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ot 1a sommation est effectuée pour tous les s’ e {0, 139" On a done, d’aprés
(4.16) et puisque seB
“m (81) —2p (S)”t< 4812-)—1 + bn (8) *<\ 45174«1 + 10_26 *

De méme on &
l19(83) — 21 ()] < 4841 +10720.
Dloh enfin, grice & (4.18) on a
[l (s1) —@ (s,)ll < 8/10 - 8/50 +Beyy 4y < 05

une contradiction. Le résultat est démontré.
Remarque. Un résultat de J. Bourgain [1] implique alo:_:s que tout
opérateur de I' dans E posséde la propriété de Dunford-Pettis.
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Unconditional decompositions and local unconditional
struclures in some subspaces of I, 1< p-< 2

by
ANDRZEJ BORZYSZKOWSKI* (Gdarisk)

Abstract. For every intoger %2 2 and for overy p, 1< p <2, there exists
a subspuace of &, which is an unconditional smn of o sequoncee of -dimensional subspaces
and b is he Jeast intoger with this property. The nethod of proof involves the notion
of local wneonditional strueture of order « k. In Tact, we prove a stronger elaim, thus
improving upon the results of T. Ketonen [9].

1. Introduction and main results. Let X be o Banach space and let %
be a positive integer. Wo say that X has local unconditional struciure of
order << T (in short %, (X) < o) if there is » constant ¢ such that for every
finite dimensional subspace 2 of X there are operators 7' FER RS ) B B
<ees iy for which rank 7% <k, 4y 3 1) and

JaN

= (.

\" Al
‘L &1
N

Here i, stands for the inclusion map, 4, & <-¥. The infimum of all num-
bers ¢/ with that property is denoted by U (X).

It is well known (cf. proof of Lemma 4.1 below) that Up(X) < U< oo
is equivalent to the following property.

Fiven o finite dimensional subspuace ¥ of X, thevo are a space 7 and
operators 4A: L-»V, B: V-+X such that ¢, «= Bod, V has a Schauder
decomposition {V,},.., AimV; <X & for § < N and |4 1Bllone{V,} ey = (.
Here tne {13, stands for the unconditional constant of the decompo-
sition {Vyley.

This propexty in the ease b = L was introduced by Gordon and Lowis
[61. They gave tho fivst examples of Banaeh spaces for which Uy (X)) =0 00,
The mothod of [5] depends on properties of o certain parameter which in
now denoted by ¢l(X) (ef. Proposition 1.3 below). Other methods were
developed in [7] and [6]. The case where X iy a subgpace of Iy presented

* The present papor is o part of the authors Ph.D. thesis propared under the
supervision ol Professor Tadeusz Migiel at the Institute of Mathematics of Polish Aca-
demy of Seiencoy.
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some difficulties which were overcome only by T. Kfatonen [9]. e -c(.m-
structed a subspace X of I, which has an unconditional clecomposlﬁxon
into 2-dimensional subspaces (hence %,(X) << oo) but %, (X) = oo, thus
answering the question posed by Pisier [13]. o

In the present paper we extend the resulfs of [9] and also snnplﬂfy
some of the arguments. The main results are Theorerg 1] and Theorem 1.2.

Before stating our results we need some definltlollg.

Lot {X,},er be a family of linear subspaces of a .Ba;na,e.h sp@eoX
The unconditional constant of {X,},cpy denoted by wne{X,},er is tho infim-
um of all numbers € 3> 0 such that for all choices of elements m,_, eX, f‘ul-
filling 3 |l | << oo and all choices of signs {e,}yer the following inequality

yel B

| Sl <0l 3ol

Tt unc{X,}, < oo then we say thatb {X,}yer Jorms an unco%ditiom‘zl
decomposition of the closed linear subspace Y spanned by U X,. If thig
is the case then we write ¥ = [X,],er- rel 4

An unconditional decomposition {X,},.r is said to be finite dimen-
sional (resp. k-dimensional) provided dim X, < oo for each' yel (?esp.
dim X, < % for each y e I'). If, for every y e Iy X, is bpannfd by a single
vector «, then we often write une{w,},.r instead of une .{_/1,,},,51..

