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Finally, sinee v e I} # () is finite a.e., then taking w(s) = B (@) 1.+ ),

with a> n(p—1),(2), (3) and (4) imply (i). We observe that for a << 2n(p—1)

the weight w is smaller than that in 'Wo-Sang Young’s paper.
Acknowledgement. It is a pleasure to thank Prof. R. L. Wheeden
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Equivalent Cauchy sequences and contractive fixed points
in metric spaces

by

SOLOMON LEADER (New Brunswick, N.J.)

Abgieact. The sequences [«;], [9;] in & metric spaco (X, d) are equivalent Cauchy
soguences it and only if given e = 0 there exist 6 in (0, o] and o positive integer »
sueh thab d(®e.p, 91400 < e fov all 4, § with d (@, y5) < e-- 6. As a typical application
lot f: XX with complete graph such that given & > 0 there exist & in (0, c0] and an
integer 7 with d(f*s, fy) < e for all @,y with d(x, y) < s+ J. Then f has a unique
fixed point w and fla—>w ug i oo for all x.

1. Introduction. Let (X, d) be a metric space, f: X— X, and N be the
natural numbers. We eall w in X a contractive fiwed point of f it fw = w and
flo —w ay ¢ > co in N for all # in X, FPor the existence of a contractive
fixed point it is necessary (and under certain mildly restrictive conditions,
sufficient) that all orbits [f%#] be equivalent Cauchy sequences. Sequences
[, ] and [y,]in A7 ave called equivalent it d(wy, y;) — 0 a8 4 —co. BEquivalent
Cauchy sequences converge to a common point in the completion of X.

Our basie contribution here (Theorem 1) is a characterization (EC)
of equivalent Caunchy sequences. Application of (BC) to two idemtical
sequences yields o refinement of the Caunchy convergence criterion (Corol-
lary 1) with corvespondingly refined estimates for d(w;, w) as a—>w
(Theorem 2). (BO) is applied to orbits for single and multivalued mappings
to yield fixed points. Theorem 8 subsumes a body of tixed point theorems.
In particular, it casily yields the theorems in [1], [2], [4] and Theorem 1.2
in [3].

The anthor iy grateful to Richard T, Bumby for several useful dis-
CUsKioNs,

2. Sequences in metric spaces.

Toworun Lo Two sequences [w;] and [y, in o melwic space (X, d) are
equivalent-Canely if and only if

(BOY) given e = O there exist d in (0, o] and r dn N such that
(1)

AWy Yyup) < & for alb 4, j with d(x,, y;) < e--0.
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Proof. Given (EC) define
{2) dy(n) = Max[d(x;, y;): n<i,j<n+k].
LeEMMA 1. For oll k& in N, Inf[d,(n): n e N] = 0.
Suppose Inf[d,(n): n e N] == ¢> 0 for some k. Apply (EC) to get

4,7 50 that (1) holds. Then choose n o that dy(n) < e--6. By (1) and (2)
d,h (n-+1r) < e contradicting the definition of e. So Lemma 1 holds,

Lvwa 2. Let ¢, 8, v satisfy (1). In terms of (2) let n salisfy

(3) d,(m) < Min {e, 6/2}.
Then
(4) @y, )< 3¢ for all i,§=n

‘We contend that the agsumption
(5) W Byppy 45) = e for some jzn
'yields a contradiction. Take the smallegt j satisfying (5). Then
(6) A @y ¥) < e for m<i<j.
By (2) and (3), § > n-+r. 80 n< j —¢ < §. Hence (6) with ¢ = J—r implics

(7) d(wn—[-w yj—r) <e.

So d(ﬂ}”, 7/;_,«) < d(wu) yn) —I"d(yﬂﬂ mﬂ,—w) +d(mn+r7 yj-—r) < 2dr(’”’) "l" &< 6’['5
by (2), (3), (7). That is, d(,, ¥;-) < 6-+& which implies d(w,,,, ¥;) <&
by (1), contradicting (5). So (5) is false. That is,

(8) W @pyry ) <& forall j=a
Similarly,
(9) Ay Ypp) <& for all izm.

For i:j = we have d(wi; ?/j) < d(ww Yntr) ‘['d(yn-l-w mm—l-r) ’I‘d(mn-!-w %‘)
< 3e by (8), (9), which gives (4). So Lemma 2 holds. -

Given &> 0 apply (BO) to get §, » so that (1) holds. Temma 1 gives
% fuch that (3) holds. So Lemma 2 dwplies [iw,] and [9,] ave cquivalont
Cauchy sequences.

The converse, that equivalent Oanchy sequences satisfy (1B0), is
trivial with § == co. Indeed, in all the vesults of this seetion the caso 8 = oo
is the corresponding standavd regult.

CororrAry 1 (Cauchy Sequences). A sequence |/} in (X, d) is Cauchy
if and only if given & > 0 there exisi § in (0, o] and r in N such that

(10) U Wiiry Biag) <& for oll 4,5 with d(m;, 2,) < e-+0.
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Proof. Apply Theorem 1 with y; = ;.
ConormArY 2 (Convergent Sequences). @—w in (X, d) as 400 if

and only if given & = 0 theve ewist 8 in (0, o] and 7 in N such that
(1) Ay w) < e for all ¢ with d(z;, w)<< s+ 5.

Proof. Apply Theorem 1 with y, = w.

CororrAryY 3 (Bquivalent Sequences). d{w, y,)->0 as oo if and only
if given e2>0 there ewist 6 in (0, ool and r in N such that

(12) A(@ypey Ypyn) <& for all 4 with (s, y,) < e-- 6.

