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Norm inequalities relating singular integrals and the maximal function
by
ERIC T. SAWYE R* (Hamilton, Ont.)

Abstract. We prove that if the weighted L? norms (1< p < o) of the Riesz
transforms are bounded by the weighted L# norm of the maximal function, then the
weight function satisties the O, condition of B. Muckenhoupt. Conversely we show
that if the weight function satisfies the 0, condition for some ¢ > p, then the weighted
I? norm of any standard singular integral is bounded by the weighted L2 norm of the
maximal function.

§1. Introduction. We consider the problem of characterizing the
non-negative weights w for which (1 < p < o) ‘

1) fle]”'w< Gf]Mf]”w for all appropriate f
where Tf = Kxf is a singular integral in R" with kernel K satisfying the
standard conditions

() 1) < €,
K (2)] < Cla™",

K (z)— E@—y)| < Oylle™ " for |y| < |a|/2.

R. Coifman and C. Fefferman have shown ([1]; Theorem XIII) that (1)
holds for 1 < p < oo provided the weight w satisfies the 4, condition.
B. Muckenhoupt has shown ([7]; Theorem 2.1) that in the case when T
is the Hilbert transform, inequality (1) does not imply that w satisfies
the 4, condition. He has derived ([7]; Theorem 1.2) the following necessary
condition for (1) (with T the Hilbert transform) which he has conjectured
to be sufficient.

(Cp) There are positive constants €, & such that

Jw < CUBIIQN) [ 1M, Pw
P

whenever F is a subset of a cube @ = R™
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Here B} denotes the Lebesgue measure of B and M is the maximal eperator
defined by

sup - flf i.

Mf(w) = 2eQ) caho IQ[

Our first result is that if (1) holds for the Ricss transforms, then the
weight w satisfies the C), condition; The one dimensional case of thix resulb
was obtained by B. Muck(nhoum ([7]; Theorem 1.2). Our second result is
that if w satisfies the 0, condition for some g > P, then (1) holds. The question
of whether or not €, 111)1)11(*,4 1) remainy open. We now state these results
precigely. Thr (muhnut this paper § will denote a cube in B” with sides paral-
lel to the co-ordinate planes and for B > 0, RQ denotes the cube concontric
with § having diameter B times that of §. I‘uml\v, the letter ¢ will he used
to denote a positive constant not necessarily the same at each oceurrence,

THEOREM A. Let 1 < p < oco. If the weight w salisfies
@ [IBfrw<0 [12tf P, 1
where R; denotes the j™ Riesz transform (formally R f()
then w satisfies the O, condition.

TuroREM B. Let 1 < p < q < oo. If w satisfies the O, condition, then b
holds for all singular integrals with kernel satisfying (i), (ii), and (iii) above,

AN APprrrcAtroN. We give sufficient conditions on a pair of weights
(w, ) in order that (1< p < oo)

) Jizfimw < o [ifire
for all singular integrals T as above. Recall that the pair of weights (w, v)

satisfies inequality (3) with Tf replaced by the maximal function Mf if
and only if ([8])

(4) [1M (o) P < €@ [0+

@ @

< j < n, fbounded, supp f compact

= imj[m[”lf'(%)):

for all cubes Q.

Thus if the weight pair (w, v) satisfies (4) and if w satisfies the condition
Upse for some & > 0, then inequality (3) holds. We remark that €, weights,
unlike A, weights, can vanish on open sets.

§2. Proof of Theorem A. We first give an alternate deseription of
the ¢, condition due to ‘B. Muckenhoupt ([7]).

Lemma 1 (Muckenhoupt). The weight w satisfies the (!, condition if
(amd trivially only if) there is € < oo such that

®) I [ gl

(»‘
K e
S oG )

whenever E = @ a cube. Here |B|, = [w.
B
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The case n = 1 of this lemma is contained in [7] and the proof given
there extends to # > 1 with minor modifications which we sketch in an
appendix below. In any event one can verify that all arguments using the
O, condition in this paper hold just as well using (5) as the definition.