In the sequel the index set I” will be either a set of integers or a sob
of pairs of integers.

The standard ordering of a sequence of k-tuples {ull, ..., P},
1<k< 00, 1<m< oo is {y}5% where gy, = @) for 1<r <k,
p=1,...

’ Consider a Banach space X with a Dasis {&l, ..., 2™®  and pub
X, =span{all, ..., 2}, n = 1,... We say that this sequence of k-tuples
is symmeiric, or that the decomposition {X,}5.; is symmetric, if for every
permutation o of the positive integers the sequences {al,, ..., alf,}e.,
and {0, ..., 2=, are equivalent bases. Tt is well known that a symmetrie
decomposition iy unconditional.

TarorEM 1.1. For every p, 1< p << 2, and every integer k= 2 there
ewists o subspace X of L, with a basis {al, ..., a2 | sueh that

(i) the sequence of L-tuples 1y symanetvic T.e. X has o symmetric T-dimen~
sional decomposition,

(i) %1 (X) = oo.

THROREM 1.2, For every p, L= p <2, there ewists « subspace ¥ of 1,
such that ¥ has a finite-dimensional unconditional decomposition but, for
every integer k=1, A (X) = co.

Theorem 1.1 in the case T = 2 is due to Ketonen (cf. [9], Theorem

holds:

icm
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4.4). Our proof of Theorem 1.1 in the general case is a modification of his
argument. Theorem 1.2 is an easy consequence of Theorem 1.1.
The Gordon-Lewis constant of a Banach space X is defined by

gU(X) = sup{ps(T); T: X-sly, my (T) <1}

Here y,(T) denotes the Ly-factorization norm of 7' and 7y (') the l-absol-
utely suoming norm of ' (ef. [57], [13] or [27]). It is well known that if X
is a subspace of I, then gl(X) == 1.

Let o = {a(m)}., be a non-decreasing sequence of reals such that
«(L) = 1L and lima(n) == oo, Given & Banach space X, we put

Herve 7 raziges over all finite-dimensional subspaces of X and the infimum
is over all finite decompositions i = 3 T) of the inclusion mapi,: B =» X.

3
It a(n) = a'* then 1(X) = I,(X) is Gordon’s parameter (cf. [4], [2]).
ProrosreroN 1.3, For every indeger k> 1,

1,(X) == sup int sup H N (rank T) T,
By ey

g1(X) S UX) < B 2 (X).

The lower estimate is proved in [2] while the upper estimate follows
directly from the definitions. ‘

The following observation is due to T. Figiel (personally coramuni-
cated to the author).

PROPOSITION 1.4. Let X be a Banach space such that 1,(X) < oo for
some sequonce o == {a(n)}. Suppose there is a net {Pylsy of finite rank
projeciions on X and there is 1< co such that [Py <A for ded and
| Psw—2l|—0 for every zeX. Then Up(X) < 2:1,(X) for some finite %
depending only on a,1,(X) and A

COROLLARY 1.5. If ¥ < 1, is the space constructed in Theorem 1.2 then
LX) == oo for any sequence a(n) co.

The following proposition taken from [9] will be used in the construc-
fion of the space A7 in Theorem 1.1.

PROPONIPION 1.6, For every p, 1 <5 p < oo, p 2, there ewists a sub-
space 7 of Ly, with o normalized basis {f,, 9,10, such that

(1) the  decomposition {Z,}.4, where Z, == span{fu, g}y m = 1y .0y
48 unconditional,

(i) the projeciion S (a,fo-t Buga)> 3 oty is ot a bounded operator.

n 3

The proof of Proposition 1.6 given in [9] depends on a special con-
struction of & conditional basis in Ly, 1<<p << oo, p #2 (cf. [9], Prop-
osition 2.2). leve is a direet proof which works also if p = 1.
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Proof of Proposition 1.6. Let {g,}5%, and {d,};%, be the standard
bases in I, and I, respectively. Put Z =1, D1y fo = ¢, and g, =27"(e, - d,)
for n = 1 . It is easily seen that (i) holds and that (ii) is smtlsﬁed 11

