsume that the spectral
ar

. du

a positive o-finite measure w on (D, #) and that f e Zt(U) p-almost every-
where (u-a.e.).

Then it is known that them exigts a separable Hilbert space x4 and
an =.4”(U A)- valued strongly measurable function @ on (D, 4) such that
f(2) = @*(4) @(4) u-a.e. (cf. [14], Theorem 3.2 and [15], a more general
result is obtained in [7], [21]). ’

measure F hag a Radon—Nikedym (R-N) derivative f = w.r.5.
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Let us consider the space Z, (F) of all 0(V, U)-valued Z-measurable
functions ¢ such. that

Qp e L (V, ) p-a.e.
and for cach v eV,

[ 1Qpvl3du < oo
D

DEFINITION 5. (i) A sequence {p,},en M Loy (1) Is said 10 be a Cauchy
sequence in Ly (F) if for each v ¢ V

lim [ 19p,(®) —Qpn (0 du = 0.
n,M->00 1)
(i) A sequence {p,luen In Ly () is said to be (%)-convergent lo an
clement @ € L4y (F) if for each v eV

tim [ Qp, (0) — Qg (0) 3 dp = 0.
n~+0 D
(iii) A subset S of &% (F) is said to be dense in L% (F) if for every
¢ € L% (F) there exists a sequence {p,},.v i 8 thati is (%)-convergent to .
(iv) L% (F) is said to be (%)-complele if every Cauchy sequence in
Lyp(F) is (%)-convergent in P, (F).
LmyA 1. The space of all £ (V, U)-valued B-simple functions is dense
in Loy (F).
Proof. Let ¢ € 5 (F); then from Definition 4 (i) and (ii) it is easy
o see from the diagonal procedure that thero exists a sequence of & (V, U)-
valued Z-simple functions {p,},.v over D such that for any A € D and any
vector v & Dom (¢(2)),

(13) lim [p, (Ao — @ () vy = 0.
But
(14) IQ(A)wn(ﬂ)v —QANeA)vly < Q1 @A) —p(A)vlg.

Hence from. (13) and (14), we deduce that for any 1 € 4, the two sequences
{fo Wby {Pn(A)Jnew converge to f(1) where for every n e N,
o= <Q‘Pn’07 Q‘Pn’v>7 hn = <Q%vﬂ]; Q‘P”) and .f = <Q‘P”7 Q‘I””)-

Since f belongs to I (u), according to the Lebesgue convergence theorem
we deduce that the sequences {f,},.x and {h,},n converge in the norm of
It (u), i.e.

(15) lim [ |f,—fldu = lim [ hy—fldu = 0.
ﬂ—»DoD n—+oo1)
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However
(16) [1Qp—Qovliedp = [ (fu—hy—Fu+1)du.
D D

S0 from (15) and (16) the lemma is established. &

TuEoREM 4 (Kolmogorov isomorphism theorem). (i) The space of
Z(V, U)-valued HB-simple functions is dense in Ly (F).

(i) L5y (F) is (%)-complete. ,

(ii) The relationship on Lo (F) X L5r(F), the kernel of which is the
subspace

lp e Ly (@) Vo e v, [iOpidu= ol
D

18 an equivalence relation.
(iv) The quotient space L,y (F) of Ly (F) for the above equivalence re-
lation is isomorphic to My (W) so that for any o, v € Dyp(F),

def .
(17) [esy] = [v¥pdp = [W(e), W(y)1 = Wu)*W(g).
D

Proof. (i): Of. Lemmsa 1.
(ii): Let {p, hnen be a Cauchy sequence in £, (F) that is for each ve V,

m [ (Qp,—Qpn)vitdu = 0.

n,M—r0

But L2 (u, o) is a Hilbert space; then there exists a unique g(v) € L2(p, A7)
such that

(18) ' (Q%k)@k—+ g(v) p-a.e.

and

(19) [ 1Qpv—g @)y — 0.
D 1200

From (18) it is easy to see that g e L(V, #") u-a.c. Indeed, for any 2 €D
such that (18) holds, {sznk(Z)}kEN < #(V,#); then according to the
Banach—Steinhaus theorem it is concluded that g e Z(V, &) p-a.e. Now
since Q € (U, A') y-a.0., hence according to [18], p. 540, @ admits a
unique generalized inverse §* which is an 0(o", U)-valued #-measurable
function over D.

