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elements in A possessing small powers. Or equivalently, for the classes of
Tocally convex or By-algebras, the permanent radical of an algebra iy the set
of all its elements on which operate all formal power sevies.

Remark. The above characterization shows that the coneept of per-
manens radical in the classes £% or %, has an absolute character (cf, Defi-
nition 1.2). This is not true for such eclasses as 4, Mo or . In fach in
these clagges we have rad,A = rad A, what follows from the fact that
for A e # its radical ig given by

radd = (M {# e d: lim L == 0},
o e

where the intersection is taken with respeet to all eontinuous seminornms
on 4 satisfying relation (4). )

3.5. COROLLARY. If A is o Bamach algebra then dts LE-permanent
radical, or B,permanent radical coincides with the set of all s milpolent
dlements, and equals to rady,A.

Let us remark (cf. remarks at the end of Section 2), that if 4 ed
and rad 4 contains elements of arbitraxrily high orders, then the set radg A
is & non-closed ideal in 4. This was, in fact, kuown to Rolewicz, who
used it in [1] to the construction of a By-algebra possessing a non-closed
radical. '

We do not know whether Theorem 3.4 is frue for the class of all
topological algebras.

ProBuEM. Let 4 be a topological algebra, Does the ideul I(4) of
all elements of 4 possessing small powers coincide with the Z -per-
manent radical rad,4 of 42
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Holomorphic functional calculus and quotient Banach algebras
by
L. WAELBROECK (Bruxellos)

Abstract. Lot & be a commutative associative Banach algebra with unit, and
o an ideal of o with a Banach norm stronger than the norm induced by that of w.
Let @,, ..., @, be clements of & /a. We define sp (@5 +«- @y). We congtruct a homomor-
phism O (sp &, of [a)-+57 [a, mapping ¢; onto F;, and unit on unit. This relative holomor-
phic functional calculus (mode) generalizes classical holomorphic functional cal-
culus (where a = 0).

Let of be a Banach algebra, which is commutative, associative, and
with unit. Let ¢ be a Banach ideal. Let @, ..., &, be elements of [a, or,
if you prefer ay, ..., a, elements of o, where of course a; € @;. The gpectrum
8P (Byy «ovy W)y L0 BDG(ay, ..0y @,) I8 the set of (sy,..., 8,) € C* such that

D (@—s)l]a # o[a,
1

ie.

"

D (=) +a ~ .
1

Let now Ug C* be open in €% U 2 sp(@y, «uey Gy), Lot
o(U, ooy = O(U, &)]0(U, a).

Oall L the constant function on U, equal to 1, and 2 the holomorphie
mapping 2 (81, .oy 8,)->8;. Wo ghall construet o homomorphism

O(U, &]a)~+sf]|a

which mups & on @, 1 onto 1, This homomorphism is induced by a conti-
nuons lineur mapping O(U, o)-+of which maps 0(U, o) into o. If U is
a schlicht domain of holomorphy, the homomorphism above is unique.

This iy the firgt of two papers. In the second paper, we shall prove
that every ideal of & quasi-Banach algcbra has at least one quasi-Banach
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gtructure, The results above can bo stretched, give homomorphisms
O(U, o |a)—o [a mapping 2 on @, and 1 on L. ' . i

As a eorrollary, a 8ilov theorem can be proved, if « is an ideal (non-
closed), whose hull,

Hulle = X,V X,
is not connected, X; and X, compact, digjoint, then
o =g nNa, with Tulla, = 2&,, Hulle, == 2X,.

And an Arens and Calderén theorem ean be proved (where o is any idenl,
and o is psendo-Banach).

The main results of this paper were proved a long time ago, they woro
published in a memoir [1]. The setting there is much more general that it
is here. The memoir is diffienlt to read, and now out of print.

The reader knows that the unit of C, of &, of &[a, the constant

" function equal to 1, to the unit of &, of &/a, cte. should all have ditferont
notations. And the reader knows that this author denotes all these ohjects
by 1.

