A. Fryszkowski

174

[5] St. Lojasiewicz, jr., The existence of solutions for lower semicontinuous orientor fields, ibid. 28, 483-487.

[6] E. Michael, Continuous selections I, Ann. Math. 63 (1956). 361-381.

INSTITUTE OF MATHEMATICS. TECHNICAL UNIVERSITY OF WARSAW 00-661 Warsaw, Pl. Jedności Robotniczej 1

> Received September 14, 1981 Revised version May 10, 1982

(1706)

STUDIA MATHEMATICA, T. LXXVI. (1983)

On the existence of unitary representations of commutative nuclear Lie groups

by

WOJCIECH BANASZCZYK (Łódź)

Abstract. A proof is given that if I is a discrete subgroup of a nuclear space X. then the quotient group X/I admits sufficiently many continuous characters.

In many situations nuclear spaces seem to be a more adequate generalization of finite-dimensional spaces than are normed spaces. Indeed, many important facts concerning finite-dimensional spaces remain valid in nuclear spaces but not in infinite-dimensional normed spaces. An example of this kind is given in the present paper.

Let us consider the following property of a topological vector space X:

(*) If Γ is a discrete subgroup of X, then the quotient group X/Γ admits sufficiently many continuous characters.

(The terminology is explained below.) Every finite-dimensional space X satisfies (*), which is trivial, and no infinite-dimensional normed space X satisfies (*), which has been proved in [1]. We shall prove here that every nuclear space X satisfies (*).

We begin with some notation and terminology. N, Z, R, C will denote the sets of positive integers, integers, reals and complexes, respectively. Vector spaces will often be regarded as additive topological groups. If A is a subset of a vector space X, then GA will denote the group generated by A. and span A - the linear span of A. The distance from a point u to a set Awill be denoted by d(u, A). For a topological vector space X the conjugate space will be denoted by X^* .

Let H be a real Hilbert space, and let $u_1, \ldots, u_n \in E$. Then Gram (u_1, \ldots, u_n) ..., u_n) will denote the Gram determinant of the vectors u_1, \ldots, u_n . If E is n-dimensional, and if K is a discrete subgroup of E which spans E, then K is an abelian free group with n linearly independent generators u_1,\ldots,u_n , and the number $\operatorname{Gram}(u_1,\ldots,u_n)$ does not depend on the choice of generators; we denote this number by $\operatorname{Gram} K$. A subgroup K of a Hilbert space will be called r-discrete if $||u-w|| \ge r$ for any distinct $u, w \in K$.

Let G be a topological group. By a character of G we mean a homomorphism of G into the multiplicative group $\{z\in C\colon z\bar z=1\}$. We say that G admits sufficiently many continuous characters if for any $1 \neq g \in G$ there is a continuous character χ of G such that $\chi(g) \neq 1$.

By a unitary representation of G we mean a homomorphism $V \colon G \to U(H)$ into the group of unitary operators on some Hilbert space H. V is called faithful when $\ker V = \{1\}$. A representation V is called strongly (uniformly) continuous when it is continuous in the strong (uniform) topology on U(H).

LEMMA 1. If K is an r-discrete subgroup of \mathbb{R}^n which spans \mathbb{R}^n , then $\operatorname{Gram} K \geqslant r^{2n} n^{-n}$.

Proof. Choose any generators u_1, \ldots, u_n of K, and let

$$P = \left\{ \sum_{k=1}^{n} t_k u_k \colon 0 \leqslant t_1, \dots, t_n \leqslant 1 \right\}.$$

Let m be the n-dimensional Lebesgue measure on \mathbb{R}^n , and \mathbb{B} — the ball $\|u\| < r/2$. We have

$$\operatorname{Gram} K = \operatorname{Gram}(u_1, \dots, u_n) = m^2(P),$$

and

$$m(P) \geqslant m(P \cap \bigcup (B+u)) = m(\bigcup [P \cap (B+u)])$$

$$= \sum m(P \cap (B+u)) = \sum m((P+u) \cap B)$$

$$\geqslant m(\bigcup [(P+u) \cap B]) = m(B \cap \bigcup (P+u)) = m(B \cap \mathbb{R}^n) = m(B),$$

where all the sums are taken over all $u \in K$. As can easily be seen, $m(B) \ge r^n n^{-n/2}$, which completes the proof.

