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H? estimates for weakly strongly singular integral
operators on spaces of homogeneous type

by
BENJAMINBORDIN (Campinas)

Abstract. Lot & bo a normalized homogeneous space. We define “weakly strongly”
singular kernel on X x X, and wo study the action of the “convolution” operator
indueed by this kernel on the atomic Hardy spaces HP (X), with 0 < p < 1. A bounded-
ness result is obtained. These operators are analogues of the wealkly strongly operators
on R* gtudied by ¢. L. Fofferman and E. M. Stein in [6].

1. Introduction. In this paper we study a generalization of convolution
operators induced by weakly strongly singular integral kernels.
Bxamples of these kernels, in the case of R* are given by ‘

k(@) = |o|~ y (@) expilal®,

where 0 < a <1, > 0 and yis o C* function on R, which vanishes near
zero and equals 1 outside » bounded set (see [5], page 21). The L® theory,
1 <p < +oo, for operators obtained by convolution with kernels (@),
has been studied by I. I. Hirschmann [7], S. Wainger [12], C. L. Feffer-
man [5], C. I. Fefferman and B, M. Stein [6], J. B. Bjirk [1] and P. Sjo-
lin [11].

Also in [8], C. L. Fefferman and B. M. Stein obtain boundedness
results for H?(R"), 12 p >py(a, f,n) >1/2. Estimates including the
limiting ease p = py(a, B, n) were obtained by R. R. Coifman in [2] when
o= 1.

Ifere wo consider a generalization of these kernels and the action
of the induced operators on H? spaces, p < 1, defined in terms of atoms
on spaces of homogeneous tiype. First we define what we mean by a weakly
strongly singular kernel on spaces of homogeneous type. In Theorem 3 wo
prove that the operator K induced by this kernel maps atoms into clements
of H?, p « 1. Intho proof of this theorem we extend some techniques used by
R. A, Macfag and O, Segovia in [9]. The extension of the operator to the
wholo space JI* requires the introduction of an auxiliary operator, namely
I, acling on the space Lip(L /p—1) of classes of Lipschitz functions.
This operator is an adaptation of the operutor K# considered in [9].
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Tn Theorem 5 we show that K* is a bounded operator from Lip(1/p—1)
into Lip (1/p —1). This result is used in Theorem 6 in order to prove the H?
boundedness of the weakly strongly singular integral operator om X.

2. Preliminary definitions and notations. Let X be a set and d(z, y)
a function defined on X x X such that:

(i) d(z,y)=0 and d(z,y) =0 if and only if & =y;

(i) d(z,y) = d(y, »); and

(iii) there exist a finite constant 4 such that d(w,y) <A(d(m, 2)+
+d(z, y)) .

‘We shall suppose that there is a measure x such that the balls B(w, r)
= {y: d(», y) <7} are measurable. Morcover we ghall assume that there
exist two positive and finite constants b, and b, such that

(2.1) o by < (B, 1)) < byr.

The function d(z, y) satistying (i), (ii) and (iii) shall be called a quasi-distance
and the triple (X, d, u) satisfying the above requirements shall be called
a normalized homogeneous space (see [3] and [10]) and shall be denoted
by X.

v Let @(2) a be real or complex valued function on X; square integrable
on bounded subsets of X. Let my(p) be the mean value of g(@) on a ball B,
that is to say,

mg(p) = w(B)™ [ ¢(@)dp(a).
B

We shall say that ¢ belongs to Lip(a), 0 < a< 1, if there exists a positive
and finite constant ¢ such that, for every ball B on X,

(2.2) (6B [ 1p(0)—ma(g)tap(@))" < o u(B)"
B

holds. The least constant ¢ such that (2.2) holds shall be denoted by |l
We shall denote by @ the class of functions which differ from ¢ in a congbant.
The space of the class # shall be denoted by Lip(a). The norm of y shall
be denoted by ||@|[% ,

Let 0 <p<<Ll<g< 0. A (p,g)-atom on X is o function a(x) with
support contained in a ball B satisfying:

(2.3) (0@ [la@lau@)" <p(B" 3 g< +oo.
"B

(2.4) lalle < u(B)™* i g = c0

icm®
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and
(2.5) Ja@ap@) = o
By

(see [21und [81]). A (p, ¢)-atom can be identitied with a lincar function‘ayl
on Lip(1/p--1), by i
Ty = [a(m)p)iu@)
X
and woe have [|JB,) <5 1.
Wo define H” as the subspaco of all linear funetionals on Lip (1/p —1)

oo
S . . ul .
that can be writen ag 37 a0, where {8} is a sequence of (p, 2)-atoms and
doal

o
{o:} Is v sequenco of real numbers such that 3 |a,” < + oco. The “norm”

frn ]
of feH? shall be delined uy '

Nz == inf {(JS1 |azl”)m'= f =’§ ai“¢}~

Tral qral

This is not & norm in the ordinary sense, unless p = 1. However, H? with
tho metivic detined by |-|f» bocomes & complete metrizable topological
vechor spaco.

3. Resulis. .

DeEriNeitoN 1. Lot & (2, 4) Do o measurable function defined on X x X.
We shall say that % (w, y) is & weakly strongly singular kernel if there exist
constants 0, y, & safislying 0 < 0<1, 0/2<y<1/2, 1—0<e< L and
a bounded function g,(@, y), §> 0, which vanishes when d(z,y) < 6/2
and is equal to L when d(@, y) > 6, such thatif we define g as1/g = 12+,
then the following conditions hold:

(3.1)  For any ball B und »>0 if
D == {(m, y): d(m, y) > 1} (B xB),
then
[ 1o, )17 dp() s () <+ 00,
A

where 1/g--1/¢" = 1.

(3.2) Lot ky(w, y) == qg(w, y) B(w,y). Wor any function f in I7(X) with
bounded support, the operator

Eaf(@) = [ ks, 9)f @) dpy)
X
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satisfies
I1E sflls < Califllg»

where C, is a finite constant independent of fly) and 4.

(3.3) For any function f(y) in I2(X) with bounded support we have
1K sfllz < Callfllas

where O, is a finite constant independent of f(y) and 4.

(3.4)  For any function f(y) in LX), j = ¢ or j = 2, with bounded sup-

port, limK,f = Kf exist in L*(X).

30
(3.5) k(w, y) vanishes if d(w,y)>1. If d(y,m) <1 and d(z, z)
> 2d(y, %) ", then there exists a finite constant €, such that
(@, y) — k{2, 2,)] < Cyd(y, 2,)°d(, ) 71100
holds.

(3.6) Let yp be the characteristic function of the ball B(xy, R), B >0,
where @, is an arbitrary point of X, and let K* be the adjoint of the oper-
ator K in L2(X). Then the limit of K*(y) for R tending to infinity exist
weakly in I% on bounded sets and it is equal to a finite congtant.

LEMMA 1. Let ¢, 0, g and y be the constants from Definition 1. If we define

¢ = (e+1-1/g)/(e/(1—0)-+1/2),
then the following inequalities hold:

(8.7) 0<1—90;

(3.8) o (@lg=1)/— ) < (142¢/(1-0);

and there ewists p such that

(3.9) 0<p<l and 1/p < (l/g—e/2)/(1—0).
Moreover, if p satisfies (3.9), we have

(3.10) 1fp < 1-¢/(1~0)

and the interval

(3.11) (2/p—1, (2)g—1)/(1—0))

is not emply.
Proof. To prove (3.7) we observe that y > 6/2 and therefore we have
1/g >1/2+ 6/2. Thus 1/g+e-+1/2 > e-+1+0/2, which implies o < 1—6.
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The proofs of (3.8), (3.10) and (3.11) are simple and will be omitted. To
prove (3.9) if is sufficient to show that (1/¢—g/2)/(L— o) > 1, ie.,
y/(1—e) > 1/2. From the expressions of p and g we have

1—0 = (260/(1—0)+9)/[s/(1— 6)+1/2)
and since 0 <2y, (3.9) is proved.