L<p< 2. In the casep > 2 one simply takes f, = d,, g, =277 (e, 1-d,) for

n =1, -]
A smmlar argument can be applied if Z = I, L<p < 00, p
Our notation is basically the same as in [10] and [L1]. Let us (5\1)1,1;}11,
that I, 1 < p < oo, denotes the real Banach space of p-integrable 1;0&1
valued functions on the unit interval [0,1].
Tf X is a Banach space then L,(X) denotes the space of strongly
1

measurable functions f: [0, 1]-X such that [ [|f ()% d < co.
0

The Rademacher system is defined by M( ) = sgngin2®wl, n o=~ 1, .
By Rad, (X) we denote the subspace of L, (X) consmtmﬂ of the mn(tmns
of the form f(5) = 3 7;(t)x; where @, ¢ X if i< n. Finally, Rad(d) is

i<n

the closure of ) Rad,(X) in Ly (X).
% ]

2. Proofs of the main results. The proof of Theorem 1.1 is based on
two propositions.

PROPOSITION A. Suppose that X is o Bauaoh space of finite colype and
that X has an wnconditional decomposition {X;}32, where AimX, = & for
each 1. ‘

If U, (X)< oo then there are a constant D << oo and operators
T,: X>X,n =1,..., such that

(i) T,(X;) = X; for each i,

(ii) [Tl < D,

(iii) || 0mm; — Amyll = (252 for every scalar A € R und for i=1, ..., 1.
Here m; stands for the natural projection onto X .

PrOPOSITION B. Let 1< p < 2,k = 2. Then there exists a
of L, with a normalized basis {Tf}) ooy 2% sueh thal

(i) the sequence of K-tuples is symimetric,

(i) i A = {az}, 1<i,j =k, is @ matrie such that there is a bounded
operator T 42 X—X which satisfies

T = Yagd)  for

Je<k

subspace X

yEoand no= 1, ...,

then A must be o multiple of the identity mairia,

Remark. The results of Kadec and I’el‘czyl’mki (et [8], Clorollary 6)
show that a symmetric basic sequence in L, p > 2, is equivalent to the
standard basis of either i, or I,. Hence Proposition B faily in the case
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9, Tt remaing true for p =+ 1 but the method of proof works only for
1 (cf. TLemma 3.3).

Proof of Theorem 1.1, Suppose first that p > 1. We shall show that
the space X constructed in Iroposition B has the properties stated in
Theorem 1.1, Suppose, on the contrary, that #,_,(X) < co. Then Prop-
osition A yields a sequende of operators T, such that, using the compactness
argument and ufilizing condition (i) in Proposition B we can produce
a non-sealar k< kb matrix A4 sueh that 7', iy a bounded operator (see [9],
PP, 23=24, for tha detailed proof of this claim). This, however, contradicts
(i) in il’m]umtmn 1. Meneo Theorem. 1.1 in the ease p > 1 is proved. The.
eage p 1 i alko valid beeause L}l containg an isometric copy of every
Loy, spaesey |l gl 2 (ef. [117], 2.85

I'roof of Theorem 1.2, Tix Ic =2 and choose a subsp,w e X of L,
with the properties formulated in Pheorem 1.1, Tut e (Y (Jff/"),,

(=20
where K, | Xk, Clearly, %,.. (X)) = oo and X i isometrie t?) 9 sub-
space of L. For overy » choose a subspace I, of L, spanned by finitely
mgmy ('lisioinﬂsr supported functions and an operator T,: H,-»L, such
that 1, (B,) = 1y, and 1T, —iy | < 4™ (ef. [12], Theorem 2.1), Since I,
is Homomo to some I, we obta.m an isomorphic embedding 7: X

w2 @ Fy)y 1, Wo put YW = (X)) < 1, One can casily see that the

w
oo

space ¥ (3@ ¥W), hay the required propertios. m

3. Proofs of Propositions A, B and 1.4.
TrovosiToN 3.1, Suppose that X is @ Banach space of finite culype.
Then the following conditions are equivalent:
(i) (X)) << no.
(31) %y, (Rad (X)) <
(iii) There 48 O < 0w such that given B < X, dimK
space Vs |V ) and operators Az B->V, B: Ver X such that dim}
Jor g =3 Ny iy Body JA-IBl = ¢ rmdfm every integer n E f;ﬂfj,m,
N

< oo, there are a

5k

fLemark. Condition (iii) shows that local unconditional strueture. of
order o of the spaee Rad (X) has a tensor product nature.