Let us set p = @*g; then from the properties of the generalized in-
verses (cf. [10], [117, [18]) we have

(20) Qp=0979 =Prog
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where R(Q) is the closure of the range of @ and Py is the orthogonal pro-
jection on the closed space 8 in . i

Morcover, for every n € N R(Qp,) < R(Q) (cf. [18]); then from (18)
it is obvious that R(g) = R(@). Hence

(21) Proy =4-

Consequently from (20) and (21) it is deduced that for anyveV

[ 1@poliap = | lg(0)in
I 1
and
Lim (@, —Q@)olldu =lim [ Qg0 —g(0)ipdu = 0.
?’b—)OO_D N—r00 D

Hence we conclude (ii).

(iii): This part is obvious.

(iv): The isomorphism between I3, (F) and Jy5(W) is deduced
from (i) and (ii) in the usual marner as in the proof of Theorem 2. w

TavoreM b. (i) For cach M € #yy(F) there ewists o unique @y
€ Ly (T) such that for any A e

@2) M(A) = [ foudn
A
that is
AM|du = fos € 2 (V, U) p-wee.
(i) For any M and N in #yy(F) there ewists a unique pair (pu py)

in Ly (F) such that

(23) M, N] = [ (aN/du*(aP|dp)* (@M[aw)dp = [par, ox] € L(V)
D

where (AF[du)* is the generalized inverse for f.

Proof. (i): It is obvious from both Theorems 2 and 4 that (22) holds.
S0 dM/du = for p-v.0. But Quy € £ (V, A7) (ck. the proof of Theorem 4).
Hencg‘ Jou = Q*Quy € Z(V, U) p-a.e.

(ii): From the property of the generalized inverse, we have f7* = e
Hence (23) 1s obtained. m

Let H (p) be the s1:bclass in M(B; Z(V, U)) such that it M e H2(u),
then dM[dp oxists, Q** dM/du e 2(V, ) wae. and LM, M, 0>
< coVv eV, where

def
[, M), = [ (@M |duy*(aF|du)™ (@M |dp) dp
D

(the integral is meant in the weak sense).
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Notice that from Theorem B, #yy (F) = H% (1) hence Hy(x) is not
2 void class.

‘We now prove that reversally ﬁ}(y) is contained in # 'y (F). So the
integral form of the operators [M, M is established for any M € 'y (F).

RECIPROCAL OF THEOREM B. Let % be the relationship on H3(p) X H%(u)
the kernel of which is {M e H%(n); [M, M], = 0} and let Hip(u) be the
quotient modulus of H(u) for the equivalence relationship &. Then

Hyy (F) = Hilp).
Proof. Let M e H%(n); then it is obvious that
par = (AF[ap)™ (M |dp) € L5y ()

and [M, M1, = [pa pule Hence the spaces Hy(u) and %, (F) are
isomorphie. Since # p,(F) is contained in Hi(x) and is isomorphic onto
Ly (F), the theorem is established. m '

The results in Theorem 5 and in its reciprocal can easily be summed
up as below:

COROLLARY 1. If U, V are two separable Hilbert spaces, if I' admits
an B-N derivative dF[dp w.rd. a non-negative o-finite measure p on (D, %)
such that dF|du € £ (U) u-a.e. and if M is an £ (V, U)-valued measure on
(D, B), then the following assertions are equivalent:

(i} M s Hellinger square integrable writ. F (i.e. M & py(F)).