Proof of Theorem A. The key step here is the observation that log Mf
is in BMO if M{ is finite a.e. ([2]; p. 641). Suppose ¥ < @ a cube and set

(6) o T =10 [(1QUIB) Myg]. .

Simple computations show that there is a const‘mt C mdependent of @
and F such that N .

(7) fo=10I" [f<o,
' - Q
8) Iflemo = sup M7 [ [f—f1 < C,
cubes T I
C) f=1og(lQI/|B) a.e. on E.

From (8) and the duality of H' and BMO ([5]; Theorem 3) we obtain
" .
F=f+ 2 B f;
j=1

where [|fillo <O, 0<j<m. Let g; = yof; and by = gyef; for 1<j<<n
Here 2@ denotes the cube concentric with @ and with twice the side length;

20Q° denotes its complement. Let 2 be the centre of § and set 4; = (R;h) (2).

Then for # €@ we have by property (iii) .

(10) hy(0)~ 4,1 < O [ M@)o —2l/ly—2 Ny <O (@eQ)
2% °

and thus also

ay
Z )<

since f = fo+

T%[JIR;%[Q‘[T;—I*!,RMH‘?T <[IQ] f;f”z]mgo

by Holder’s inequality, the I boundedness of the Riesz transforms and the
boundedness of the f;. Combining this with (7), (11) and [|fyll. < € we obtain

l 7, Zthj

K3 n
> R;g;+ 3 R;hy. However,
F=1 =1 :

[ff+fJfol+ ¥ flR o] +0

j=1
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n ) . .

| 3 4;/< C and (10) now yields

F=1

lf"jszg]‘ <0

From this and equation (9) we have

n
Z IR; g;| = log(
i=1
and from (2) we now obtain

_op<0 Y [ Bgrw< UZfIMy,I"

j=1

1Q1/1B))—C a.e. on B

\B, Clog (1911 B1) — <0 [ | Myl

which is (5). Lemma 1 now completes the proof of Theorem A.

§3. Proof of Theorem B. We¢ begin with a variant of the Whitnoy

covering lemma used in [3] ‘

WHITNEY COVERING LEMMA. Given R =1, there is C = C(R, n) such

hat if Q open = R™, then Q = | @, where the Q; are disjoint cubes satisfying
7

‘d'ist(Qj, £2°)

: < 15R
Cdiamg;

@ BR<

(ii) D) tno; < Cla-
<t ARy = TA

Proof. Conclusion (ii) is a consequence of (i) and a geometric packing
argument ([3]; p. 16). Conclusion (i) in turn can he established easily by
standard arguments — see for example [6]; Theorem 2.1.

In attempting to prove Theorem B by the methods of k. Coifman. and
0. Fefferman in [1], we will be led via the €, condition to consideration
of integrals of the form f [;[M %q)l]w where {Q;}; is a Whitney covering
of the open set {T"f > i} (T is the maximal operator associated to T —
seé Lemma 2 below). We thus begin by investigating the operator M, ,
defined below in terms of Marcinkiewics intog,mlq‘

DerFINITION, Let 1 < p, ¢ < co and suppose f 1ﬂ’°-+[0 oo] iy lower
semicontinuous. Let Q, = {f > 2"} and define

p,qf )p_z Icp

keZ

?/ Qa )n(q-l)
) 4y 2w~

Ina dy

where d{y, B) denotes the dxstamee from ¥y to thé set E

Norm inequalities relating singular integrals 2587

Fix B>1 and let 2, = | JQF be as in the Whitney covering lemma.
Then . i

Mo fla) w32 g, (@)
k N
in the sense that the ratio of the nght and left sides is bounded between
two positive constants depending only on R (and not on z). We use only
this latter expression for M, .f in the sequel.
Lmva 2. Suppose 1 < p < ¢ < oo and that w satisfies the €, condition.
Let

I*f(a) = sup |

0<8<n<oo

E(y)fto—y)dy|

<y <y

where K is a kernel satisfying (i), (ii), and (iii) of §1. Then for all f wzth

compact support we have
(12) J 1M (T PP w0 < O[ [ 1T f 1P 0+ [ | Mf ).

