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80 0 = ‘go 01r O(UX U)o [a is & homomorphisn. This mapping maps
2,®1—1®z onto 0. ‘ ‘

U is o domain of holomorphy. The restrietion to the dingonal O(U %
% U)->0(U) is surjective; its kernel is also generated by the g,® 118z,
The quotient is ¢(U), ¢(1Qf) = o(f&®L) = 7(f) = a(f). And Proposition
10 is proved. :
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Quasi-Banach algebras, ideals, and holomorphic functional calculus’
by
L WAELBROECK (Bruxelles)

Abstract. Quagi-Banach algebras are unjons & = | J&/; of Banach algebras.
Agsume o o be commutative. All ideals of & turn out to be unions a = {_Jay of Banach
jdeals. Results about relative holomorphie functional can be stretched, are applicable
to quasi-Banach algebras modulo general ideals.

As application, we have a &ilov result. Let & be a commutative, associative
general quasi-Banach algebra with unit, and a a general ideal. Assume that the hull,
Hulle is not connected. Hulla = X,UX,. An e e« then exists, idempotent modulo
d, €2 — ¢ € a, whose Gelfand transform é vanishes on X and is equal to 1 on X;. Or, if
you prefer a = agna, where Hullay = Xy, Hullay = X;.

Let o be a commutbative Banach, or guasi-Banach algebra with unis.
Tvery ideal a of o has at least one quasi-Banach structure. Inductive
Limits allow us to stretch the holomorphic functional ealculus from quotient
Banach algebras to quotient quasi-Banach algebras. We define f[a] when
Ty, «rvy G, belong to o fa, U 2 sp(@y, ..., Gy) is open in Chand fe0(U, o/a).

As application, let o be an ideal of o whose hull is not connected,
Hulla = X,UX, with X,,X, compactand disjoint. Then ¢ € o exigts which
is idempotent modulo a, ie. e2—e €a, and whose Gelfand transform &
vanishes on X, and is equal to 1 on X;. Ideals ao o, can be found, with
Hulla, = Xy, Hulla, = Xy, and o = ayNay. The ideal ais not agsumed clo-
sed, the result gencralises Silov’s, which applies when a is closed [4].

This paper originated from a discussion about o (D), the algebra of
continuous functions on D = {¢| |¢] < 1} € € which are holomorphic on the
interior. Primary ideals are those whose hull has a single clement. Those
whose hull lies in the interior of D are closed. What can we say about ideals

whose hull is finite and contained in D¥ We see that these ideals are the
intersections of closed primary ideals, so they are closed.

Arens’s and Calderén’s result [2] can also be generalised. Let @, ..., @,
beling to oja. Let V o € be open, F = F(2y, ..oy &y Y) eO(V), f
e O(IMlla), with for all m e Hulla, (@(m), f(m)) eV, and again for all
m e [ulla,

. oF
Blagm), fom) =0, - (atm), flm)) # 0.
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Then b e of/a exists such that ?)(m) = f(m) on Hulle, and F[a,,...
cery Ty ] =0 in f/a.
The above statement is abstract. But consider a holomorphie function.
" F(z,y) on the polydisc D" < €™, write

k k,
Tz, y) = ZFkl...k”lzll S

Let ayy...,a, € o with |lgl<l and feC(Hulla), for all m e Hullg,
[f(m)] < 1. Assume that

or

F (d(m)7/(m)) = (), -—é; (&(fm),f(m)) # 03

both for all m e Hulla. Then ¥ e o/ oxists such that

N7 iy
2_, Flcl...knal rer

For example, if F(s,y) = ¢’ —2, and if 4(m) has a continuous Jogarithm
on Hulle, we find a “logarithm of ¢ modulo o”. Or it F is a polynomial;
which determines an analytic algebraic function on Ifulla, we find b e o
such that F(a,d) ca.

k,
a b =0,

1. DEFINITION 1. A quasi-Banach algebra o = | J o, is o union
E
7

of Banach algebras of,, r € R, where R iy a directed sr(it, and of, S o,
when 7 < ', inclugion being a morphism of Banach algebras, "

A divected set R is a partially ordered set such for all Ty, ¥4 € I8, thore
exists r, e B such that r, > vy, r, =1,

Quasi-Banach algebras were considered by Allan, Dales, and MeClure
[1], with the same terminology as here. Another approach to the same al-
gebras exists. Let & be an algebra, with an algebra boundedness (bornolo-
gY), &, in particular B, B, e @, if B, ¢ #, B,e 4. Assumo that the bound-
edness is convex, separated, and with a basis of completant subsets B
ie. which are absolutely convex and such that the normed §pace of ié
a Banach space. Then (&, %) is a b-algebra (0x a bornological completo
algebra).