Tnzorrm 1. Let p satisfy (3.9) and let k(w,y) be o weakly strongly
singular integral kernel. Let a(w) be a (p,2)-alom and let B = B(m,, o) be
the ball containing the support of a(w) such that

((e(BY* [ la(@)izdu(e))" < uB)-2r,
B

gimm 'in the - definition of (p, 2)-atom. Then we have:
DIf o<1 and s satisfies 2[p—1<s< (2)q—1)/(1— o), the fume-

* tion M (@) == Ka(v) satisfies:

(8.12) f |3 (@) 2dp () < ¢ ottla—2p),
(3.13) ;er | () 20 (@, 0,)° (%) < o oles+la=2n)
and

(3.14) Xf M () du(x) =

where ¢ in (3.12) and (3.13) i8 a finite constant independent of o.
(i) If o >1, the function M(2) = Ka(x) satisfies (3.14). Moreover
we hawe:

(3.15) J1M @) dpo) < oot

and

(3.16) f | M () [*dl (y )2 () < 600"
X

that is M (®) is a (p,») molecule (seo [4] and [97).
Proof. Lot us prove (i). First, we observe that since 1 < ¢ < 2, a(a)
is also w (p, g)-atom. By conditions (3.2) and (3.4) wo get

[ 1o du(o) < o[ [ lnte)Pan o] < orot-s0,
X

This ends the proof of (3.12). Let us show (3.13). Let B,, = B(z,, 242"%¢°).
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We write

f]M(a:)]ﬁd(m, 2y dp(w) = fl]ll'(m)lﬂd(m, @) dp () -

by By

+ [ 1M@)Pd@ @) du(@) = LA L.
X8,

Since s > 2/p—1 and 0 <p <1, we get & >0 and hence from (3.12) it
follows that I, < ¢-g® 2,

Let us estimate I,. 'We have

L= [ |M@)I&de ) duw)
=l By y~By,

< Y242 [ M (@)du (o).

=0 Byp+1~8n,

By the definition of M (x) and (2.5) we get that

M @)= [ (ki@ y)—kw, 2,))aly)dply)
X
and therefore from (3.5) it results that

J' | () 2 (@) < PR (@7 gt)=12e=0)

D1 ~By,

Then, we have I, < ¢-¢®*t*~22 Sinee this estimate for I, is the sime
that we got for I, (3.13) is proved.

Let us show (3.14). By conditions (3.12) and (3.13) the [un(‘tmn M (w)
is absolutely integrable on X. Thus, if g, is the charactevistie function
of the ball B(zy, R), we get

[ Ea@)du(@) = lim [ Ka(@)dp()
X Ti-roo By, R)

= lim [ a(@)K* (yp) (v) dp2).

Ie-ro0 N~

Therefore, since a(s) iy supported on 5 boundoed sot, from (3.6) wo gob

[ M(@)ap(@) = c- [ a@)du(v) = 0.
X

X

Let us prove (if). It follows from (3.3), (3.4) and definition. of &(x),

©

m HP esltimates for wealkly sirongly singular inlegral operators 223

that (8.15) holds. Let us show (3.16). We have

13 (@) 2, @)= dw)= | (@)12d (@, 2,7+ dyal) +
X

By, 2.40)
[ M (@), 0, du(a).
X ~Bwy,240)

The last integral on the vight hand side is zero sinee %(w, y) vanishes when
d(@, ) > 240 and the Lirst integralls bounded by ¢- 6", This prove (3.16).
(8.14) is proved in the same way of part (i).

Next, wo shall prove o decomposition theorem for Ka (). We shall
need the following lemma (see [9]):

LasMMA 2. Let ¢ & Lip(L/p~1) with 0 < p < 1 mwl oy == Vo be such that
o>0,b>1 am( J @ non-negative integer. If we denote by my the mean value
My = Mgy, a) (¢), then the following estimatés hold:

(3.17) gl < o Nl (o)) Hmgl - if p <15
and ) ‘
(3.18) byl << o llplhg -+ lmel i p =1,

TororReM 2. Let p satisfy (3.9). Let M(x) be a measurable function
satisfying edther t/w set of conditions (3.12), (3.13) and (3.14) with o <1
or the set of conditions (3.14), (3.15) and (3.16) with o> 1. Then, for every
@ elip(l/p—~1), the function M(w)p(w) ds absobutely integrable on X.
Moreover, the fzmlwcd tinear fumclional

(@) = [ M(@)p(®)dp(@)
X

is well defined and bounded on Lip(l/p—1).