The proof of Lemma 2 is fairly long and will be postponed to §4.
‘Weremark that Lemma 2 may fail when p = ¢ even for weights wsatisfying
the 4, condition. For example when p = ¢ = 2, let f be the characteristic
function of the unit interval in R, 7' the Hilbert transform, and set w(x)

= |o|/(1+(loglz|y’). Then M,,(T*f){w) 2 Viog|a|/{z] for |s large and so
the left side of (12) is infinite while the right side is finite.

Proof of Theorem B. Suppose first that f is bounded with compact
support. Let 2, = {T%f>2"} = | QF be as in the Whitney covering

3
lemma with R’ = 1, By a fundamental inequality of R. Coifman and C. Fef-
ferman ([1]; (8), p. 245) we have .

o e Qf; TVf > 2%, Mf< 2} <
and thus the 0, condition yields

13) [Tt frw<o Z 2| D1y
< 022’"’ {Mf> y2k}]w+0y Z‘ 2" [ |3y, quw

<0, [ (MfPo+0y [ [ 17 fPo+ | IMfI”w]

by Lemma 2. If we can show [ [T*fIPw < oo, then by choosing y so small
that 0y° < 1/2, inequality (13) will yield the conclusion of Theorem B for
bounded f with compact support. However, if suppf < @ a cube, then

[ frw< o [1MfPw < oo

’ . . . 2Q0 2Q°

0 y1Q}
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since property (i) of the kernel K shows that T < C.Mf outside 2Q. If in
addition f is bounded, then ([9]; see 6.2, p. 48) f ¢ < oo for some

a>0 and thus |{w €2Q; T*f > i}| < Ce~*|29) for l > 0. Applying the ¢,
condition to this latter inequality amd integrating we obtain

[P < 0 [ 1M1 0 < 0 [ | MffPw < oo
2Q

sinee ¢ > p and suppf < @. Thus (1) holds for bounded f with compact
support and a simple limiting argument proves the general case. Indeed,
it [|MfiPw < co then f is locally integrable and so ™F< lim T*f,. where

Jo-roo
fr(®) = f(@) it ||, |f(z)] < B and 0 otherwise. An application of Fatou’s

lemma now completes the proof of Theorem B.

§4. Proof of Lemma 2. We begin with two preliminary lermamas.
The first is a variant of Lemma 5.1 in [7].

Lmmva 3. Suppose w satisfies the C, condition, 1 < q < oo. Then for
all 6 > 0, there is 0(J) < oo such that whenever {Q;}; is a collection of disjoimt
subcubes of a cube Q, then

(14) [ 213050, 12] w0 < C(8)RQY, +6 [ [ Myqltw
RQ j
Sfor all R = 2. Consequently,
(15) T2 1,19 w < 0 f 1Myl w.
J

Proof. A classical estimpate for the Marcinkiewicz integral (see [4];
Theorem 1 (3)) shows that |B,| << Ce~* @] for 4> 0 where o is some po-
sitive constant and H, = { 3| M 2|t > A}. Since ZlMijla is bounded

7

7
outside 2@, the 0, eondition implies. |B,),, < Ce™ [ | My,|?w for A suffi-
ciently large and this in turn yields

2 Mg tw <
RONE,

Choosing 2 so large that Ce=** = § we obtain the conclusion of Leming 3
with ¢ = A

Lemma 4. Suppose 1 < p < g < oo and that w satisfies the
Then for all compacily supported f

1M (M) P < C [ | MfPw
Proof. Let 2, = {Mf> 2"} = UQ be as in the Whitney covering
lemma with R = 10. Let NV be a pom‘uve integer (to be chosen later) and

< 0 [ | Mygltw.