The proot of Proposition 3.1 is given in Section 4.

LIMALA 3.2, Suppose that B ix o Banach space, (i < ooy 0 <Cu
and gl i @ sequence of vectors in B sueh that, putling ey =
e huwwe

&y,
JuN

inl [y - Aol 2= alleyl for  Jely oL N.
R
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Then there is a sequence {s;};< Of signs such that

inf
ieR

| D ejas—26, | = a-(dim B el
JSN

Proof of Lemma 3.2. Put By = span{e,} and consider the quotient
space K = BB, Let y, be the image of z; under the quotient map,
J=1,..., N. Observe that

D > Y alagl = alley].

i<N Iy
Now put u = max| Y ;|| where the maximun is taken over all
J<n

-choices of signs, ¢ = 4 L for j = 1,..., N. It suffices to show that
<2N lyillz < (UM E)-u. For every functional ¢* e B*, setting & = Sgne* (),
Is

we have that 3 [e*(y)l = ¢*( 3 &9 <levlu. I (e D)INF i am
IES <N

i<

.Auerbach systenf for the space B then

Dl < X M)l = 3 3 le )] < (dimB) . m

I<N J<N 4 T JEN

Proof of Proposition A. Fix n>1.
Cram 1. There are operators Ry: X—X, i<n, <N, such that
Ry = noRy0 m;, rankR; < k—1 and
)7 =Ry i=1,..,n,
J<N
(ii) ”2 .ZNaﬁRﬁ“gD for any double sequence ey = 1.
isn j<
Here D does not depend on n.
iFn order to prove this we use Proposition 3.1 with % replaced by & —1
and B = [X,]7.,. In fact, since sy = > m; is a projection onto # with
< .
llregll << wne {X 352, we may obtain a factorization of =, such that Ty
='Br:A, A: X—>:V, B: V—A»A”, AN IBY < ¢ une{X,}*, and dim v,
<./c'-—1 for ea,ch. J=1,..., N. Here ¢ is the constant appearing in Prop-
-osition 3.1. Consider the space Rad (X). Tong’s diagonal argument (ef. [LO],
1.c.8) shows that the “diagonal subspace” [rX, 15, is complementoed in
Rad(X) and the norm of the respective operator Q: Rad X1,
falfills Q)| < uno{X}2,. e
Now, using the\najtm‘a.l isomorphism [r.X,]2, =~ X, we have the fol-
Jowing factorization of my,:

apt X = [1X]2,>Rad (XY Rad (V)E> Rad (X)% [r,X,12, ~X.

icm°®

Uncondilional decompositions and local wnconditional siructures 273
Denote by sy Rad(V)—+Rad(V) the projection onto the subspace »,V,,
and define K, to be the composition

Ry X—>Rad(V)ZoRad(V) =X, ¢ =1,...,m ] =1,...,N.
It follows from the definition that R = mpo Ryom, rankRB; <k—1
for 1:im, j< N and (i) holds. Since une {mV,,-}.ml,\,iﬁ ¢, we sce that

LIS

(i) holds with a constant 1 depending only on ¢ and une{X}5,.

Now fix ¢ such that 1 =<4 =<n.

CLAIM 2. In the setting of (laim 1 there s a sequence of signs {ey}icn
such that 8; == > ey Ry satisfies

e

k|8, — Amyll 2= (2K2)~ 1.
Akt

In order to prove this claim let B; be the space of all operators R: X
— X fulfiling R == moRom, ie. the space of operators which actually
act in the space X, Clearly, dimB,; = k* We shall use Lemma 3.2 with

1t is seen from the trinngle inequality that R, — Am;ll = Byl — 121 - lw;l-
On the other hand, since rankR; <X k—1, there is a vector 2 e X; such
that el -~ 1, Ry = 0. Tlence wo obbain |[By;— Aml = 1B ya — Az = |4
Thus for each sealar 1 e B wo have