1. Quotient Banach spaces, algebras, and some cohomology, Before
beginning the main dish. of this paper, we give u couple of entrées. Not all
textbooks use quotient Banach spaces, or quotiont Banach algebras.
Nor do they all use homology, or cohomology taking values in & Bunuch
space modulo & Banach subspace, or a Banach algebra modulo o Bauuch
ideal. The results here are clementary,

Let (B, || |lz) be a Banach space, Let F be a subspuce of B, with o norm
Il Iz which is a Banach norm on F and ig stronger on ' than (PSR

e >0: Yo eI |2llp > ¢ lelly.

Observe that two Banach norms on F, both strongor than || ||y, are equi-
_ valent beeause of the closed graph theorem. (B, 1l llw) 18 @ Banach subspace
of (B, | lg); B/F is a quotient Banach space ([2], [3], [4]).

Let (o, || |ly) be an associative, commutative Banach, algebra with
& unit, (These conditions can he weakenad, bub in this paper, wo shall
only consider such algebras.) Let @ be an ideal of o , and o Banaeh subspaco
of (o, || ). Call n, the norm of «. Multiplication (s X a)~>a hag RO
ately closed graph, ie. iy separately continuous, i.c. ix joint continuous
o X a-+a. Let

lolle = sup{ng(a-)| fall, < 1}.

?‘hen Il lla is equivalent to 9, and ja-2|, < lallllelles (o || 1) is o Banach
ideal of (o4, | ,); o ]e is a quotient Banach algebra.
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Let now B be a Banach space. Let U = € be open. Let 2(U, H) be
the alternating forms of ds,, ..., d, with coefficients of class O, on U
taking its values in B, and Q,(U, H) be the set of clements of Q(U, &)
whose coefficients have compact supports. Of course

U, B) = ®Q(U,B) and 2T, B) =@, B),
1 1

where 2/(U, B) (vesp. QL(U, ) have for elements the homogencous forms
of degree ¢ and helong to (U, B) (resp. 2,(U, B)).

Let I be a Banach subspace of H; Q(U,F) < (U, H)and
AU, F)c 2,(U, B). And

U, BIF) = QU, B) U, ¥), (U, B|F) = Q,U, B)/2,(U,F).
Finally, 2 is o linear mapping
U, B)-2(U, B), QU I->QU,T, QU B>,U, B
and  Q(U, -»Q,(U, F).
And 9 induces linear mappings
U, B[F)—~Q(U, BF) and Q/U,B|F)~82,(U, E|F)

which we call again 8. Tn all cages, we see that & = 0.
DEprNIrION 1.
Z(U, B|F) = Kex (6, Q(U, B|F), 2,(U, B|F) = Kex (9, 2,(U, B|FY),
B(U, B|F) =Tm (3, Q(U, B|F))
and  B,(U, B/F) =Im(, 2,(U, B/F)).
With the above notations,.
H*(U, B|F) = Z(U, B|F)|B(U, B|F),
(U, B|P) = Z,(U, B|F)|B,(U, B|F).
What must T add?

] (]
QU, B = & (T, BlE), LU, B|F) = @092(177 B|F),
dwal) L

dmaps 0 into Q1 and Q1 into Q1 2%, 78 are the lmrnelis of Q,{or bette{r
dyon @ QL while B, B are the images of Q' Q% H! =7 |B,
HE == 7Bt tinally

YU, B[F) = OH(U, BIF), H}U,BF) = QHY(T, B/T).
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Tt is also clear that H* and Hj ave isomorphic to Z /By and Z,/B,,
where

Z,(U, Bmod ¥) = 07} (Q(U, 1) nQ(U, 1),
B,(U, Emod F) = 8Q(U, B)+ Q(U, I')

and similarly for Z, (U, Hmod F) and B, (U, Fmod F),

Now, look at the mapping Q.(U, H)—H defined by the integration

o> [wadsiA ... Ads,.
T

The mapping maps @,(U, F) into F and E’)*!.?,,(U, 1) onto 0.
DrFiNITION 2. I: Hy(U, B|F)-~B[F is induced by the mapping

m—>fco/\d.5'1/\ oo Adsy,  Z0(U, Bod I)-»10,

A couple of more remarks. Let & be a Banach. algebra and o a (lwo
sided) Banach ideal. Then (U, #//a) is an algebra and £,(U, s/a) is
an ideal.