LEMMA 2. Let E_1 and E_2 be real Hilbert spaces, and let $T\colon E_2\to E_1$ be an infinite-dimensional linear compact operator. Let $\lambda_1\geqslant\ldots\geqslant\lambda_k\geqslant\ldots$ be the full sequence of positive eigenvalues of the operator $(T^*T)^{1/2}$. Then for any $n\in \mathbf{N}$ and any $u_1,\ldots,u_n\in E_2$

$$\operatorname{Gram}(Tu_1, \ldots, Tu_n) \leq \lambda_1^2 \ldots \lambda_n^2 \operatorname{Gram}(u_1, \ldots, u_n).$$

We omit the proof of this well-known fact.

LEMMA 3. Under the assumptions of Lemma 2, suppose that $\lambda_k \leqslant e^{-2}k^{-2}$ for $k \in \mathbb{N}$, and let L be a discrete subgroup of E_2 such that $\dim \operatorname{span} L = n < \infty$, $\operatorname{span} L \cap \ker T = \{0\}$, and T(L) is a 1-discrete subgroup of E_1 . Then we can choose generators w_1, \ldots, w_n of L such that

$$d(w_k, \operatorname{span}\{w_i\}_{i < k}) \geqslant k$$
 for $k = 1, \ldots, n$.

Proof. Choose any generators u_1, \ldots, u_n of L. Since $\operatorname{span} L \cap \ker T = \{0\}$, the vectors Tu_1, \ldots, Tu_n are linearly independent generators of the

1-discrete group T(L). Thus, according to Lemma 1.

$$\operatorname{Gram}(Tu_1,\ldots,Tu_n)=\operatorname{Gram}T(L)\geqslant n^{-n}.$$

On the other hand, from Lemma 2 we obtain

$$\operatorname{Gram}(Tu_1, \ldots, Tu_n) \leqslant \lambda_1^2 \ldots \lambda_n^2 \operatorname{Gram}(u_1, \ldots, u_n).$$

· Hence

Gram
$$(u_1, \ldots, u_n) \ge n^{-n} e^{4n} (n!)^4 \ge n^{3n}$$
,

because $n! \ge n^n e^{-n}$. Let $u_1^*, \ldots, u_n^* \in (\text{span} L)^*$ be defined by $u_i^*(u_j) = \delta_{ij}$ for $i, j = 1, \ldots, n$. We have

$$(\operatorname{Iram}(u_1^*, \ldots, u_n^*) = [\operatorname{Gram}(u_1, \ldots, u_n)]^{-1} \leq n^{-3n}.$$

From Lemma 1 easily follows the existence of a $w^* \in G\{u_k^*\}_{k=1}^n$ such that

$$0 < ||w^*||^2 \le n \left[\operatorname{Gram}(u_1^*, \ldots, u_n^*)\right]^{1/n};$$

hence $\|w^*\| \leqslant n^{-1}$. Let $w_n \in L$ be any element for which $w^*(w_n) = 1$ (if $w^*(L) = p\mathbb{Z}$ for some $p = 2, 3, \ldots$, then we would take w^*/p instead of w^*). Then $d(w_n, \ker w^*) = \|w^*\|^{-1} \geqslant n$, and $L = \mathbb{Z}w_n \oplus L_{n-1}$, where $L_{n-1} = L \cap \ker w^*$. Obviously $T(L_{n-1})$ is a 1-discrete subgroup of $T(\ker w^*)$. Applying the above argument to the group L_{n-1} , we shall obtain some $w_{n-1} \in L_{n-1}$ and a subgroup $L_{n-2} \subset L_{n-1}$, such that $d(w_{n-1}, \operatorname{span} L_{n-1}) \geqslant n-1$ and $L_{n-1} = \mathbb{Z}w_{n-1} \oplus L_{n-2}$. Proceeding by induction, we shall obtain elements w_n, \ldots, w_1 , which satisfy the desired conditions.