1By -~ Aow)) 2= 0@ {|Al, [ Byl — 21 ll[} = (1A lowgl) 1R -

Now Lemma 3.2 yields & sequence {g;};. of signs such that for every
scalar e R

8] .
H DRy dg
J=iN

Clearly, the operators T, ==

2 g (L )™ (QimB) 5 (276%)

D 8= X 3 eyRy no=1,..., have

[ tenn JxoN

the properbies required in Proposition A. m

The space X whose oxistence is dlatmod in Lroposition B iy not con-
ghruetod divoctly but with the use of o yymmetrization procedure in the
sotting of L, spaces, The following lenina shows that it will suffico it we
prove o weaker faed.

Lsn A 3.3, et {0, o, g1 be @ normalized basic sequonce in Jip,
Loz p o2, Suppose that the spaces Y, - span{yP, .., y®Y, w1, form
an aneonditional decomposition of X -« [ X )00, Then there ewists another
Dasic sequence {0, ., el dn L, which is o symmetric sequence of
Ie-tuples and Dhas the following property:
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There is & sequence {N )52, of sets of integers fulfilling max N; < minN,,,

for every j, and there is a sequence {a;}52, of veals such that the sequences
1 %) ;
w9, . ye, and

(1 N (R
{aj Eag ), 2 a )}j~1
€Ny €N} -

are equivalent bases.

Moreover, if {yP, ...,y satisfies (i) in Proposition B thew so
does (), ..., 2N .

The proof of Lemma 3.3 uses the inferpolation technique and the
results of H. P. Rosenthal [14] on subspaces of Ly, p > 2. We omit thig
proof, because it is an obvious modification of the proof of Lemma 4.3
in [9].

Proof of Proposition B. We shall define a basis {y{), ..., 5@~
of the space 1,1, which satisfies the assumption of Lemma 3.3. Let us
replace 1,1, by its isomorphic copy

Y=2®...02gl,0lL,0l,

where each Z") is a copy of Z = 1,®1, taken with the basis { Fi, gline
we described in Proposition 1.6.

The 4 s where n = (k- 2)m -+ JiJ = 0orj = —1, are by definition
the clements of the bases in the Z® s arranged as the following table
shows: '

i [ 1 ] 2 3 ] 4 ’ 5 ! e |k i
" /(2) (2 SN N C |
— (70+2)WL—1 * m gm) jv(/i) 1 ’ﬁ(?p e B
mo=(kH2)m | D] gR | T T T T

We pub y{, o, = gif) if % is an even integer while for odd¥, Y sy = g
One copy of I, is reserved just to fill up remaining spare places in the above
table.

Remaining veetors ave defined to be the consecutive standard bagis
vectors of 7, or I, namely, if n =i mod(k+2), 1 <4 < &, then y® iy taken
from 1, otherwise from 7,

Suppose now that 4 = {a,}, ;o is & matrix such that I, ig a bonded
f)pemtor. Comparing a typical vector y == Dy 1 ags 2 by, with its
image under T, s

Taly) = > ay ¥ ayyd

wl
Ne=g Jsk
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we see that ay = 0for j £ 8, 1< j =k In order to see that a,, = G, 541
we compare a typieal vector ‘

~
Yo 4\4 a,y (;‘;) "1' ﬂﬂ?/;f-!'}) .

)
with

\ 1.
Tyly) == 2_, gy an?/ff’ t tgir,011800 (75+ ).

el

"This gives tho desired result if s is an odd integer. If ¢ is even, one should
consider the sum over 5 == —1.

Now one can conclude the proof by applying Lemma 3.3, m

Proof of Proposgition 1.4, Let ¥ e X be a finite-dimensional
subspace. The conditions imposed on X allow us to choose a finite-dimen-
sional subspace I containing 7 which is the range of a projection Q: X—¥
of norm s 4. Tut % == 1/3 and choose operators T';: F->X such that
iy = Ty and v N

i

QU N o (eanke T) T| << (L -+ 1) L(X).
ﬁyj%awm.nb (L-m)l(X)

Tix an integor % such that o«(k)z A-+9"" A1, (X) and put A
= fit vank Ty <5 k) and B = {i| rankT; > k). Now, getting U == 3 T,
we have 1=l

U@l < (L4-7)1(X)A[a(k)]™ < 7.