ProrORITION 1. H*(U, o|a) is an algebra, and H (T, o [a) i3 & module
on BH*(U, o/a). :

Let U, ¥ be open in €% C™. Direct multiplication (wy, wy)=>wyA wy
maps (U, o[a)x &V, [a) into QAUXV, o) and DU, o]a) %
X Q,(V, o [a) into R (T XV, o]a).

DeriNrrioN 8. Direct multiplication

H'(U, o [a) x BX(V, o[a)>H*(Ux V, of|a)
and

H;(T, M/a)XEZ(V, o [a)>Hy (TUX V, of|a)

are the bilinear mappings induced by (w;, @g)=—>wy A ws,
Still another definition must be given. Let U < C” be open, lot J/F
be a quotient Banach space and «//a be a quotient Banach algebra.,
DEFINITION 4.

O(U, B|F) = 0(U, B)[0(U, ¥) and (U, /o) = 0(U, o)[0(U, a).

O(U, BT is a vector space, O(U, o [a) is an algebri, both depend
functorially on H/F and o /o [5].

. 2. Let o, | || be an associative and commutative Banach adgebray
with a unit. Let a, || ||, be a Banach ideal of «. Lot @yy +.vy @, bo cloments
of &/[a and ay, ..., a, elements of the equivalence clagses, a; € G,

DEFINITION 5. The spectrum gp (@y, ..., @,) of (@, vevy Gy)y cqual to the
spectrum of (ay, ..., a,) modulo o, 8p,(ay, ..., a,), is the set of (815 ...8,) e C*

icm®
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i
such that
<1 &
D) (@—s) ol |a = s, =)ot +a = o
1 1

Of course, 8P, (@, ..., @) is compact, non empty (if « is a proper ideal).
If Flulle is the set of maximal ideals which contain a, if & € C(4) is the
Gelfand transform of @ e o and # the structure space of &, then
BDu(Gay < iy @) = 8D(@yy <.+, G,) I8 the image of Hulla by (&, ..., d,)-

Let U be an open subget of C* which contains sp,(a, ..., G,).

PROPOSITION 2. Funotions Uy = oy Uy Uy Y 08t 0N C Where yy ...y Uy Y
are of class O, and of-valued, y having compact support in U, while v is of
class O, a-valued, and

1= 2 (@ — ;) wg(8) +0(s) + ()

Jor all s e C™.
Note that v is a-valued, and of class €, a8 an e-valued function.
The proof is mnearly classical. Let (Sy, ..., 8) € CO"N\8Do(Gy; ..-; ay).
Blements thygy «.vy Uyg, v, 0F o, vesp. o exist such that

n
L8
1 :.;\,, (@ — 8;) Ugg V-
1
I ¢ is near to s,
K

1= 37 (= sy 8) + 0,5
1

with
o 1 C R
L= , -~
Ui () = g (L= 3 (1= 8)a) 7y mp(s) = w1 D=5 a7
1 1
These functions are of class C, respectively o/-valued and a-valued.
Lot also

Yoo () = ~ 5 (187 — X 5 o)
and v,(s') = 0 when 8" is near to infinity. .
A putition of unity of elass ¢, yiclds the functions w(s), v(s), ¥ (8)
announced in Proposition 2.
DEFINITION 6. Liet @y, ..., 4, bo elements of of and U un open subsct
of €% U 2 §p,(ay, - .-y @) Then Dy (ay, ..., a,) will be the set of (4y, ...
eevy Uy, 0, y) Where ay, 4y are of clusy Oy, #-valued, y of compact support
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n
in U, and v is of class Cy, a-valued, where 1 = (o —sg) g (8) -0 (8) -+ (8).
1
Proposition 2 shows that Dy (ay ..., &) I8 not cmpty.
PROPOSITION 3. Let (u,v,9) and (w,v,y') belong to Dy (ay, ..., &)
Then )
wp = “i"'z Puy (O — 8;) -+ P+ 701y
7