Proot. Let B, = B(u,, b"s), where b > 1, 0 <1 and » a non-negative
integer. We putb 15-1 == @. Lebp e Lip(l/p—1) be such that mg,, 0 (®)
= 0, By Minkowski and Schwarz inequality and taking into aecount the
definition of the Lipschitz norm of ¢ we getb

J @) 1o () dpu ()
X

-]

<M 1r@eaun)” (gl (BN longl) (B,
sl By elly g

By un application of (3.13) when n =1 and (3.12) when n = 0 we get
for all nz 0
(3.19) ([ 1@pPau@))" < oprekolemib-lmi-a

By, By
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Then replacing this estimatein the above inequality, by Lemma 2 and
Lemma 1 we obtain

[ 1@ lp(@)]dp (@) < clplp--
X

To obtain the last inequality for any function v in Lip(1/p — 1) we observe
that mpg oy — Mag,q () = 0. Therefore since M(») is absolutely
integrable on X, from M (z)y(#) = M (w)(«p(a;) —W"B(xo,a)('l')) -+ M (@) Mg(m,0(%)
it follows that M{w)p(x) is an absolutely integrable funetion. Morcover,
from condition (3.4) we have

[ M@ y@)dp@) = [ M @) (p@) —myg,, o) du@).
X X
Hence
[ M @@ d@) < [1M()l1p(@) — mag, o (v)|dp @)
X

< 09— Mpigy (W) Hip—r = Clplip—s -
To finish the proof of the theorem we observe that the result for a meagur-
able function M(s) satisfying (3.14), (3.15) and (3.16) with o> 0 was
obtained in [9]. Xts proof uses techniques similar to these used for the case
o<1, and will not be repeated here, Next, we will show that F, belongs

to H” and that there exists a finite constant ¢ independent of M (z) such
that [[Fyl < C.

TeroREM 8. Let M (2) satisfy the conditions of Theorem 2. Then we have:
(i) There ewists a sequence {a,} of (p, 2)-atoms and a sequence {Aa} of

real numbers satisfying 3 12,17 < €, such that M(z) = X' A.a, (), where ¢
ne=1 =l :

is a positive and finite constamt independent of M (). ‘

(i) For every g e Lip(L/p—1) the linear fumctional Iy imduced by
M (%) satisfies

’ZﬂM(w) = Zln <a'n7 7’}-

Nl

Proof. We shall prove the theorem when M () watisties (3.12), (3.13)
and (3.14) with o < 1. The proof for M (a) satisfying (3.14), (3.15) and (3.16)
with ¢ > 1 can be found in [9].

Let b, and b, be the two congtants given in (2.1) and let b > b,/b,.
Let B_, = @ and B, = B(x, b"0) if n is a non-negative integer. We denote
by D, the set B, ~B,_, and by M, the mean value of I (%) on. D,. Then

- ©
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we can write

I (@) == g M (@) — M) gn, @)+ D Moxp (#).
(3.20) M (o) %( (@) = M) 15, (9) 2 1o,

N 7 - i () = M AN 1 — “‘1“2H(B )1/;1)—-1/2, we can
Denoting a, (@) = (M () - I,) %D (@) and y, o . (
gec thatb t]uyfunc‘ni.ons an (@) defined by an(w) = hlan(w_) are (p, z_)-a.toms
with support contained in the balls B,. By Minkowski’s inequality and
(3.19) we got that for all 3= 0,

Han,”% 1‘:;‘; ¢ .b-MB/26110"*‘117"(9/2)(1“0) .