Uence § = iy-TUQ is an isomorphism, |87 <(L—n)"%, and Slp

= 3T, Het I, = 8ol for i € 4. These operators form an uncondi-
PEN

tionul decomposition of the inclusion map i, and

o | ek <isimn | Yo

a8 Y osup || Y gya (rank 7)1
gt kﬁjél( AL

(L) (L) T (X) 2 2400 (X).
OF courso, vanl R, <5 & Tor 4 ¢ A, Thuy 9%, (X) 5 20,(X). w

4. Prool of Proposition 3.1. The proof is based on the renorming
technique analogous to that used in [2], Proposition 2.6, and on some
vesmlts of Pisior | 13] eoncerning unconditional structures in tensor products.
The renorming technique woe vofer to is an essence of the following lemma


GUEST


276 A Bovayszkowski

(here and throughout this section ¢, (X) stands for the cotype g constant
of a Banach space X).

Ieyvma 4.1, Suppose that U(X)< D< oo and C(X)<< oo, Fix
9o > - Then for amy B <= X, dimB << co there are & space V = [V}
and operators A: E~V, B: VX such that iy = BoA, dim7V, §Tl for
J=1..,N, mne{V;},cy =1, 14| IBISD and 0, (V)/JlI w/m’»; M
depmds cm 4, 9o and O (X) only.

In the proof of Lemma 4.1 we shall make use of the followmﬂ prOP-
osition due to Enflo, Lindenstrauss and Pisier [17.

PROPOSITION 4.2. There is a funciion Cp = Og(gy, goy C1) where 2 = ¢y
< g3<< o0 and 0 << oo such that if Y is a subspace of a Banach space 7 and
0, (X) < Oy 0(Z]Y) < 0y then 0, (Z) < Oy

Proof of Lemma 4.1. Fix a finite-dimensional subspace B of X and
choose a sequemce of operators T;: BH-+X, j = 1,..., N such that i,

Y‘Tj, rankT; <k and || ZszjI] D for any & = +1.

<N

Put V; =T;(B) < X ancl let V Dbe the linear space of all sequences
d = %}KN Where d;eV;forj=1,...,N. We define a norm ||-|; on ¥V by

Ialy = sup H chdj -

ap=ct1

The operators A: H—V, B: V—X are defined in a natural way,
ie. A(e) = {T;e};<y if ¢ € B and B(d) = Zol ifd = {dj}jgNe V. Clearly,

the definition yields me{V;}enw =1, ]]A(] D and |Bl <

Cram. V has a lower g-estimate with the constant CQ(X).

In order to see it consider any sequence of disjoint subsets A,
c{l...;N}Li=1,...,m. Let g: V-V be the operators defined by
2d = {xAz(j)d itien Whele 4 = {d;};«v €V and g, stands for the charac-
teristic function of the set 4,4 = 1,...,m. Fix ¥ = {U;}jen and write

¥ = > xy. Now, fix any sequence {FJ} jen Of signs and put

i<m

A = ey = (e, (D

TFor every sequence {v;};.,, of signs we have

[ Zfzezwu = 3 rﬂ/, < -
<m (n
Since X is of cotype ¢, we have
0@ X 1B ) < max ‘!Z vl | <,
1/’)11 i<

icm°®
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Taking supremum over all choices of {21},..,,, i.c. all choices of {¢};

we obtain
X Xyl

4T

<N
< [lly-

Since y and {4}, were arbitrary, our claim is proved.

Tt is well known that if a space Z with an unconditional bagis hag
a lower g-estimate, ¢ > 2, then, for every ¢, > ¢, % is of cotype ¢, (cf. [11],
p. 88). Using induction with respect to % one can extend the latter result
to spaces which have a k-dimensional unconditional cleoompogition.

Tor choose a subspace ¥ of V such that ¥ = [¥, ey, ¥y 7,
and, i dimVy = &, then 1 <dim¥; <k~1, j = 1,..., N. Then both
Y and V/Y have a (k—1)-dimensional unconditional deeomposmon and,
the induction works in view of Proposition 4.2, w

The following proposition is & special case of the results of Pisier [13].