.
v = 'U-‘}J p{a;—$;)—1n,

-
y =y— > nla;—s)-+n,
]
where @y = —g;; and 7, are o-valued of class Oy, are a-valued of

class O, ; 7 1 have compact supports in U. Also, let (u, v, ¥) & Dy (ay, ...
eeey @), 16t @y, 1y, My 1 Do functions such as above and let (w', ', y') deter-
mined as above. Then (4,9, 9’} & Dy(ay .. ) dy).

Tt is clear that (w', ©', y') € Dy (@, ...y @) it (%, 0, Y) € D@y +..) @);
and (u', v', 4') is obtained from (u, v, %) by the relations above. In the other
direction, let (u, v, y) and (#, v, y') belong to Dy(a). Then

Uy~ Uy = u;(z (@ — ;) uy v+ y) - (2 (@ — ;) 0+ 0" -+ y’}ui
= D (a5 —s7) (vt — 24 00g) + (w0 — 0" 00) + (09 —9'w)

o —p =0 (E (aj——sj)u,-+'v~]—g/)—— (2 (aj—s,)uj—l—?;’-l—y’)v

= 2 (& —8;) (' — ;0) + 04+ (v'y — '),

Yy —y =y (2 (@;— 85y u; -+ y) — {E (a4 — &) 0]+ -+ ;1/') y
= 2 (a; — 8,) (y"su; — ;9) + (40— 2'y) - 0.

We let
Py = Uiy — Uity Py = WD~V Uy = Y Y Uy ) =0y Y

and Proposition 8 is proved.

This proposition ean be rewritten

PROPOSITION 3’. Let (u, v, y) and (u', v', y') be elements of Dy (g <oy Gy)s
We can find a finite chain of (w®, o0,y of elements of 1y (a) with

(w9, o0, 4 = (u, v, ), (W, oV, gV s (', 0, '),
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and for all v (0 < v < N) we take a step from (w®, o, y) o (w0, o1,
YT 0Y of one of the following forms

A Ut =l (g —s), WY = Ul —(a;—s;)p,
wtD =P (b #ioemd k #J), o =v ad y =y,
B: ugr—l-l) - %S:r)+1h y(r+1) — ?/(r)'“(afi""si)na

%}T'H) — ,ugr) (_7 1), P+ = U(T),

O: ’M&Md) — ,uftr) 9 P = o) — 2 (“j - sj) p;— 77’, y(r+1) — y(‘r) + 77'5

where ¢, n are of class C,, as of-valued, v;, 1" are of dlass C, as a-valued,
and where 1 and ' have compact support in U.

3. Lob ay, ..., @, be elements of o7 and U an open subset of C con-
taining $pP.(@y, ..y @,). Lot (4,9, 9y) € Dy(a) and let KeN, k> 0.

PRroPOSITION 4. The class of 0-cohomology of

(n-%)!

i YEOULA v A Oy,

with compact supports in U and values in o modulo o does not depend on k,
NOT 0N Uyy - vy Uyyy DUE OMLY ON Gy ..oy Ay
This means that
(n-1")!
T

where ¥ e Q"N(U, o) and Z e 23(U, a).
DEFINITION 7. 7y(dy, ..., a,) € Hy(U, o/a) is the class of cohom-
ology of

= . nl = -
JEBULA e ABU— —(Ej;—o—‘—l—yk@u]/\ v NOU, = BT 42,

(n - T)!
Ie!