Lemma 4. Under the assumptions of Lemma 2, suppose that $\lambda_k \geqslant e^{-2}k^{-2}$ for $k \in \mathbb{N}$, and let K be a subgroup of E_2 , such that $\operatorname{span} K \cap \ker T = \{0\}$ and T(K) is a 1-discrete subgroup of E_1 . Choose an arbitrary $a \in E_2 \setminus K$, put d = d(a, K) and $t = \min(1/4, d/2)$. Then there is an $f_a \in E^*$ such that $\|f_a\| \leqslant 3$, $f_a(K) \subset \mathbb{Z}$, and $f_a(a) \in \langle t, 1-t \rangle + \mathbb{Z}$.

Proof. Consider the sets

$$F_{u} = \{ f \in E_{2}^{*} : f(u) \in Z \}$$

for $u \in K$, and the set

$$F_{\alpha} = \{ f \in E_2^* : f(\alpha) \in \langle t, 1-t \rangle + Z \}.$$

Let B be the ball $||f|| \leq 3$ in E_2^* ; we shall prove that for each finite subset $J \subset K$ the intersection

$$B \cap F_a \cap \bigcap_{u \in I} F_u$$

is not empty.

To do this, choose any finite subset $J \subset K$. There are linearly independent $u_1, \ldots, u_n \in K$ with $L = G\{u_k\}_{k=1}^n \supset J$. By Lemma 3 we can choose generators w_1, \ldots, w_n of L, such that

$$d(w_k, \operatorname{span}\{w_i\}_{i < k}) \ge k$$
 for $k = 1, ..., n$.

7 - Studia Math. 76.2

Let e_1, \ldots, e_{n+1} be the system obtained by orthonormalization of the vectors w_1, \ldots, w_n, a . We may write

$$w_k = \sum_{i=1}^k w_{ki} e_i$$
 for $k = 1, \ldots, n$,

and

$$a = \sum_{i=1}^{n+1} a_i e_i.$$

We may assume that $w_{kk} > 0$ for k = 1, ..., n; then

$$w_{kk} = d(w_k, \operatorname{span}\{w_i\}_{i < k}) \geqslant k \quad \text{for} \quad k = 1, \ldots, n.$$

As can easily be seen, there is a $w_0 \in L$ such that if

$$a-w_0 = b = \sum_{i=1}^{n+1} b_i e_i,$$

then $|b_i| \le w_{ii}/2$ for i = 1, ..., n. Obviously $||b|| \ge d$. Now there are two possibilities. If $|b_{n+1}| \ge d/2$, then the mapping

$$E_2 \ni u \mapsto t |b_{n+1}|^{-1} (u, e_{n+1}),$$

where (u, e_{n+1}) is the scalar product, obviously belongs to

$$B \cap F_a \cap \bigcap_{u \in L} F_u \subset B \cap F_a \cap \bigcap_{u \in J} F_u.$$

If, on the other hand, $|b_{n+1}| < d/2$, then, taking $b' = \sum_{i=1}^{n} b_i e_i$, we must have ||b'|| > d/2. There is a linear functional h on $\operatorname{span} L$ such that $||h|| \le 1$ and $h(b') \in \langle t, 1-t \rangle$. Let $h_i = h(e_i)$ for $i = 1, \ldots, n$. As can easily be seen, there is an $f_1 \in \mathbf{R}$ such that $f_1 w_{11} \in \mathbf{Z}$, $|f_1 - h_1| \le w_{11}^{-1}$, and

$$f_1b_1+\sum_{k=0}^nh_kb_k\in\langle t,1-t\rangle.$$

Next, there is an $f_2 \in \mathbf{R}$ such that $f_1 w_{21} + f_2 w_{22} \in \mathbf{Z}$, $|f_2 - h_2| \leqslant w_{22}^{-1}$, and