(i) Q**aAMjdu € L (V,H) p-a.e. and

[ (@M |auy*(@F [ap)* (@M ]|dp) due 2* (V)
D

(the integral is meant in the weak sense).
(iil) There emists a function ¢ € Ly (F) such that for any A € 8,

M(4) = [ (aF|du)pdp
A
(the integral being meant in the weak sense).
Remark. Let M be an operator-valued Hellinger square integrable
w.r.t, I'; then we immediately obtain
(@) VoeV,VAeB M(A)v= [Q*(Qpy)vdu (in the weak sense) with

o
Qo () being a A -valued square u-integrable funetion on (D, %).
(p3r and M being related by relation (iii) in Corollary 1.) Under
very more general assumptions, Makagon has shown in [9], Theorem
1.5 that a vector-valued measure m is Hellinger square integrable w.r.t. F
iff it satisfies an analoguous condition to (e).
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" So the previeus equivalence (i)<>(iii) is somewhat (under more re-
strietive assumptions) an operator version of Theorem 1.5 in [9].

3. Interpolability and minimality of Hilbert space-valued weakly
stationary processes. Let ¢ be a locally compact abelian (LCA) group,
@ be its dual group; @, ¢ are provided with their Bovel o-algebras 8, 4
and their Haar measurcs dg, di, respectively,

Let U, V be two sepurable Hilbert spaces, T he any Hilbert Kpaco
and X be a weakly continuous mapping frem ¢ into (U, H) such that
ity correlation kernel K (g, h) = X}’:X,, is a funetion K (g-h) dependent
only on the difference (g—h).

Such a mapping X is said to be a continwous U-valued weally station-
ary process over G or to be o U-valued stationary Hilbertion variety nccord-
ing to Masani’s terminology in [187, (according to [18], o Milbert vaviety
is an # (B, H)-valued mapping defined on @, B being any Banach space).

For such processes (X)), it Is well known that there exists o unigue
LT (U)-valued weakly c.a. spectral measure F on (& #) sneh that for
any o, we U and g ed,

(B (g)u)(v) = f Y (F(A)w)»  (Boehner theorom).
[t

(For more details and further results the reader is referred to [1], [4]
(251, [26].)

Here it iy assumed that there exigts an 2% (U)-valued #-measurablo
function f over @ such that for any A e d and any u, v € U we have

(F(A)u) (0) = [ (f(2))(v)da.

A
Let us denote by

Myy(X) = Smy(X) the Loynes £(V)-modulus generuted by the
process (X,),.o (time-domain of (Xg)gea)s

#py(K) the auntoreproducing Loynes modulus of K,

#py(F) the autoreproducing Loynes modulus of I,

It is obvious from Theorems 2 and 4 that thege three SPacos aro isomor-
phic. Moreover, from the same arguments as in [23], Thoorem 6, wo can
state the next result. :

TrworM 6. For every 4 e Ky () there eaists a wnique M, & Ay (F)
such that for any g e @
(24) y(9) = | <g, Ayan, ()

o

(the integral is meant in the weak sense).
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The following lemma is fundamental for the study of interpolability
and minimality of U-valued stationary processes.

Limwma 2. Let Ly (dg) be the space of £(V, U)-valued weakly dg-inte-
grable functions defined over G. For every y e Ty (dg), its Fourier inverse
transform is

J) = [<9, 2 y(g)ag
G

that is for any Ae@ and (v,4) e Vx U
§(A) (v, w) = [<g, 2> (y(9)) (w)dg.
o

If y € Iy (dg) 0 iy (K) for @ given Haar measure dg on @ then
() & is a B(V, U)-valued weakly di-integrable function and there
ewists a Haar measure di on & such that

o) = [ G2 imas  gee.
o

(ii) The measure N, defined by
Ny(d) = [§(xaa
4

for any A e &, belongs 1o Hpy(F).

ATl the integrals in the lemma are meant in the weak sense and B(V, U)
denotes the space of all sesquilinear functionals on V xTU.

Proof. Tt is analogous as for Lemma 4 and Proposition 4 in [23].
However, let us give some complements. R

(i): Since y & Lk (d9) N py (K), then for any (v, w) € VXU, y(A)(v, %)
is defined for any 1 & and

(y(g)) (w) = af $gs 8 (M (2)0) (u)

for a measure M in 3y (F) (cf. Theorem 6). Hence by the inversion for-
mula (ef. [28], p. 22) we obtain,

(y(9)v) (w) = @f @ B §) (o).