YEQULA <. A Oy,

deseribed in Proposition 4.
(n) Consider fivst the case where (w,v,y) = (w2, ¥ and where
PPN T P e R VT '

& == Z(m-l)"“lni—éul/\ cor AOUg_y A DUy A Ve A B,
It is clear that

08 = nduy A ... ANOU,.
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Also
1= (@—s)u+v+y.
Differentiating
0= Z(a{— 8;) 5@@—{—5@—}-5@/.
Of course

(a,—s; Bu/\m—z —8) Uy OULA e ADY,.

In this relation we replace 3 (a;—s;)0u; and 3 (@;—s;)u; by —0v— 0y
and 1-—o—y, vespectively. Transposing, changing signs, we see that

BYnd = (Y—1)0UsA oo ADU,+Yy,

where y, is a-valued of class C,. Therefore

Ayt o) = kg ayAG+ 0y BuA ... ABU,
= (WET)YEOULA ovr AU, — YT BULA vew A DU+ g,

where again v, is a-valued, of class O, and with compact gupport in U.
Multiplying this relation by (n-+%—1)!/kl, we obtain the result when
(u, v, 9) = (w0, 9). S

(b) Assume that & = k'. Consider

YEBULA . AU YO A ... Aéu;.
Proposmmn 3’ shows that it is sufficient to prove that the expression is
equal to 30+¢p with 8, » forms of eclass C,, 1espect1vcly o -valued and
a-valued, both with compact support in' U, when we go from’(u, v, y) to
(u’, v',y’) by one of the steps A, B, C.

Steps C are trivial, 6 = 0 even. Stopb A are not much more difficult,
Asgume for example thit

W=t (G s)g, Uy =ty (03— 8,)p,

and gy = tlg 5., Up = Uy, ' =0,y =g, Then

YR A ... Aau;,——y’”aul/\ N

((aa—sz)arp/\auz—au,/\ ——sl)arp)/\f)us er AUy

k 5(::1’““)/\6:7:/\;6%3 A oo KU,
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(€) We must still consider a step B, say u; = 4, —n, §' = y-+(a;— 1) 7,
Uy == Ugy .oy Uy = Uy ¥ = 2. We obrerve that

k
1.t a, & et Tl T
9" duy —y*ou, = § (Za') (a3 —82)F ¥ oy bu, —
1

_ Z ( ) 8K K g By
%1

\ k! . )
= Dy @ e @ —a)
]

with
0w = B (g — 83) L y¥ =1 Pugy — (B— T’ +1) "~ 4 By
We look ab @k,/\éug/\ /\é’bﬁn, keeping in mind the fact that
(al~s])5u1A5102A /\5% = —Ey/\ 5%2/\ A5un+1p1,

where v, is an a-valued form of class 0, with compact support in U, and
hence ‘

0 A DU A +vv ABUy, = — T FH Y10y A Duy A ... A DU, —
= (b= 1) FY¥ By A Bug A .o A B+
= — BV A BugA .. AU,y
80
YEBULA oo A DUy — YR TULA . A DUy, = 8O+ yp.

4. PROPOSITION B. Lt Gy ..., Gy bay .-y By be clements of ofa; let
U = sp(@yy .., @) and V 2 sp(bl, ey by) be open wn C*, C™, aespectwely
Then

Tywp (i -y Ty By ey B} = Ty(@y -y @) ATy (B, -y B

Took at a, €@y, by € by, then (u, v,y) € Dy(a), (W, ', y') e Dy(b), ie
™

D la—s)ug(s)+0(s)+y(s) =1,

1
V’( By~ )j () o' (8) ' (1) = 1.
Then (u, yu'y 04 yo’y 9Y') € Dypep (ay 0), e

Do s+ Y, (by 1,y ()% (1) + [0(6) -9 (6)0' (D) +9 ()’ () =1
,v“/
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The class of cohomology 7y, (@, b) containg the form

AY - _ -
MZ—;—E—L—)-'— (' Bus A oo A DU A B(HUDA oo AD(Ylhy)
! - _ - _
= ﬂj—%ﬂ)_ Y EQu A o A QU AYFOULA L A DU,

the equation being valid because du, A ... A du, A Oy = 0 since it is of degreo

%41 and involves only ds,, ..., d3,.
The proposition isx proved:
ProrosrrioNn 6. Let again

UsC,Ux=spGy,..., a4, Then

1

— I

(2mi)™ (

where 1 is the unit of o|a.

