

(1736)

Finally, since $v \in L^1_{loo}\overline{v}(x)$ is finite a.e., then taking $w(x) = \overline{v}(x) + (1 + |x|)^{\alpha}$, with a > n(p-1), (2), (3) and (4) imply (i). We observe that for a < 2n(p-1) the weight w is smaller than that in Wo-Sang Young's paper.

Acknowledgement. It is a pleasure to thank Prof. R. L. Wheeden for introducing us to weight function problems and his generous support.

References

- [1] A. P. Calderón, Notes of the course "Análisis Real Avanzado" given at the University of Buenos Aires, 1979.
- [2] L. Carleson and P. Jones, Weighted norm inequalities and a theorem of Koosis, preprint.
- [3] C. Fefferm an and E. Stein, Some maximal inequalities, Amer. J. Math. 93 (1971), 107-115.
- [4] B. Muckenhoupt, Weighted norm inequalities for classical operators, Proc. of Symposia in Pure Math., vol. XXXV, part 1, 68-83.
- [5] J. L. Rubio de Francia, Boundedness of maximal functions and singular integrals in weighted L^p spaces, preprint.

DEPARTMENT OF MATHEMATICS, RUTGERS UNIVERSITY New Brunswick, New Jersey 08903

Received February 10, 1982

Equivalent Cauchy sequences and contractive fixed points in metric spaces

by

SOLOMON LEADER (New Brunswick, N.J.)

Abstract. The sequences $[x_i]$, $[y_i]$ in a metric space (X,d) are equivalent Cauchy sequences if and only if given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and a positive integer τ such that $d(x_{t+r}, y_{t+r}) < \varepsilon$ for all i, j with $d(x_t, y_t) < \varepsilon + \delta$. As a typical application let $f \colon X \to X$ with complete graph such that given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and an integer r with $d(f^*x, f^*y) < \varepsilon$ for all x, y with $d(x, y) < \varepsilon + \delta$. Then f has a unique fixed point w and $f^t x \to w$ as $i \to \infty$ for all x.

1. Introduction. Let (X,d) be a metric space, $f\colon X\to X$, and N be the natural numbers. We call w in X a contractive fixed point of f if fw=w and $f^i x\to w$ as $i\to\infty$ in N for all x in X. For the existence of a contractive fixed point it is necessary (and under certain mildly restrictive conditions, sufficient) that all orbits $[f^i x]$ be equivalent Cauchy sequences. Sequences $[x_i]$ and $[y_i]$ in X are called equivalent if $d(x_i,y_i)\to 0$ as $i\to\infty$. Equivalent Cauchy sequences converge to a common point in the completion of X.

Our basic contribution here (Theorem 1) is a characterization (EC) of equivalent Cauchy sequences. Application of (EC) to two identical sequences yields a refinement of the Cauchy convergence criterion (Corollary 1) with correspondingly refined estimates for $d(x_i, w)$ as $x_i \rightarrow w$ (Theorem 2). (EC) is applied to orbits for single and multivalued mappings to yield fixed points. Theorem 3 subsumes a body of fixed point theorems. In particular, it easily yields the theorems in [1], [2], [4] and Theorem 1.2 in [3].

The author is grateful to Richard T. Bumby for several useful discussions.

2. Sequences in metric spaces.

THEOREM 1. Two sequences $[x_i]$ and $[y_i]$ in a metric space (X, d) are equivalent-Gauchy if and only if

(EO) given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and r in N such that

(1)
$$d(x_{i+r}, y_{j+r}) < \varepsilon \quad \text{for all } i, j \text{ with } d(x_i, y_j) < \varepsilon + \delta.$$

Proof. Given (EC) define

(2)
$$d_k(n) = \operatorname{Max}[d(x_i, y_j): n \leqslant i, j \leqslant n + k].$$

LEMMA 1. For all k in N, $Inf[d_k(n): n \in N] = 0$.

Suppose $\operatorname{Inf}[d_k(n)\colon n\in N]=\varepsilon>0$ for some k. Apply (EC) to get δ , r so that (1) holds. Then choose n so that $d_k(n)<\varepsilon+\delta$. By (1) and (2) $d_k(n+r)<\varepsilon$ contradicting the definition of ε . So Lemma 1 holds.