A set B is idempotent if B* ¢ B, A boundedness is idempotent it for
all B e %, some idempotent set B, e # exists and some I e I, sueh that
B < MB,. Hogbe-N londA [3] studies b-algebras with idempotent bounded-
?Sczs:e; fsﬁhfgi (lggj,;bﬂentlally the same as the above quasi-Banach algebrag,

DERINITION 2. A guasi-Banach ideal of of = | ) o, is 2 union ¢ == U e,

i3

. . . . re. e
)mﬂl rekR,s ?Sr’ each 8, is a directed set, S, ¢ 8, when r < 7', cach a,
is a Banach ideal of &/, and g, < Opg When ¢ <7y s < o' "

icm®

Quasi-Banach algebras 289

Look at (&, %), a b-algebra. A b-ideal o of o if"an ideal of «, with
a b-space boundedness B, stronger that 4, i.e. 4, < 4, and such that the
multiplication & X e->a is a bounded bilinear mapping, i.e. B;-B, e &,
when B, € &, B, € #,. (Here a is a left ideal; in this paper o is commuta-
tive, a is therefore two-sided.)

Assume that (&7, #) has an idempotent boundedness, equivalently
that o = | &, is quasi-Banach. Let a be a b-ideal of «. For each r e R,

r
let 8, be the set of B e # which are bounded in ,, are completant, and
guch. that B,-B < B it B, is the unit ball of «,. Write s = B e §,, and let
a,, = 5 Then a,, is & Banach ideal of «, and the pseudo-Banach struc-
ture of a is essentially that of | J a,. (#5is the Banach space absorbed by

r
B =8 e8,, B is completant and B.-B < B.)
In other words, an algebra & with an idempotent boundedness #
and a b-ideal o of o is essentially the same as a quasi Banach algebra &
and a quasi-Banach ideal o of ..

ProrosITION 1. Let of = |, be a commutative quasi-Banach al-

gebra with unit. Let o be an ideal of of. Then o has at least one quasi-Banach
structure o = | tq.
r8
A finitely generated ideal § of a Banach algebra B is clearly a Banach
ideal of B. Now look at & = | &, and an ideal a of «. For each r e R,

let 8, be the set of finite sets of an«/,, and for all » € §,, let a,, be the
ideal of &, generated by s. Then o = [ a,, is & quasi-Banach ideal of 7.
2. Let now o = |J o, be a pseudo-Banach algebra. Let a = (Ja,, be
a Banach ideal of of. Let @, ..., d, be elements of &//a and a; €@,
DEFINITION 3. The spectrum §p(Gyy ..., Gy) = SPol(tyy ... @), in & /a
or equivalently the spectrum of (ay, ..., a,) in & modulo ¢« is the set of
(S4y «.-y 8,) € C" such that

n

1¢ D) (@—s)d]a

1
or equivalently

1¢ 3 (@—s) o +a.
1

Tt i elear that sp(@y, ..., d,) is compaet in C*, and if a is proper,
it 18 not empty. Consider 4, the set of maxgimal ideals of &7, with its Gel-
fand. topology,

Hulla = {m e #] m = a}

is eompact, non empty, and if & e C () is the Gelfand transform of ¢ e o,
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then

8D (ay +evy Ty) = {(@2(M), ..., G, (m))| m e Hulla}.

Let now r be large enough, that for all 4, a; € #,. Consider
sp%(a,_, ey @) = Xy

Then X,, < C" is compact; it #' =7, 8 > s then X & X5 also (X,
= §Pu(tyy + .., &), So by compacity we have "
PRroOPOSITION 2, Let U < C" be open, U 2 8p(@yy ...y G). Then 74, 84
ewist such that
Spam(a’n e an) =N

when 737y, 8 3= 8.

DEFINITION 4. Let o = |_J 4, be a quasi-Banach algebra and a = | Ja,,
a quasi-Banach ideal of . Let U < C" be open. Then O(U, &)
= U 0(U, «,) and 0(U, 0) = 0(U, a,). Further, 0(U, ofa) = O(U, o)/
[0(U, a).

Consider now @y, ..., @, € &fo, and U = C" open, U 2 &p(ay, ..., G,).
As usual, let 2z, e0(U) < 0(U, #|a) be the holomorphic mappings
2t (Sqp .00y 8,)—>8;, and call 1 the constant function equal to 1.

PrOPOSITION 3. A morphism O(U, o [a)—>sof|a  ewists which maps #;
onto @; and 1 onto 1,

This is clear. Let 7, s be large enough, 8P, (@1 .., @) & U. Proposition
8 [7] gives a morphism O(U, o, /o), [0 IE ' =, 8" = ¢ you have
the obvious commutative diagram

o(U, ‘fr/ars)'*‘ﬁir/ars
Q(U! 'Mr’/ai"s’)_>"‘a{7"lar's’

The inductive limit of the «,/a,is o//a. The inductive Limit of tho
0(U, o,/ ) is O(U, ofa). And Proposition 3 is proved.

3. Proros1vIoN 4. Let a be an ideal of =) ,. Assume that ils hull
is nonconnecied, Hulla = X,U.Xy, where X, and X, are compact and disjoint.
Then ¢ .sz{ eaists, which is idempotent modulo o, ¢*~¢ & a and ils Gelfand
tramsform e vanishes on X, and is equal to 1 on X,.