Uyy vovy Gy be clemenls of

Ty By ooy B)) =1

Ot course, I(vy(@y, ..., d,)) = I(ren(@y ..., &,)) and this is the pro-
duct of n factors, each equal to T (-rg(a,-)). Let w be of cluss €y, «-valued,
and such that 1 —(a, —s;)u, has compact support in C. Then

(L +E)!
!

I{ze(@) = fy"éu/\ds = 27 mod a.

o

DeriniTIoN 8. Let U 2 sp(@y, ..., &,) and fe O(U, o o). Then

a']__—a%

@] = f(a, ... Gy L 70 (@)-

We have already shown that f[@] =1 moda if fis the constant fune-
tion 1. Let 2;: (sy,..., 8,)—+s; be the 4 th coordinate.

ProrosiTION 7. f [a] =04ff belongs to the ideal generated by (8, —8y ..
weny By —8y) in O(U, ofa).

It is clear that

(2, — @) Y™ BusA ... ABu,

1, - = - - -
= - o Y Bug A oo AUy —BVA By .. ABu,
80 (2, — @) vy{a) = 0 and similarly (s, —8;) 7,(a@) = 0. Let f == ~— ;) e

w1th 9:€0(U, o]a). Then f.vy (G) = 0 and therefore j[d] = 0

oAla, and

icm
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Let U, V be open in C" C™, respectively. Lot fe o(T, A |a),
g€ 0(V, o]a). Then the fxg maps (s,?) onto (f(s), g(t).

Levma 1. Under the usual hypotheses,
Ixgla, b] = flalg[b].

This is clear. We want to prove that

ProrosrrioN 8. Let U < C" be open, U 2 sp(@y, ..., G,). The linear
mapping 0(U, of |a)->sf o is multiplicative, i.e. i is a morphism of algebras.

To prove Propogition 8, we shall use Lemma 1 above, and.

LmMMA 2. Let T: C*—C™ be linear, let G e (o [a)" and b = Ta e (& [a)™
Let U be open in C*, V open in C™, with U 2 sp&, V 2 sph, TU < V
Let g e0(U), then

g[Ta] = (goT)[a]

Remember that spb = Tspa

Bvery linear mapping i thc%ompo%ltmn of an invertible mapping,
a projection, an injection, and again an invertible mapping. It is sufficient
to prove the lemma in the three following cases:

(a) I': C"—C" is invertible.

(b) I': C*=C"" maps (s1,...,8,) o0t (Sy, ...y 8py).

(¢) T': C">C™ ™ maps (sy ..., 8,) ONtO (S, ..., &, 0).

So, (a), let T be invertible, ‘1ot b, = (Ta); = 3 Tyay, and § =T,
Let ulso '8 be the transpose of 8. We assume that

Da—suy(s)+o(s)+y(s) =1,

2<b@~—1's>(‘8u>( s)+o(s)+y(s) =1
or again, with ¢, = ('Ts)i i

i.o.

D) (b=t Su(8) - 0(S0)+y (81) =

We lot a0’ = t8(ul), y' = ys. <o nBu, evaluated ab ¢
= T8 will be the product of aul
det'S - Aet S

One factor, detd, comes from the replacement of

The kernel du)A
CA ()zon by

== !(1(‘ VS{
A 5’1{«,1,

OULA oo DUy, DY GugA ...

the other fuctor det§ comes from the change of variables; remember thut @
involves comiplex conjugation. Apply the formulae for the change of vavi-
ables under multiple integrals.

4 —~ Studia Math. 78.3
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Next, (b), T MaPs (Syy +- 5 S,) ONEO (81, +uvy 8yy) ARA (Tyy 10 vy Ty) OLbO
(Tyy oeny Gyy). We have Tspa = gpTa. It g e 0(spTa), goT is tho direct
product g X 1 of g by the constant function, equal to 1, and depending only
on s, And goTld,, ..., a,] = g[@y .. n_ljl[an] = g[T@] as required.