LEMMA 2. Let ε , δ , r satisfy (1). In terms of (2) let n satisfy

(3)
$$d_r(n) < \min\{\varepsilon, \delta/2\}.$$

Then

(4)
$$d(x_i, y_j) < 3\varepsilon \quad \text{for all } i, j \geqslant n.$$

We contend that the assumption

(5)
$$d(x_{n+r}, y_i) \geqslant \varepsilon$$
 for some $j \geqslant n$

yields a contradiction. Take the smallest j satisfying (5). Then

(6)
$$d(x_{n+r}, y_i) < \varepsilon \quad \text{for} \quad n \le i < j.$$

By (2) and (3), j > n + r. So n < j - r < j. Hence (6) with i = j - r implies

$$d(x_{n+r}, y_{j-r}) < \varepsilon.$$

So $d(x_n, y_{j-r}) \leq d(x_n, y_n) + d(y_n, x_{n+r}) + d(x_{n+r}, y_{j-r}) < 2d_r(n) + \varepsilon < \delta + \varepsilon$ by (2), (3), (7). That is, $d(x_n, y_{j-r}) < \delta + \varepsilon$ which implies $d(x_{n+r}, y_j) < \varepsilon$ by (1), contradicting (5). So (5) is false. That is,

(8)
$$d(x_{n+r}, y_j) < \varepsilon \quad \text{for all } j \geqslant n.$$

Similarly,

(9)
$$d(x_i, y_{n+r}) < \varepsilon \quad \text{for all } i \geqslant n.$$

For $i, j \geqslant n$ we have $d(x_i, y_j) \leqslant d(x_i, y_{n+r}) + d(y_{n+r}, x_{n+r}) + d(x_{n+r}, y_j) < 3\varepsilon$ by (8), (9), which gives (4). So Lemma 2 holds.

Given s > 0 apply (EC) to get δ , r so that (1) holds. Lemma 1 gives n such that (3) holds. So Lemma 2 implies $[x_i]$ and $[y_i]$ are equivalent Cauchy sequences.

The converse, that equivalent Cauchy sequences satisfy (EO), is trivial with $\delta=\infty$. Indeed, in all the results of this section the case $\delta=\infty$ is the corresponding standard result.

COROLLARY 1 (Cauchy Sequences). A sequence $[x_t]$ in (X, d) is Cauchy if and only if given s > 0 there exist δ in $(0, \infty]$ and r in N such that

$$(10) d(x_{i+r}, x_{j+r}) < \varepsilon for all i, j with d(x_i, x_j) < \varepsilon + \delta.$$

Proof. Apply Theorem 1 with $y_i = x_i$.

COROLLARY 2 (Convergent Sequences). $x_i \rightarrow w$ in (X, d) as $i \rightarrow \infty$ if and only if given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and r in N such that

(11)
$$d(x_{i+r}, w) < \varepsilon \quad \text{for all i with } d(x_i, w) < \varepsilon + \delta.$$

Proof. Apply Theorem 1 with $y_i = w$.

COROLLARY 3 (Equivalent Sequences). $d(x_i, y_i) \rightarrow 0$ as $i \rightarrow \infty$ if and only if given e > 0 there exist δ in $(0, \infty]$ and r in N such that

(12)
$$d(x_{i+r}, y_{i+r}) < \varepsilon \quad \text{for all i with } d(x_i, y_i) < \varepsilon + \delta.$$

Proof. Apply Corollary 2 to the real sequence $[d(x_i, y_i)]$ converging to 0.

THEOREM 2. Let $x_i \rightarrow w$ in (X, d) and ε , δ , r satisfy (10). Then

(13)
$$d(x_{i+r}, w) \leqslant \varepsilon \quad \text{for all } i \text{ with } d(x_i, x_{i+r}) \leqslant \delta.$$

Proof. We get (13) by letting $k\to\infty$ in the following lemma. Lemma 3. Under (10) if $d(x_i, x_{i+r}) \leq \delta$, then

$$d(x_{i+r}, x_{i+kr}) < \varepsilon$$

for all k in N.

To prove the lemma we use induction on k. (14) is trivial for k=1. Given (14) for k=m let j=i+mr, so $d(x_{i+r},x_j)<\varepsilon$. Thus $d(x_i,x_j)\leqslant d(x_i,x_{i+r})+d(x_{i+r},x_j)<\delta+\varepsilon$. Applying (10) we get (14) with k=m+1.

3. Contractive fixed points.

THEOREM 3. Let (X, d) be a metric space and $f: X \rightarrow X$ with complete graph (i.e. closed in X^2 where Y is the completion of X). Then

- (i) f has a contractive fixed point if and only if given x, y in X and $\varepsilon > 0$ there exist δ in $(0, \infty]$ and r in N with $d(f^{i+r}x, f^{j+r}y) < \varepsilon$ for all i, j with $d(f^ix, f^jy) < \varepsilon + \delta$.
- (ii) f has a fixed point if and only if there exists x in X such that given c > 0 there exist δ in $(0, \infty]$ and r in N with

(15)
$$d(f^{l+r}x, f^{l+r}x) < \varepsilon \quad \text{for all } i, j \text{ with } d(f^{l}x, f^{j}x) < \varepsilon + \delta.$$

Moreover, if $f^i w \rightarrow w$ as $i \rightarrow \infty$ and ε , δ , r satisfy (15), then $d(f^{i+r} x, w) \le \varepsilon$ for all i with $d(f^i x, f^{i+r} x) \le \delta$.