7y condition.

icm®

" 16) |2,NBQEY| <
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tix o Whitney cube @Q¥~¥. We now claim
0271Qf~"|

where O depends only on the dimension n. Indeed, let g = Frpque—n and
b = f—g. Property (i) of the Whitney covering lemima shows by a standard
argument (see e.g. [91; p. 19) that Mh(z) < 02"¥ for & in 5QF¥, Now
Mf< Mg+ Mh and thus for N so large that 02~V < 1/2, we have

19,nBQEN| < |{Mg > (1/2)2%)]

<
<czFfgl=c2* [ f

109k~

since M is weak type 1,1

< 0 27%(C 28¥[10 Q¥¥)) Dy (i) of the Whitney lemma

which proves (16).
Now let 8(k) = ZkJ’Z'f]Mka}‘lw and S(k; N,i) =273 [ |Mxo,,|qw

where the latter sum is taken over those j for which Q] Qv ;éﬁ.
Since QFNQ¥~¥ s @ implies QF  5Q¥Y for large N we have

Bk N, )< [2 3 My fw
nfeseky 7
= f + =I+4+II for ¥ large.
10QE~N ook~

By (14) of Lemma 3

0(8)2" [10QF N,y + 02% [ | My yltw
1

~where 4> 0 is at our disposal. Simple estimates on M, ka show that if
o~ denotes the centre of Q¥¥

21971

kp Y
<02 PR
T
[10Q20~N]0

w(x) dw

19—Nk~N1 \a
(%}1%7[”—]) w(x)de by (16)

rogf~ e

< ¢ zkp

<0 2026 (130 it
1
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Thus for N large
8 (k) < 3 8(k; N, 0)

<o (Y xm,f_N) w+ [62VP 4- 02V C~D1 8 (I, — N)
<O 2Dyl +(L/2)8 (k—N)

for N sufficiently large and 6 sufficiently small upon appealing to property
(ii) (with B == 10) of the Whitney covering lemma. Thus with 8y, == 2 S(k),
we have

an 8 < (1/2)8y+C [ |Mf|Pw  for all M.
Recall now that f has compact support, say suppf < @ a cube, Let
2 < ]Ql“f[f[ < 25+, Then 2;, < 2@ for k> L-+1 and (15) of Lemma 3
"shows that
2 22 13y, 1w < Of 1M 270 < € [ MyglPw < o0,
k=L+1 j

since ¢ > p and J 1MfPw < oo (otherwise there is nothing to prove). On the
-other hand it k< I, then @, = 257%+2 @ and (18) of Lemma 3 yiclds

Z’Z‘mfllm@iq <0 22"”f'M%zL~nq| W< 0 27 [ | MyglPw < oo

.gince 2 2"’"1’[Mx2,,,@|q Cp ol Mygl? for g > p. Thus 'Sy, < oo for all M and

Mme=l

{17) now yields -
[ 138, (1) lf‘w Osup Sy < 0 [ 1Mf|7w

and this ecompletes the proof of Lemma 4. : '
Proof of Lemma 2. Let 2, = {T*f > 9%} = J 9% be as in the Whitney
7

-covering lemma with R = 20. A fundamental inequality of R. Coifman
and O. Fefferman states ([1]; (8), p. 245)

(18) o €10QF"; I*f > 24 < 0 27NjQi-Y)
whenever  10QF~ & {Mf > 2+-N}, N> 1.

“Let {Mf > 2"} = | J If be as in the Whitney covering lemma with B = 20,
7

©
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We observe that for each cube QF~* there are two casges (N will be chosen
later).

Case (1). 10Q%" = {Mf > 2*~V} in which case 10Q¥* < O IF¥ for
some I where 0, ~ 15 Rn** = 300n'? (choose IF~Y to contain the centre
of QY.