Proof. Apply Oorollary 2 to the real sequenee [d(m;, ¥,)] converging
to 0,

Trwormm 2. Jeb my~w in (X, d) and e, 8, r satisfy (10). Then

(13) Mgy w) < e for all i with d(w,;, ;) < 6.

Proot. Wo get (13) by letting k—oo in the following lemma.
LoammA 3. Under (10) if d(w,, 2,,,) < 6, then

(14) (g Bpype) < &
Jor all T in N.
To prove the letnma we use induetion on k. (14) is trivial for & = 1.
Given (14) for & =:m let j = itmp, 80 d(a,,,0) <e Thus d(z;, o)
K Ay, Wpgp) - AWy, 1)) < -4 6. Applying (10) we get (14) with kb = m 1.

3. Conwractive fixed points.

Tinorem 3. Let (X, d) be o metric space and f: X— X with complete
graph (i.c. closed in Y2 where Y is the completion of X)), Then

(i) f has o contractive fimed point if and only if given z, y in X and ¢ > 0
there ewist 8 in (0, o] and r in N with d(f""" @, f17y) < ¢ for all 4, j with
A(flw, F) < e} 6.

(ii) f has a fiwved point if and only if there evists @ in X such that given
&> 0 there carist 6 im (0, oo and » dn N wilh

(1) A, V0 e for ol §owith A(fa, Pao) < e 6

Morveover, ¢f fiw-s0 as i->c0 and &, 8, v satisfy (IB), then d(f™" @, w)
e for all 4 with d(ffm, f7a) = 6.

Proof., The contraction condition in (i) is just (JO) in Theorem L
applied to the f-orbits of @ and y. The contraction condition in (ii) is
the convergenee eriterion in Corollary 1 applied to the orbit of 2. Now
(20, ;1) B8 in thoe graph of f for any f-orbit [2;]. Henee, since the graph is

§ — Studia Math. 76 1
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complete, a Cauchy orbit converges to a fixed point of f. The final state- References
ment in Theorem 3 follows from Theorem 2. L Syilisvi Touivad aii i fized point 4
¢ next result is a trivial consequence of Theorem 3. [1] M. Hegediis, T. 8zildgyi, Bouivalent conditions and @ new fized point theorem
The next result I8 o trivial naeqr ‘Il ) » . in the theory of contractive mappings, Math. Japon. 25 (1980), 147-157.
COROLLARY 4. Let (X, d) be a metric space and f: XX with complete [2] 8. Kasahara, A fived point theorem of Meir-Keeler type, Math. Sem. Notes
graph. Assume that given & > 0 there ewist 8 im (0, o] and v in N such that Kobe Univ. 8 (1980), 131-135.
) . : [3] J.Matkowski, Integrable solutions of functional equations, Diss. Math. 127 (1975).
(16) a(fro, fry)<e for oll w,y with d(z,y)< e+ 9. [4] A. Meir, E. Keeler, A theorem on contraction mappings, J. Math. Aunal. Appl. 28
o . , ) . (1969), 326-329.
Then f has a contractive fimed point w in X. Moreover, if &, 8,7 saiisfy [6] W. Walter, Remarls on « paper by I'. Browder about contraoction, Nonlinear
(16), then d(f"z, w) < e for all  with d(z, o) < §. Anal. 5 (1981), 21-25.
The special dase of Corvollary 4 with » = 1 gives the Meiv-Kuecler
ntpaction § | i v of () - : ) RUPGERE UNLVICHSITY
contraction theorem [4]. The essential novelty of Corollary 4 is that Now Bronswick, N. J. 08603

may vary with e. Indeed, the ease with r congtant follows from the caso
with 7 = 1 since a contractive fixed point of an iterate f* is & contractive
fixed point of f. (Sec Lemma 3 in [5].) Received Mareh 4, 1981 (1673)

" . . . Revised version March 2, 1982
4. Fixed points for multifunetions. Theorem 1 can also be used to gob ’

fixed points for multivalued mappings. Our final result is an extensgion
of Corollary 4 to multifunetions. :

A mulbifunetion F' in X is a subset of X% Liet Bz be the set of all g with
(z,y) in F. For v in N detine F™ as follows: (@, y) e " if there oxish
Boy yy «ovy B With @y = @ and @, = ¥ such that

(17 (#-1, @) € T

for ¢ =1, ...,r. A sequence [#y, @y, ...] is an F-orbit of @ if @y == o and
(17) holds for all 4 in WV.

THEOREM 4. Let (X, d) be o metric space. Let B be o multifunction in
X with complete graph such that Fx is nonempty for all # in X and given
&> 0 there ewist 6 in (0, co] and v in NV so that for oll o, y, U, v in X

(18) dw,)<et+d,ueFuvely imply du,v)<e.

Then there ewisis a unique w in X fo which all F-orbils eonvorge. Moreover,
Tw =w and if e, 8, r satisfy (18), then

(1.9) dz,u) < S, welas  imply dlu, w) < e.

Proof. Since P iy nonompty, every point 2 is the initial point of some
F-orhit. (18) gives (1) of Theorem 1 for all F-orbits w1y [yl So all J-orbita
are cquivalent Cauchy sequences by Theorem 1. Itenee, by (17) and the
completeness of 7, all orbits converge to & common point w with (w0, w)
in 7. 80 w e Fw. We need only to show dinm T = 0.

Now (18) applicd with ¢ = @ implies diamF 2 <2 & for all . Since
w is in Fw, Fw is contained in Fw for all # in V. Henee, diamFw < ¢
for all & > 0. So diamFw == 0,

Finally, (19) follows from Theorem 2.
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