Proof. The contraction condition in (i) is just (EC) in Theorem 1 applied to the f-orbits of x and y. The contraction condition in (ii) is the convergence criterion in Corollary 1 applied to the orbit of x. Now (x_i, x_{i+1}) is in the graph of f for any f-orbit $[x_i]$. Hence, since the graph is

(1673)

complete, a Cauchy orbit converges to a fixed point of f. The final statement in Theorem 3 follows from Theorem 2.

The next result is a trivial consequence of Theorem 3.

COROLLARY 4. Let (X, d) be a metric space and $f: X \rightarrow X$ with complete graph. Assume that given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and r in N such that

(16)
$$d(f^r x, f^r y) < \varepsilon \quad \text{for all } x, y \text{ with } d(x, y) < \varepsilon + \delta.$$

Then f has a contractive fixed point w in X. Moreover, if ε , δ , r satisfy (16), then $d(f^r x, w) \leqslant \varepsilon$ for all x with $d(x, f^r x) \leqslant \delta$.

The special case of Corollary 4 with r=1 gives the Meir-Keeler contraction theorem [4]. The essential novelty of Corollary 4 is that r may vary with s. Indeed, the case with r constant follows from the case with r=1 since a contractive fixed point of an iterate f^r is a contractive fixed point of f. (See Lemma 3 in [5].)

4. Fixed points for multifunctions. Theorem 1 can also be used to get fixed points for multivalued mappings. Our final result is an extension of Corollary 4 to multifunctions.

A multifunction F in X is a subset of X^2 . Let Fx be the set of all y with (x, y) in F. For r in N define F^r as follows: $(x, y) \in F^r$ if there exist x_0, x_1, \ldots, x_r with $x_0 = x$ and $x_r = y$ such that

$$(17) (x_{i-1}, x_i) \in \mathbb{F}$$

for $i=1,\ldots,r$. A sequence $[x_0,x_1,\ldots]$ is an *F-orbit* of x if $x_0=x$ and (17) holds for all i in N.

THEOREM 4. Let (X, d) be a metric space. Let F be a multifunction in X with complete graph such that Fx is nonempty for all x in X and given $\varepsilon > 0$ there exist δ in $(0, \infty]$ and r in N so that for all x, y, u, v in X

(18)
$$d(x, y) < \varepsilon + \delta, u \in F^r x, v \in F^r y \quad imply \quad d(u, v) < \varepsilon.$$

Then there exists a unique w in X to which all F-orbits converge. Moreover, Fw = w and if ε , δ , r satisfy (18), then

(19)
$$d(x, u) \leqslant \delta, u \in F^r x \quad imply \quad d(u, w) \leqslant \varepsilon.$$

Proof. Since Fx is nonempty, every point x is the initial point of some F-orbit. (18) gives (1) of Theorem 1 for all F-orbits $[x_i]$, $[y_i]$. So all F-orbits are equivalent Cauchy sequences by Theorem 1. Hence, by (17) and the completeness of F, all orbits converge to a common point w with (w, w) in F. So $w \in Fw$. We need only to show diam Fw = 0.

Now (18) applied with y=x implies diam $F^nx\leqslant \varepsilon$ for all x. Since w is in Fw, Fw is contained in F^nw for all n in N. Hence, diam $Fw\leqslant \varepsilon$ for all $\varepsilon>0$. So diam Fw=0.

Finally, (19) follows from Theorem 2.

References

- [1] M. Hegedüs, T. Szilágyi, Equivalent conditions and a new fixed point theorem in the theory of contractive mappings, Math. Japon. 25 (1980), 147-157.
- [2] S. Kasahara, A fixed point theorem of Metr-Keeler type, Math. Sem. Notes Kobe Univ. 8 (1980), 131-135.
- [3] J. Matkowski, Integrable solutions of functional equations, Diss. Math. 127 (1975).
- [4] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Anal. Appl. 28 (1969), 326-329.
- [5] W. Walter, Remarks on a paper by F. Browder about contraction, Nonlinear Anal. 5 (1981), 21-25.

RUTGERS UNIVERSITY New Brunswick, N. J. 08903

Received March 4, 1981
Revised version March 2, 1982