Finally, (¢), we must consider T (81 +avy 8p)=> {81y vrvy 8y 0), and
we compare G e (f]a)® and (&, 0) € (#[a)*". We notice ﬂmt sp (g, 0)
= spa X {0}.

Let V < C** containing sp(@, 0), and assume first that every con-
nected component of Vn(C™x{0}) meets sp(@, 0). A function g & o(7)
can be written

G(R1y ooy Bgs) = G(Ray oery By 0)FBpaB (s oy Zpga)s

= g0 T'(#) X 1 (%np1) +2npalt (Byy -0y Bpga)

where 1(2,,,) is a function of one variable, &,,4, congtant and equal to 1,
and é

—g(2 ...
1

G(Byy <oy zn-i-l)

s & 0)

B(2gy orey Bpay) =

The function A is holomorphic on V,

g[@y ...y By, 0] = goL'[@]- 1+ 2,4,(0) h[E] = goT'[@]

(#,41(0) is the value of #,,, at the origin).
If not all connected components of ¥VNO" x {0} meet sp(a, 0), we lot X
be the union. of the components of VNC™ x {0} which do not meet sp (g, 0)
and 7, = V\X. Then ¥V, is open, contained in V, contains sp (@, 0), & is
holomorphic on V,, we can define h[@, 0]. As above g[@, 0] =goT[a@].
Proof of Proposition 8 is now easy. Let f, g belong to @(U, «/a).

Then f X g(s, ) == f(s)g(t) and f X ¢[@, @] = f[@]g[@]. On the other hand,
consider T: s—>(s, s), C*—C*", then
Fxgls,s) =fxg(Is) =1g(s)
hence
flalglal =fxgla, a] = fxg[Ta] = f-glal].

Let U be openin €% U 2 sp(dy, ..
0(T) = 0(U, C). Then g¢,[a], ...
ping theorem shows that

vy Gy). Lt g4, .0y ¢, Do clements of
, I [@] Lelong to of Ja. The spectral map-

sp(glal = g(spa)
and

§(@, g[al) = {(¢, 9(2))| # e spa}.

icm
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ProrosiTION 9. Let V < C™ be open, V 2 ¢(U) and fe O(V, o]a);
then fog e O(U, o[a) and

flo[@]] = foglal.

Consider the function F(z, y) = fog(#)—f(y). This function is holo-
morphic on a neighbourhood of sp(@, g[@]) and vanishes on {(z,u(z))l
# € U}. Next, the functions

F (2, 4y .-+ 2 Gm) — (2 Yy -+
—¢;(2)

are holomorphic on a neighbourhood of sp (@, ¢ [8]), so G;[a, g[@]] is defined

and

flglal] —foglal = F[a, g[a]]

s0 Proposition 9 is proved.
5. Let ¢: #/—of/a be the quotient mapping ¢;~@; = a;+a.
DEFINITION 9. Let U = O" be open. A linear mapping 4: ¢(U)— [a
lifts if a continuous linear mapping u,: 0(U)—+ exists such that u = gou,.
Tt is clear that the mapping f—f[a@], ¢(U)—[a lifts (Definition 8).
ProrosimioN 10. Let U < C™ be a (schlicht) domain of holomorphy,
U 2 8p(@yy ..y Gy). Only one homomorphism O(U)—of [ ewists, which lifts,
and maps 2, on G; and unit on unit.

y Yiy Givry - - - y 9n)

G2, 9) = s Yim1s Gy -+

= M(g:[a]—g;[a) & [a, g[a]] =0

Let o: 0(U)-—+of [a be the mapping f—+f[a] and oy: 0(U)—o a lifting,
i.e. 0 = oy Let vz 0(U)—o|a be another homomorphism, which lifts,
i.e. 7 = go;, and maps # on @ and unit on unit.