(i): For any 4 e & and (v, u) e Vx U, let
Ny(d) (v, u) = [§(2)(v, w)ar.
A .
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Then

(i) ) = [<g, DAN;(2)(0, ).
&

Buty € #p (K);then there exists a unique measure M e py(F) (cf. The-
orem’' 6) such that for any (v,4) e VX U and g €@,

(w(@)0)(w) = [ <g, (M (2)0) (w),
G

hence

Now it follows from the uniqueness theoremr in [28], p. 17, that
(M(A)v) (w) = N;(4)(v, u), ie. M =N; &

Now let @ be the class of all non-empty compact subsels of G. Tor
any I' €D, Myy(X;G—I) denotes the space

Sm{X,a; ge@, g¢ I, acZ(V, U)}

that is the completion for the uniform structure (%) of the space spanned
by {Xa; ge@, g¢I,aeZ2(V, U}k

Let us note that for general Loynes spaces there is no theorem
guaranteeing the existence of orthogonal projection hence of orthogonal
complements, but for the special Lioynes modules studied herein the
previous difficulty does mnot arise (ef. [17], [257).

So let (1) be the orthogonal complement of M, (X;G—TI) in
My (X).

DeriNITION 6 (cf. [19], [20], [24]).
(i) A compact subset I' € 2 is inferpolable w.r.i. (X,)yq it & (I') = {0}

() (X, )peq is interpolable if for any compact subset I" belonging to
2, ¥ (I') = {0}

(i) (X,)eq 15 minimal it tor any h e @, 4 ({h}) # {0}.
Levma 3. For any I' e @, the space & (I') is isomorphio to
eI 2 (v, U)) 0oy ()
where for any subset 8 in G, %’(S 3 2V, U)) denotes the space of all weally
continwous funmctions & from 8§ into 2 (V, U), i.e.
V0, u) e VXU £ se5{(&(8))o) ()

8 a continuous function on 8.
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Proof. Let 47 (I") be the subspace in #,;(X) that is isomorphie onto
A (I'); then for each y e &7 (I"), there exists a unique ¥ e .47 (') such that
for any g € @, y(g) = X, ¥, hence from the wealk continuity of the process
(Xg)geaﬂ

Y (v,u) e VXU geG(y(g)v)(w)

is a continuous function with a compact support contained in I

The reciprocal is obvious. m

Following the same arguments as in [23], Theorem 10 and Corollary 5,
the next theorem and corollary are easy to deduce.

TnuoreM 7. (i) A subset I' € @ 48 interpolable w.r.t. (X)) .q iff for any
y €% (I3 2(V, U) either y =0 or for every v €V,

[ <L DPF2) G2 vyds = oo.
e}

(1) (X)peq 18 interpolable iff for every non-null function y n
x(@;2(V, 0)),

[ GO0, 038k = 0, v eV
@

where M(G;.? (7, U)) is the space of Z(V, U)-valued weakly conﬁnuous
fumctions with compact support in G.

COROLLARY 2. Let G be a discrete Abelian group. (X,),eq is interpolable
iff for any trigonometric polynomial § with & (V, U)-coefficients

YoeV [ GATANI (20, 0> @h= 0o or §=0.
&

Lot us note that as in [23], [24], minimal continuous U-valued weakly
stationary processes only can exist over discrete groups. So we now assume
that @ is a discrete abelian group. Since (X,),q is stationary, 4" ({0}) # {0}
iff for any h e @ 4 ({h}) 5= {0}. Hence, following [19], [20], let us congider
tho projoction ¥, of X, on 4 ({0}), then [T, ¥,] = ¥;¥,e£*(U) and
[Y, ¥,]7* oxists in O(U). Hence

do (1) = [ 9,949 = [Xoy To]
3

Yo = -R(Yo) = Eym :Yo] 5, and

where R denotes the isomorphism between 4y (X) and #pp(K). So
N () = [[¥ Yo1dd = [Ty T,]dA(4),
P
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A ed and Nj, e #py(F) that is

[Ny, W;o] = [ [ ¥y X, J(AF/AN* [ Yo, Yo]dd € 2 (V).