Then we have }f‘ [pl? «5 €, which shows part (i) of the theorem for
e

g‘ (M (2)— M) xp,(@). In order to show that ,2,, Mop, (@) also
=l

satisties (i), lot tho sequence {f,} be defined by

t, = [ M@)au).

X~Bipey

We can see that
(3'21) t%mtn'hl = /’L(Dn)Mn

and since ¥, = 0, we can write

629) S My (@) = 3 0D, 1, 0) ~ 1Dy 15, @)

Rl Nl
Denoting
ﬁn(w) == tn(‘u (Dn)_lm)"(”) "-':L‘(Dn-l)—IZDn_.l(w))
and

P = By llo( By~

wo can soo that 1ho funetions ay(x) dofined by Iw:;*(m') = B (@) ,:Mi
(p, 2)-atoms with support contained in the bulls B, To finish ‘Lhe proof 0-
part (i) we only need to show that there oxists constant ¢ independent

of M (») such that S} l7ul? < €. By Minkowski’s inequality it follows that
' sl } :

HBall 12 < oltal (B2
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Then, from (3.12) we get

iBalla << 6 pnslglia-1/p-(s/2)(1-e) |
. w
Therefore, as above we obtain > |p,[?< e
el

o0
Let us prove (ii). First, we observe that the series > A,L'J!’,”(iﬁ) ig finite
Ppery K ' :

for every @ e Lip(1/p—1). From (3.20) and (3.22) we have

©.23)  Ma@t Y A0) = M@ @) Fhan(D) g, (o).
n==0 n=0

Multiplyiting by p(w) and integrating on X we obtain

> [yn <ty By 45, (a2, 7]
n=0

= [ M(@)p(@)au(@)+tpap (D) [ p(@)au(a).

B, 1,
Since by Theorem 2 M (@)p(x) is abgolutely integrable, we have

D [ 3>+ 740", 5]

= J M (w)m(w)dﬂ(ﬂw-ﬁf‘l ('ﬁr-u/u(l?,)"l [ rp(m)(lﬁ(m))-‘
o Perf00 - ,

On the other hand,
et (D)™ [ 9@) A(@) < 0 ol 1ppes(V70) 7 o, ()
Dy

Without loss of generality we assume that My (@) == 0. Then from, (3.21)
Lemma 2 and Lemma 1 we get i ,

(D)1 f P(@)dp ()] < 0 g, brUp=1iz=s12),

D,

That implies
Hn{t (D) [ p(a) (o)) = 0
o0 iy

completing the proof of part ().

As a consequence of Theorem 2 and Theorem
duees a bounded linear functionsal Ty (@)
to H" and satisfies Frall p < c.

: 3, we have that Ko in-
on Lip(1/p 1) which belongs

©
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Next, we will show that if f == Z‘l Aa; belongs to HP, then Kf

[

oo
= 3 M, iy well defined. With this purpose we shall study the action
tmal
of the dual operator of K on the spaces Lip(1/p—1).
DERINEFION 2. Lot & (2, y) be a weakly strongly singular inbegral kernel
and let @ € Lip (1/p —1), where 0 < p < 1 sutisfies L/p < (1/g~ 0/2)/(1 — ).

K () () = lim

unl} ];(mu’z A )

kg (@, Y) @ (@) du (),

wheve the limitis the weak-L? liit on Band ky(s, y) is the funetion given
in Definition 1.

The following lemma allows us o extend this definition to the whole
gpace X. ‘

. LmmwA 3. Let B' = B(&y, v,) and B¥&,, ;) be two balls in X such
that &y > vy > 1 and B« B Then for every @ eLip(1l/p—1) we have
K (p) () = Efa(p)(y) almost everywhere in Bl

Proof, We have

Ef () )~ K (@) @) =1m [ Jy(@, 9)e@)du),
bl ﬁ2~]?‘1

where B! = B(&, 247;) and By = B(&, 247,).

Wo observe that if y e BY and o e B — B, then %(x, y) vanishes.
Therefore, we have the statement of the lemma.