UY&O(U) = 0(U x U), where § is the completed projective tensor
product. o, ®7; maps O(U)QO(U) into & & o/, multiplications maps
A& o into o, the composition O(U xU)—o will be called g, and ¢
== {0 0y4.

Of course, (f, 9)—0.(f) o1(g) — o1 (f-9) and (@, )—>71(P) w1 () — 7al@"¥)
are bilinear and continuous @(U)X O(U)—a (because of the closed
graph and Banach—Steinhaus theorems). Look at F = 34,7, &g, and &
= 3 i @y, elements of O(U x U). Then

o (F) 01 (6) —
= 2 j‘n M, [dl (fn) T1 (‘pn,) %41 (gm) 71 ("/’m) — 0y (fn 'gm) 1 (‘Pn ' V’m)]

o(F6)

= 2 ﬂm"‘m[(gl (£a)o1(9m) — Gl(fngnz)) 71{Pn) Tl("/’m)] +

-+ 2 j‘n im0 (fngm) [Tl(q’ﬂ) Tl(VJm) —T (‘pn"pm)] €a.
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80 0 = ‘go 01r O(UX U)o [a is & homomorphisn. This mapping maps
2,®1—1®z onto 0. ‘ ‘

U is o domain of holomorphy. The restrietion to the dingonal O(U %
% U)->0(U) is surjective; its kernel is also generated by the g,® 118z,
The quotient is ¢(U), ¢(1Qf) = o(f&®L) = 7(f) = a(f). And Proposition
10 is proved. :
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Quasi-Banach algebras, ideals, and holomorphic functional calculus’
by
L WAELBROECK (Bruxelles)

Abstract. Quagi-Banach algebras are unjons & = | J&/; of Banach algebras.
Agsume o o be commutative. All ideals of & turn out to be unions a = {_Jay of Banach
jdeals. Results about relative holomorphie functional can be stretched, are applicable
to quasi-Banach algebras modulo general ideals.

As application, we have a &ilov result. Let & be a commutative, associative
general quasi-Banach algebra with unit, and a a general ideal. Assume that the hull,
Hulle is not connected. Hulla = X,UX,. An e e« then exists, idempotent modulo
d, €2 — ¢ € a, whose Gelfand transform é vanishes on X and is equal to 1 on X;. Or, if
you prefer a = agna, where Hullay = Xy, Hullay = X;.

Let o be a commutbative Banach, or guasi-Banach algebra with unis.
Tvery ideal a of o has at least one quasi-Banach structure. Inductive
Limits allow us to stretch the holomorphic functional ealculus from quotient
Banach algebras to quotient quasi-Banach algebras. We define f[a] when
Ty, «rvy G, belong to o fa, U 2 sp(@y, ..., Gy) is open in Chand fe0(U, o/a).

As application, let o be an ideal of o whose hull is not connected,
Hulla = X,UX, with X,,X, compactand disjoint. Then ¢ € o exigts which
is idempotent modulo a, ie. e2—e €a, and whose Gelfand transform &
vanishes on X, and is equal to 1 on X;. Ideals ao o, can be found, with
Hulla, = Xy, Hulla, = Xy, and o = ayNay. The ideal ais not agsumed clo-
sed, the result gencralises Silov’s, which applies when a is closed [4].

This paper originated from a discussion about o (D), the algebra of
continuous functions on D = {¢| |¢] < 1} € € which are holomorphic on the
interior. Primary ideals are those whose hull has a single clement. Those
whose hull lies in the interior of D are closed. What can we say about ideals

whose hull is finite and contained in D¥ We see that these ideals are the
intersections of closed primary ideals, so they are closed.

Arens’s and Calderén’s result [2] can also be generalised. Let @, ..., @,
beling to oja. Let V o € be open, F = F(2y, ..oy &y Y) eO(V), f
e O(IMlla), with for all m e Hulla, (@(m), f(m)) eV, and again for all
m e [ulla,

. oF
Blagm), fom) =0, - (atm), flm)) # 0.
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