The proof is classical. Let ¢ € C(Fulla) he equal to 0 on X, and to
1 on X. Stone—~Weierstrass shows that ¢ can be approximated up to ¢ (e
< 1/2) on Hulla by a polynomial Py, ..., Uy, 475 - -,40%) of a finite number
of @y, ..., d,, and conjugates of these, where the &, ave the Gelfand frans-
forms of ;€ o2 On $P(Byy oy To)y PWay vy Yy Yly +o0y 4F) takos values

icm
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less than & on {(@(m), ..., 4,(m))| m e X,), while P—1 takes values less
than e on {(@(m), ..., d,(m)| m e X,}. The functicn y, equal to 0 near
o @(&,) and to 1 near to 4(X,), is holomorphic on a neighbourhood T of
SP(@yy <.y Gy). The relative holomorphic funeticnal calenlus maps y onto.
ge oo which is idempotent, if eee e?—ceca, ie. e is idempotent;
modulo a.

Of course, a-l e == ay and a-}(1-e)sf = a, are ideals of A
Hullay == Xy Hulle, == X}, Il @ € a, then clearly a € ¢yna,. Conversely,
let @ & ayOuy, then

@ == @' -eb’ = a' | (L—e)b"

with o'y " ¢ a, and b, b’ ¢ o, And

B8O == oy My,

JOROILARY. Let a be the ideal considered in Proposition 4. Ideals g, o
eaist with Mullay == Xy Hulla, = X,, and o = ayNay,

4. Let @y ...y @, & oo, Lot g e O(Hulla). Let V be open in €+,
for all m & Hulla, (&(m), p(m)) e V, let I € 0(V), and for all m e Hulla,
(a(m), p(m)) = 0. ,

Proposirron B, An element b e o [a ewists such that, for all m e Hullo,
I;(m) == p{m) and

Flay, ooyt 8] =0 (in o]a).

The proof of this resulb uses Avens-Calderén’s trick. Locally on HFull e
¢ depends only on (dl(m), very dn(m)). A finite number of elements on «/a,
BAY Cy ye.., 6 OXint such that globally (on Hulla), p(m) = @(m’) as soon
as dg(m) = dy(m'), (m) = g(m') (1<I<n1<i<h).

An open seb V, & CF exists such that Vy 2 Sp(@ay +-.y Gy C1y +ov 5 Gp)s
¥V, is projected into V in €% and ¢, € 0(V,) exists on V, such that
Bz 9, 002,9) =0 for all (59) eV, and for all m,gp,(d(m), é(m))
=1 p(1m).

Then @[, 6] == 6 is the solution of the Arens~Oalderén problem.

Added in proof. Tho dikeussion mentioned on p. 274 wag of course with Y. Domar
and happened at the Banach Center Institate, Tall 1977, In the proceedings, Y. Domar
moentions (he exigtenco of the dissussion and give applications, p. 244 (see Y. Domar,

ddout sbructure of commutalive Banach algebras, in: Spectral theory, Banach Center
Publications v, 8, 1082, 241.-249),
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Projections onto gradient fields and L?-estimates for
degenerated elliptic operators

by
TADEUSZ IWANIEC (Warszewa)

Abstract. Lot L™(RN, RY) be the space of all vector-valued functions f: RN
>R, which are intograble with the power m > 2. Consider the subspace D™ (RY)
of all functions which are the gradients of scalar functions on RN. We study the closest
point projection Py, : I™ (RN, RV)— D™ (RVN). The main result of the paper ig the in-
equality [[Ppflp < Aplfips for any p > m. In the proof an inequality of Fefferman and
Stein is used. As an application of the methods presented we give some regularity
vegults on PDE’s and quasiconformal mappings. In particular, we get a stronger ver-
sion of the Gehring theorem on LP-integrability of first derivatives of quasiconformal
mappings.

Introduction and statement of the results. The main objects of this
paper are the Lebesgue spaces I™(RY, RY), 1< m < oo, of mappings f
from RY to RY with the standard norm

Wl = ([ 1f @)™ da] "™

and their subspaces D™(RY) of gradient fields, i.e. of vector-functions
of the form f = Vu, where V is the gradient operator acting on locally
integrable functions % for which we can define f e Z™(R", RY) such that

[<hoy = = [udive

for any test funetion ¢ e OF (RY, RN). Hereafter <, is reserved for the scalar
product in RN,
Our main results concern the LP-cstimates, p > m, for a projection

P,: L™(RY, RN)=D™(RY), m>2.

The intevest in bounding such projections is motivated by a number of
applications we give to problems of regularity in PDI and quasiconformal
mappings.

Tiot us first consider m = 2; then I? (RY, RY) and D*(RY) are Hilbert
spaces and thoe orthogonal projection P: I*(RY, RM)—>D*(RM) is linear.
Thercfore, for any f € I* (RY, RY) we have Pf = Vu with an % which mini-
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