This lemma ghows that if B* = B(my, n), then Kin(p) = Efwrilp)
almost everywhere in B Then we define K#(p) by the condition K*(p)
= K¥a(p) almost overywlhore in B",

Lovma 4. Let k(w, y) be a weakly strongly singular Lernel and let p
satisfy (3.9). Then, for every fumction @ e Lip(1/p—1), it y e Blay, 1),
0<< 71, we huve the estimaie: ‘

Ve oy 7)== (o, )|l ()] g )

X B3(ieg 2 r?)
v gf(] o —&/(1—0;
5 e d(a, '.1/0)"(“9’”)1“/)1»1(2/4’70)”IMI ) +Im‘ff(woﬂfl"")((p)KZAI”) w ))’

where ¢ s a finite constant independent of ¢, v, ®, and y.

Proof, Let B, == I3 (i, 240 %), b > 1 Lety e B, 7) and let o ¢ B,.
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Then we have d{w, @) > 2d(y, %) " Therefore from (3.5) we get

(3.24) [ 1e(@, y)— (@, @)l g (@)] du (@)

X~B,

<e-d(ym) D) (245" 10 gl (240" 4 im, 4, (g) (245741
n=0
The proof of lemma follows from Lemma 2 and Lemma 1.

Lemma 5. Let ¢ € Lip(1/p —1) and let B(wy, v) be for 0 < 7 << 1. Then
Jor y € B(x,, 1) we have

(3.25) E¥(g)(y) =1lm
30 B(ay,247)

+ [ (k@ 9) = k@, 20))p(@) du(@) + C
X~ B(zg,2470)

Es (w0, y) @ () du (@) +

where the limit is the weak-L¥ limit on B(my, v) and O is & finite positive
constant independent of y. :

Proof. Let » e B, = B(x, 2Ao') oz1 and y eB(w, v). Then we
have d(x, @) >1 and d(#,y) > 20— > 1. Therefore we got

(3.26)  E*p)(y) =lm [ky(e, p)p@)dul)+ [ (ko y)—
‘ 30 BO XNBO
~ k(@ 2,)) ¢ (2) du (@) .
Since y € B(%, 7), v <1, it follows that
[ B p@du@) = [ k(@ 9)p0)du@) +
By B(zg,24 1)

+ T (@, ¥)g (@) dpe (o) .

By~ B(ag,2.419)

Substituting this equality in (3.26) we have the statoment of lemma.
Lenya 6. K*(1) = constant.

Proof. Let B = B(ay, 0), 0> 1 and let B(R) = B(w,, Ro) for B > 24.
We have from Definition 2

K (1) (y) = lim f Tos (@, ) ds (0)

d—0 B(R)

for y e B. Let g e L*(B, u) such that jj g(Y)du(y) = 0. Taking into ac-
) :
count that 1 < ¢ <2 we have g e LB, u). Thercfore, we get

E*(1 = li
JRASIOUOL S (s Kg)

P estimates for weakly strongly singular integral operators 229

and hence

[E*1) ()9 (m)dp(y) = Lo (K* (1sm), 9)-
x R-++00 .

From condition (3.6) we have D

[ E&*= 1) @)g ) duly)=o- [ gW)du(y) =0,
X

and the lemma is proved.

TenoreM 4. Let p satisfy (3.9) and let ¢ € Lip(1/p—1). Then there
emists a fimite positive constant ¢, independent of ¢, such that

”K#‘(‘p)"l/p—l [ “‘P]Ll/p 1

Proof. Let B be a ball in X with radius ¢ > 1 and let B be the ball
with the same center and radius 24¢. We observe that

E*(p) = K¥g—mp(p))+E¥(mz(9)).

Since E¥(mp(g)) does not give any contribution to the estimate of
| E#(@Af,—y, We can consider ¢ e Lip(l/p—1) such that mpm(p) = 0.
‘We have,

@21 (u(B f | E#(9) () — mal K (¢)) P () ™

<2u(®™ JE* @)t ()"

Let us estimate the integral on the right hand side of (3.27). Let h € L*(B, u)
such that [|h[]2 = 1. Then we get

(w(B) f IE*(¢) () dp ()
= (B im f h) ( [ To(@, )p(@)du (o) )dﬂ ().