Case (2). 10Q%* & {Mf > 2%~} in which case (18) implies 3 (QF

aF =100f 1
< 027¥QF .
Now let
=Z2"”f]Mza,,|“w and
; i
7
2 ) = kp b2
Sy = > 2 f]Msz,‘lqwg D e ”f]an’quw.

efnef %o Qf <1008
The last ineqiality follows from the fact that @F = 10Q%~" whenever
QFnQF ' 5 B (property. (i) of the Whitney lemma). Thus
Slsi< [27 3 ([ Myulv = [+ [ =I+mm.
off c10gf~! ’ 20981 2ot y°

By (14) of Lemma 3 we have }

1< 0(8)2%120QF 7|, + 027 f | My [0

Nt

where 6 > 0 is at our disposal and if #f~* denotes the centre of @f~', then

XN
o — e

II < g2 w(m)

ogf~1e
-N k-1 T
< 02" f (22__[_2.2._‘.17"_[) w(x)dz, in case (2)

% — @
oQf—1°

< O2tr-Ne f My, k_ll"w-‘

‘

Oombmmg the cstimates for I and II ‘we_obtain '
(A9 Sl 1< 0, 21200}y 8402712 f [an,,,,s w
whenever @4 is a ease (2) cube. Thus

sm< 3 8o+ 3 8(ki)=TI+IV.

G lmcase () @19 cnso @
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Now since each @F intersects at most ¢ of the QF %,

mr< )¢ Z gt [ |Mxojk\’1w< ¢yl f |.MZII,0_N;«w‘
i

chc el

by (15) of Lemma 3 and the inequality Mysq ; < OMyy. For the remaining
term we have by (19) ‘

IV Co2[ 3 typums) 0+ (80270 12 | M gm0

C2"|Qy_ylp+(1/2)8(k—1)

by property (ii) of the Whitney covering lemma (with B = 20) and upon
choosing 6 small enough and N large enough. Combining IIT and IV we
have

(200 B(%) < (1/2)8(k—1)+ 02" | Q|+ 02 3| My 0y 20,
. 7 ¢

Now let 8,5, = S(k) and sum inequality (20) over k<< M to obtain
k<M

(21) S

A

(1/2) 8+ 0 [1T*f{Pw+C [ M, (Mf)?w

<(
< (12) 83+ O f 177170+ [ 13f7 ]

by Lemma 4. :

Now the argument uwd at the end of the proof of Lemma, 4 to show
that 8y < oo can also be used here to obtain 8,, <. oo for all M (use the
fact that T*f<< 0 Mf outside 2@ if supp fe Q) Thus (21) yields

J (TP w < Osup S < O 117 0 Jifrw]

and this completes the proof of Lemma 2.

Appendix. We gketch a proof of Lemma 1, As already mentioned,
the case n =1 is in [7] and the proof given there extends to » > 1 with
minor modifications. As that proof iy fairly long, wo limit ourselves here
to a brief discussion of the required modifications, assuming that the reader
is familiar with Sections 8 and 6 of [7].

Olearly €, implies (8) 80 we now assurho that (5) holds. Lemma 5.1 of
[7] extends to R" without any cssential change in the proof. Thus wo can
find 0 < 3 < 2~" 50 small that whenever {@x} 15 a colleetion of disjoint
subcubes of a cube @ with 2 1@ < 278|Q|, then

(22) f [ZIMxQ,GV’] < (1/2) [ 1 MyqPw

icm
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Now given F = @ a cube in R", let N be the least integer satisfying 6¥]Q]
< (B). Define B, =F and B, = {My, 15> 6"} for 1< j< N where M,
denotes the dyadic maximal operator Mg, f(#) sup Q! f |fl- Now

xe@ dyadic cube
B = UQ,c where the @] are the maximal dyadic cubes I sausfymg

m—IIf xg > 0. Thus & < |BNQJI/1Q] < 28 < &~ and so

(a) each @J7' ig strictly contained in some @,

by > @< 2m|Q) for 2< j << NV and all k.
oftcqf

Using (a), (b) and (22) we obtain

Jaaw<a) [ 4w, 2<i<¥

where 4;(x) = 5’ [wa(m)v’ and the proof can now be completed by

iterating this mequflh‘r} as in Seection 6 of [7].
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