$$f_1b_1 + f_2b_2 + \sum_{k=3}^n h_kb_k \in \langle t, 1-t \rangle.$$

Proceeding by induction we shall find $f_1, \ldots, f_n \in \mathbf{R}$ such that

$$f_1b_1+\ldots+f_nb_n\in\langle t,1-t\rangle,$$

$$\sum_{i=1}^k f_i w_{ki} \in \mathbf{Z} \quad \text{ for } \quad k = 1, \dots, \psi,$$

and

$$|f_i-h_i| \leqslant w_{ii}^{-1}$$
 for $i=1,\ldots,n$.

Let f' be the linear functional on span $\{e_i\}_{i=1}^{n+1}$, defined by $f'(e_i) = f_i$ for $i=1,\ldots,n$, and $f'(e_{n+1})=0$. Then $f'(b') \in \langle t,1-t \rangle$ and $f'(L) \subset \mathbf{Z}$. Hence

$$f'(a) = f'(b+w_0) = f'(b')+f'(w_0) \in \langle t, 1-t \rangle + Z$$
.

Moreover,

$$\|f'\| \leqslant \|h\| + \|f' - h\| \leqslant 1 + \big[\sum_{i=1}^n |f_i - h_i|^2\big]^{1/2}$$

$$\leqslant 1 + ig[\sum_{i=1}^n w_{it}^{-1}ig]^{1/2} \leqslant 1 + ig[\sum_{i=1}^n i^{-2}ig]^{1/2} \leqslant 3.$$

We may extend f' to an $f \in E_2^*$, with $||f|| \le 3$. Then

$$f \in B \cap F_a \cap \bigcap_{u \in J} F_u$$
.

Since J was an arbitrary finite subset of K, and the sets F_a and F_u , $u \in K$, are weakly closed, from the weak compactness of B follows the existence of an

$$f_a \in B \cap F_a \cap \bigcap_{u \in K} F_u$$
.

THEOREM. Let Γ be a discrete subgroup of a real nuclear space X. Then Γ is an at most countably generated abelian free group, and the quotient group X/Γ admits sufficiently many continuous characters. Moreover, if the topology of X can be defined by a family of norms, then X/Γ admits a faithful uniformly continuous unitary representation.

Proof. We may assume that dim span $I' = \infty$. Take any $x_0 \in X \setminus I$. Since I' is a discrete subgroup of X, and $x_0 \notin I'$, there is a neighbourhood U of zero such that $U \cap I' = \{0\}$ and $(x_0 + U) \cap I' = \emptyset$. Then there is a continuous seminorm p_1 on X, such that $\{x: p_1(x) < 1\} \subset U$, and the space $X/p_1^{-1}(0)$ with the norm $\|[x]\|_1 = p_1(x)$ is a prehilbert space. Let E_1 be the completion of $X/p_1^{-1}(0)$. Since X is a nuclear space, there exists another continuous seminorm $p_2 \ge p_1$ on X, such that if E_2 is the corresponding Hilbert space, and $T: B_2 \cap B_1 = 0$ the natural nuclear operator, and if $\lambda_1 \ge \ldots \ge \lambda_k \ge \ldots$ is the full sequence of positive eigenvalues of the operator $(T^*T)^{1/2}$, then $\lambda_k \le c^{-2}k^{-2}$ for $k \in N$. We obtain the following commutative diagram:

$$X \xrightarrow{M} X$$

$$\downarrow^{\psi} \qquad \downarrow^{\varphi}$$

$$E_{2} \xrightarrow{T} E_{1}$$

where φ and ψ are the natural mappings.