Bt

Changing tho order of integration we can see that the second momber of
(8.27) is majorized by

0* a(B) T B ot (B0~ oy
From (3.3) and since p(Bl)ga'p(B), it follows that

((B) [ 1B () @)Pdr(@))* < oIl (B2
B
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Then we have
(3.28)  (a(B [1I*(@)(@) — mp (K ()2 ()™ < o lplfpy (13-

for every ball B with radiuy greater or equal to one.

We shall show that (3.28) also holds when the radius of B does nog
exceed one. For this purpose let B be a ball with radius o << 1 and ley B2
be the a ball with same center and radius 240°. Lot ¢ eLip(L/p—~1)
such that mp:(p) = 0. We proceed as the fivst part of the proof and we
obtain,

(3.29) (B [|E*@)) ~ms(KH (9)) Pap(y))
B
<2 (u(B) [IEH @) ) duiy),
) B
where 1/g-+1/g" = 1. Let g € LB, u) bo such that Hg]]a == 1. We get that

([1E* @) ) anm)™ = . [ g ( [ ko(a, 9)p(@)au (@) duy) +
B n?

'B ()

+ [o| [ (b, 5) = 1@ )o@ du(@) du(y) =1, +1,.
B XewB= .
‘We have that

Li= [ Eg@)(p@)—mulg) du@).

B2
Then by Sehwarz’s. inequality and from (3.2) wo oblain

I, < eliglffyymrp (B2 -2,

. Let us estimate I,. From Liemms 4 and Holder's inequality wo also obfain

Lo < eliplp e (B2)HOH2,

Sinee 1/p < (1/g—/2)/(L—p¢), Wwe got oUWP=U2 = Fen=1%_ rPhan  from
(2.1) we have ’

(B g goUD=12) o i, U1 < 0 (B)lr-ia

and we conc_lude that I, and I, are majorized by o |g|t, ., u(B)!r-ie,
Replacing t111§ estimate in (3.29), it follows the proof of theorem.
Let Pe Ll‘p Kl [p~1). We define E* () as the clags of a1l the functions
on X which differ from K¥*(gp) in a constant.
_ BV Lemma 3, @he class K* () is not empty and by Lemma 6, this
deﬂmtlor.l QOQS not depend of the representative of @ chogen. Then under
the conditions of Theorem 4 we have

©
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TaRoREM B. If § € Lip(L/p —1), then K*(p) e Lip(1/p—1). Moreover,
there exists a finile constant ¢, independent of @, such that

@)y < P s -

LeMMA 7. Let a(x) be a fmwtion in L4(X, p) with support contained in
a ball B(wy, 7), =1, such that

fa(m)(l,u(m) =0,
X .

Then, for every @ eLip(1l/p—1) we have
(Ea, @) = {a, ¥ (7).
Proof. From the linearity of the operator K and by Theorem 2, it

follows that Ka(z)p(z) is integrable. If » ¢ B(axy, 247) and y e B(a@y, 1),
we have d(x, y) > 1. Therefore, we get

[ Ea(@)g(@)du(@) = lim a@)( [ Fol, 9o (o) dp(@)ap(y). +
X 00 B(zg,2.47) X

Since a(y) e L4(B, u), ¢ < 2, we have from (3.4) that

im [ k(e 9)e(@)du(@)
00 Bigy,2.4a)
exists weakly in I? on the ball B(w,, v). This proves the lemma.
We can now prove the following theorem:
THEOREM 6. Let & (2, v) be a weakly sirongly singular integral Ternel and

let p satisfy (3.9). Thenif f= 3 Xa; is an clement of H?, the operator Kf
=1
= > AKa, is well defined. Moreover, K is linear and there is a finite con-

q=1
stant C independent of f such that

1B Sfle < 6 Hifllue-

-
Proof. Let f =3 A in HP. By Theorem 3, for cvery 4, Ka; e H?
fual i

and [\Kal,» << 6. Let mand o be such that m < n. We get

"
<ot DA

" 1@
H%‘ 2 Ka;— _2; 3a

;‘ =1
Tt follows that the sevies > 1K« converges to an element b e H?. By The-
=1

9 ~ Studia Math, 75.2
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orem 3 we have
gy = D hiKay g
g=1

and by Lemma 7, we obtain <k, 3> = {f, K*()>.