ProrosreroN 4.3, Let X be o Banach space such that gl(X) < ~o and
Jor some ¢, Oy (X) < oo, Suppose that a double sequence {wy), ; of wectors in X

salisfies
| w3
o

Jor any finite matrim {ay};; of reals and any choice of signs, ef = 1, &
= d: 1. Lhen une{my}; ; < @ where @ depends only on ¢, 0 (X) and gl(X).
I’J'oot ()I hemma. 3.1.

A B ~>1/ I’ V%X constructecl in Lemma 4.1 fulfﬂb the 1eqmre1m,nts
of (iii) in 'lmmmm 3.1. In order to see this we fix » and choose a double se-
quence {v, 1}1, . of clemonts of Ly(V) such that o, e»,V,; for i< n, j << V.

o

This wmmmo iy contained in a subspace of L,(V) denoted by Ii (V)
and consisting of the functions which are constant on the dyadic intervals
of Iength 37, Tt i elear that

gHEs" (1) - and

K ume VY, = BF oy Wi "V ) = Cgp (V) = I

Tho double sequence {fv,,,,, o Tulfils the assumptions of Proposition 4.3,
wN

henee ane{oyl, ;= Q. This implies that une{r, V. }” ~¥ < @ and wo may see

that ¢ depends on &, g, ¢y and ¢, (X). Setting ¢ == “max {¢}, D} we sce that
the requirements of (iii) in Proposition 3.1 are fultilled.

(i) = (if). Tuot B < Rad(X) De a finite-dimensgional subspace. By the
standard perturbation argument it suffices to consider the case where
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F = Rad, n) (E) for some B < X and a positive integer n. Then the factor-
ization of iy gwen in. (iii) yields a factorization of iy, ip = Bod such that
J4)- []]3”uncJ,:V,,;V,}ij,\I < 0

<N

(ii) = (i). This implication is obvious. m
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On impudsive control with
long run average cost eriterion

by
UKABZ BTETTNER (Warszawn)

Abstract. Diserolo and eontinuons time fmpulsive eontrol probloms with long
runaverngo cosd eritevion wee considored. The paper gonoralizes the resulés obtained
by M. Robin in [#]. The mothods of the proofls are difterent from thosoe of [91.

Inteoduetion. Imnpulsive control, introduced first by Bengoussan
and. Lions in [1], is the one of the most applicable types of stochastic
control. This control consistis in shifting current states of a Markov process
(#,) to now random stabes &,4 = 1,2,..., at moment v;, respectively.
With each strabegy Vo= (7 &)y is associatod the long run average cost

Tunetional J (V) consisting of the “bolding eowt” f(») and “replacement

cost” K (wy, &) - (e(.'u,,t) d(&) por unit time

Jo(V) - limint (1 Y { [ 1( f () ds - Z Femelo(w) 1 (£}

it oo il

The studios of impulsive control problems with such functional were origi-
nabed by M. Robin in [9] for Markov processes having nice ergodic proper-
ties. This paper generalizes his results. We complete and extend his
results o Tellerian Markov processes with general state space H. In parti-
wlar, wo show that the value function is constant. and find optimal or
e=oplimal shratiegies. Weo also prove that the use of general stopping times
Ty gtead of those of the form 2, - .1 gy O, , a8 in the paper [9],
doey not ehange the optimal value of the Lunvtlmml

Wo start with the diserele time impulsive contirol, Thue to the spocial
form of the contreolled system wo oblain results more general and comploto
than thoge which follow from the existing theory of the long run averago
conby see |31 Naxh we consider condinuous timoe impulsive eontrol. Methods
of somo of the proofs ave similar fo the martingale ones introduced by
o Mandl in the context of adaptive control (4], [5]).

L. Diserete timo case. Lot 2 == BV be the spaco of all sequences with
values in 1, where (H, B) denotos a measurable state space. Suppose thatb
for any w ¢ Q, v, (@) = a@®) and L, = ofw,, m<sn}, T = F.

T - gindla Maih, 70.3
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