Since $\{x: p_1(x) < 1\} \subset U$ and $U \cap \Gamma = \{0\}$, $\varphi(\Gamma)$ is a 1-discrete subgroup of E_1 , and $\Gamma \cap \ker \varphi = \{0\}$. We shall prove that

(i)
$$\operatorname{span} \Gamma \cap \ker \varphi = \{0\}.$$

Suppose the contrary; then there are linearly independent $a_1,\ldots,a_n\in \Gamma$ and non-zero $a_1,\ldots,a_n\in R$ such that $\varphi(a_1u_1+\ldots+a_nu_n)=0$. Let $M=\operatorname{span}\{x_k\}_{k=1}^n$; then $\dim M=n$, but $\dim \varphi(M)< n$. $\varphi(\Gamma\cap M)$ is a 1-discrete subgroup of $\varphi(M)$; therefore it is a group generated by m linearly independent elements, where $m\leqslant \dim \varphi(M)< n$. Since $\Gamma\cap\ker\varphi=\{0\}$, the mapping $\varphi|_{\Gamma\cap M}$ is a monomorphism of the group $I'\cap M$ onto the group $\varphi(\Gamma\cap M)$, but it is impossible to map monomorphically Z^n into Z^m with m< n. The resulting contradiction proves (i).

As a discrete subgroup of a separable normed space E_1 , the group $\varphi(\varGamma)$ is a free abelian group with a separable set of linearly independent generators, and, by (i), so is \varGamma .

Let $K = \psi(\varGamma)$. Since $T\psi = \varphi$, (i) implies that $\operatorname{span} K \cap \ker T = \{0\}$. Next, $T(K) = \psi(\varGamma)$ is a 1-discrete subgroup of E_1 . Let $a = \psi(x_0)$. By Lemma 4 there is an $f_a \in E_2^*$ such that $f_a(K) \subset \mathbb{Z}$ and $f_a(a) \notin \mathbb{Z}$. The mapping

$$X \ni x \mapsto \exp[2\pi i f_a \psi(x)]$$

is then a continuous character of the topological group X, trivial on Γ . It determines a continuous character χ of X/Γ , such that $\chi([x_0]) \neq 1$. Thus, since $x_0 \in X \setminus \Gamma$ was arbitrary, we have proved that X/Γ admits sufficiently many continuous characters.

Assume now that the topology of X can be defined by a family of norms. Then we may assume that p_2 is a norm. For every $a \in E_2 \setminus K$ let χ_a be the character

$$E_2 \ni u \mapsto \exp\left[2\pi i f_a(u)\right],$$

where f_a is the functional constructed above. The Hilbert sum V of the characters χ_a , $a \in E_2 \setminus K$, is then a uniformly continuous unitary representation of E_2 , and $\ker V = K$. The mapping $V\psi$ is a representation of X, and $\ker V\psi = \psi^{-1}(K) = \Gamma$, because p_2 is a norm. Thus we obtain a faithful uniformly continuous unitary representation of X/Γ .

Remark. If a topological group admits sufficiently many continuous characters, then it also admits a faithful strongly continuous unitary representation (the Hilbert sum of those characters). On the other hand, there are groups of the form X/Γ , where Γ is a discrete subgroup of a nuclear space X, which do not admit any faithful uniformly continuous unitary representations. For example, let $X = \mathbb{R}^N$ and $\Gamma = \{0\}$. Any faithful uniformly continuous unitary representation of \mathbb{R}^N would lead to an injec-

tive continuous linear operator acting from \mathbb{R}^{N} to the Banach space of all real measurable essentially bounded functions on (0,1) (see [2], Theorem 5), which is impossible.

Acknowledgements. The author is indebted to W. Wojtyński for stimulating discussions, and to B. Nowak for helpful remarks.

References

- [1] W. Banaszczyk, On the existence of exotic Banach-Lie groups, to appear.
- [2] W. Herer, J. P. R. Christensen, On the existence of pathological submeasures and the construction of exotic topological groups, Math. Ann. 213 (1975), 203-210)

INSTITUTE OF MATTEMATICS LÓDZ UNIVERSITY

> Received March 25, 1982 Revised version May 24, 1982

(1746)