Therefore i depends only on f and does not depend on its respresen-
tation as a series of multiples of (p, 2)-atoms. Then Kf = & is well defined,
and it is easily seen that K is a linear operator from H? into H?. Moreover,

ISl < o+ f )

=1
that is to say,

HEfllze < ¢ [|flge,

which proves the theorem.

Theorem 6 can be applied to obtain boundedness results on H? (R™)
for the operators T, considered in [2] and [6]. For this purpose let X = R
be endowed with the Lebesgue measure and the quasi-distance d(w, )
= [w—y|", where |z—y| iz the usual euclidean distance. We shall need
the following lemmas:

LemumA 8. Let k& be an iniegrable fumction on R™ such that 1 (o))
< e(1-+ (o))~ for 0 < f < m, where & és the Fourier tramsform of the function
k and ¢ is o finite constant. Let ¢ be a O (R™) function which vanishes near
a@ero and is equal to 1 outside a bounded set. Then Toy(x) = p(6~ @)% (w) sat-
isfies

Ity ()] < o (1+10lf).

P'ro of. We shall prove the lemma for # > 2. The case n = 1 is simple
and will be omitted. Let y be a (* bounded support function on R* such
that yp+¢ =,1' Then, to prove the lemma it is enough to estimate
lp(0~0)k(2))" | that is to say we shall need to ogtimate 1K () 8% ( O) |
Let |B(@, 7)] be the Lebesgue meagure of B(w, r) and let

M(k)(2) = supB(a, )™ [ 1h(y)ldy
KBig,r)
the maximal function of %.
Then there exists a finite constant ¢ stch that
1 ()% 67 (82)| < oM (B) ().
Let us to estimate M (%) (). Lot B(w, r) be such that jw] > 2r. Wo have

M (k) (@) < supiB(a, r)| ™ [ |yIPdy.
. Blz,r)

e ©
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Passing to the polar coordinates we obtain
M (%) (@) < or(1] +9)*~F — (ja] =)~} (n— )
and by the mean value theorem it follows:

(3.30) M (k) () < olo]™".

. On the other hand if x| < 2r, we get

M) (@) <or™ [ lylfay

B(0,3r)

which gives us the same estimate as (3.30). From the boundedness of % we
conclude that M (%) (@) < ¢(1+ |#")~* and the lemma is proved.
The proof of next lemma follows by a straightforward computation.
LEMMA 9. Let 0< 0<1, ' <0 and A = (1—0)"'—1+a’. Let v be
a C* function such that 0 < y(1) <1, () =14if 0 <t<1/2 and y(?) =0
if t=1. Let '

(2, y) = [oxp (i (a, 9)*™)1d (@, 2oy~ "
Then the function %(w,y) = k(x, y)p(d(@, y)) satisfies
1k(m, ) — R, @)| < ¢ d(y, @) (w, ) Hn=0=07

whenever (s, @) > 2a(y, 2,)*~° if d(y, 1) < 1.
As o consequence of these lemmas and Theorem 6 we have
PrOPOSITION. Let A = (1—6)""0—a(l—a)™",
y=(a—1in+a/2 and a=(n@A—0)"—n,
where 0 < 0 < a <1 and n i3 the dimension of R™ Then if n+2 > 0, the
operator

Tgf(ﬁ)) = lim ff f(y)m;_,yl—n—t—)- _eim_.,/]a'dy’

80 s<jz—yl<1
where 1ja-1ja’ =1, satisfies
N lapmny < ol f iy mny
for those p that satisfies
nn+l<p<l and 1fp-1/2<y@/2+atn)/(a+y+n—1/n).
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