[¢
(All these integrals are meant in the weak sense.)
Lot us also congider the orthogonal projection J on the closure of
the range of [Y,, ¥,], i.e. d = [¥, YoI*[¥, Xl
Remark. Let us note that the minimality theorem of Makagon-
Weron ([27], Theorem 4.6) for g-variatio stationary processes can cusily
be extended to U-valued stationary processes. So only the minimality
for stationary processes of full rank is studied bolow.

DerNITION 7. A U-valued weakly stationary process (X)), over
a diserete group ¢ is said to be of full rank if the invoerse of [Y,, ¥,] oxists
in 2(0).

The following theorem is an operator extension of the result in [19]
p. 309, [24], p. 180. (Another extension is studied by Miamec-Salchi in
[16].)
_ TusormM 8. (i) (X)) is minimal of full rank iff for almost all 2 in
G, f(2) has an dnverse in £ (U) and [~ (A)dA ewisls in the weal sense.

4

() If (X,)jee is minimal of full vamk then [Y,, ¥,] has an inverse
in Z(U) and
with & = Y, [Y,, ¥, 177

o &) = [ (2)aA

G

Necessity. T [¥y, ¥,]7" exists in 2(U) then ¥, 50, g0 (X)) 18
minimal. Moreover :

Yo e/ ({0}) ey = Xo[ Xy, ¥o17" €4 ({0})

(that is not the case only if [¥,, ¥,]* exists).

Let ¢ be the corresponding element of &, in .#UU(K); then ¢ == I§,
and its Fourier inverse transform is € == I where I is the unit operator in
Z(U) and

B (g) =
0(9) 0 otherwise.
Hence ‘

(25) Ni(4) = [Tad et ypy(B), Aed.
A

icm
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But N; €#pyy(F) i there exists a unique ¢, € Ly, (F) such that

(26) No(d) = [fg.di, Aca.
A

From (25) and (26) it is deduced that
an foo =1 di-a.e.
Morcover,

Np(4) =[N, 0,] = [ (@F/aR)(aF|ar® @x; ar di
4

(¢f. Theorem 2); then from the uniqueness of ¢, in If,(F) we get ¢,
= f*AN |d), hence g5 = @, 50 (27) becomes fp, = ¢,f =I di-a.e. This
means that £~ exists di-a.e. and is equal to g,d2-a.c.
Suffieiency. It f~* oxists in £ (U) such that { f~*d4 exists (in the weak
é

sense), then Ny € #yp(F) where

N(A) = fIdl for [Ny Nyl == fI(f“)Idl
A €]

exists. Hence the Fourier trangform e of I is equal to ¢ = I, and belongs
10 oy (K. 8o it is immediate that the isomorphic element ¢ of ¢ in Ay (X)
belongs to A ({0}) for [g, X,] = e(g), g ¢ G. Therefore 4 ({0}) # {0} that
i8 (X,)seq 18 minimal and. ¥, # 0 (otherwise X, should be orthogonal to
A({0}), but this fact contradicts [, X] =1 5 0).
Let a be an operator in % (U) such that for any g € ¢
(28) [0 — X, X,] =0, ie. "I&(g)a = [To X].
Tt is obvious from this condition that @ = [ ¥y, X,] = [Yy, ¥;] and & # 0
because ¥, = 0. ) :
Moreover, condition (28) leads t0 the equaliby Y, = ¢u. Indeed,
relationship (28) holds iff for any v, € U and g €@,

oot =T o)ty X0> = ([e— Loy XpJu)(v) = 0.

But (sga— X,) (1) eé}f{ngu; v & U, §y €@} which is the closed subspace
in H, spanned by {X,v; v € U, ¢ € G}; then (0 —Xo)u =0 Yu e U, ie.
Y, == gyu. e

Now I = [g5 Xy] = & Xy— X+ X, = {e0y Xol = [0 &1L Foy Xp]:
Consequently, [¥,, ¥,] is invertible in £(U) and

[V L] = [0y ] = [N, §p] = [F7()da. m

G
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Iam very grateful to the referee for his helpful advices and for pointing
out to me the recent paper of Makagon.
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