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Bounded variation and invariant measures

by
MAREK RYCHLIK (Warszawa)

Abstract. In this paper we study the existence and propertics of invariant
measures absolutely continuous with respect to the Lebesgue measure for piecewise con-
tinuous expanding maps of an interval with finitely or infinitely many pieces of mono-
tonicity. The teehnique of hounded variation is used. The Bernoulli property and some
limit theorems are proved for resulting dynamiocal systems.

Introduction. We study the existence and ergodic properties of in-
variant meagures for various maps. The Bernoulli property and the cen-
tral limit theorem are also discussed. Our formalism is similar to that
of Hofbauer and XKeller [1]. Our paper allows us to extend the results
of [1], so that the maps with infinitely many pieces of monotonicity are
included in the general theory, in particular, the maps considered by Wal-
ters [2].

The way we have chosen is different from that of Hofbauer and Keller.
Their method relies on the theorem of Tulcea-Romaneseu and Marinescu.
Instead of that we apply the uniform ergodic theory. Of course, slightly
modifying our method we can follow [1]. On the other hand, key estima-
tions in their paper cannot be used in our case. Besides, we present simplified
proofs of many facts, in particular the Bernoulli property and limit the-
oremg. We have also explained the cyclie structure of the Perron—Fro-
benjus operator.

Our referenee list is not complete. The reader can find a lot of litera~
ture in [1].

§1. Let X be a totally orderved ovder-completo set. Open intervalg
constitute a base of o compaet topology in X, making X into a topologieal
gpace. TE AT 08 separable, then X is homeomorphie with a closed subset
of an interval, By # we denote the o-algebra of all Borel subsets of X.
We fix w regular, Borel probabilistic measure m on AL

Three functional spaces will appear below. Two of them ave well
known: T, (m) and Ly(m). We otten write L, and I,. Normg in these
gpaces axe denoted by [+, and [ [l;, respectively, Given f: X— R wo
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define variation of f on a subset 0 = X:

1) Varf = sup {3 If(6) ~flor-)l

=1
where the supremum is over all SCQUENEOS (Bg, <.y By)y Loy -eey By €C
and z, < 2y <'v.. < @, In place of Varyf we write Varf.
Let
(2) BV = {feL,: f hag a version of bounded variation}.
BV is a Banach space with the norm ‘
(3) Il = max(|[fll, inf{Vaxf: f is a version of f}).

Remark 1. Bvery feBV has a version f with minimal variution.
This holds iff for every o, e X :
(4) f@o) e[ lim f, lim f].

w-rig(—)  a-a()

Onc-sided limits always exist for f. If we do not talk about versions of
of f explicitly, we assume that we have chosen & version satisfying (4).
‘We notice that Vm‘f does not depend on the choice of f with this property.

Let T: U-X be a continuous map, U < X is open and dense, and
m(U) = 1. Let § = X\U. We agsume thab: '

There exists a countable family g of closed intervals with disjoint
interiors such that (g = U and for any B e p the set BN consists exactly
of the endpoints of B.

For any B ef, T~y admits an extension to a homeomorphisim of
B with some interval in X.

A function g: X—-R, is given, Jgl,<1, Varg< 4-oco, glg = 0
and the operator P: I,—L, defined by

(5) Pf@) = 3 gy
el = Y(z)

All subsets of X that occur below are measurable.
Remark 2. P is the Perron-Frobenius operator Lor T
The proof of this fact will he divided into steps (a), () and (),
(a) T 48 non-singular.
Proof. Yor any f,hel, sueh that f-hely, P(fol-h) « fLh
Weput f =y, A < X, and b = y,, Bep So
m(TPANB) = (140T5y) =m (1')(2,4 o —T'%J;)) =2 (g Py)
< m(4NTB) .,
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since Pyp o gp = 0 and [Pyl < 9l - Thus, m(4) = 0 implics
m(TA)< ' m(TANB) = 0.m
(L) g #0 a.c. e
Proof. m(g"‘(O)) = m(I’x”_m,)) =0, Dbecause P(xy_1(o)) = 0.

(e) Put J = 1[g where it ewists. Then J is the Jacobian of T'.
Proof. For every Bepand A = X:

M(LBOA) == my 4P (g, d)) == m(P(x, oy d)) = m(g,0T gy d)
= f J dm

~1nR
sinee P(ypd) == gpn a0, W
We are going to check that iterations of 7 satisfy our conditions.
For onr purposes, a partition will mean a countable family of closed inter-
valy such that cach two of them ean have only an endpoint in common

and exhausting X up to a set of meagure 0. o £ is & partition.
N—1

Put Sy = () T7%(8) and Uy = X\ Gy for N > 1. T¥ is well defined

Joms ()
] N1
on Uy. Denote by Y = \/ T-%(8) the family of all sets of the form

Joma0)
Byn T Byn ..nT~W-URB, .\, where By, ..., By_, &f.
Lismwa 1. For every f € BV

(6) Var(f-g) = EVurB(ﬁg).
DBep

Troof. This is an casy consequence of the fact that g is a partition and

glg=0. M
N We  define i by gyl = 0 and Inloy == ggol c goTNTL Wo

will see that I%, Uy, 8y, gy, B satisfy owr” conditions for ¥ > 1. The
only non-trivial thing to verify is Vargy < - co. But this is a consequence
of the following lemma:

TamMA 2. Vargy = 2V (Var )V, ¥ 3 1.

Proof. Case N == L is obvious. I it ix true for some N 31, then by
Liemua 1z

el
But:

Vary (gyo X' g) % lgwlkeVarpg Vo, gauo Iy 2ple

& Vargy Vargg |-V gy Vaty, g = 2Varg,Vargg.
B0 Vargy,, < 2VargyVarg. |
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COROLLARY 1. If we replace the hypothesis gl <1 by lgyle <1
for some N =1, then TV satisfies our conditions.

Remark 3. We will see later that

(" sup Vargy < oo
N

Lemva 3. For every BepN, N =1

(8) m(B) < [yl < 91

COROLLARY 2. Let € be a closed interval and assume that for every
N =1 there ewisis B e Y such that B = 0. Then m(0) = 0. So m has no
atoms. Moreover, collapsing all manimal closed intervals of measure 0, we com
assume that B is a generator.

(We do it from now on.)

LevvA 4. For every f e BV,

(9) D VarP(f-zz) = Var(f-g)-
Bep
~ Proot. We notice that P(f xz) 0 Ty = ¢ x5 S0 wo have Vax L (f: x5)
== Varg(f-g-xp) = Vargy(f-¢g) and we apply Lemma 1. W
LeMMA 5. Let a be a finite partition. Then

(10) ar(fg) < AVarf--D 2 ‘ ffd'rn’

Aeu A

where D = maxVar g/m(4) and A = |g|,+maxVar,g.

Aea Aea
Proof. We have Var  (f-¢) < Var f « [¢lleo -+ I[f 2l Var g and [If gl
< Ljm(A)| [fdm|+Vazx,f. Sinee Var(f-g) Zle_,L f-g), we get (10). W
pel

e

.LEMMA 6. FPor every ¢ > 0 there exists a partition o which is finile and

(11) ]n.l\Vd] Y [/ S

Proof. Jumps of ¢ do not exceed [|gll. Thus, for every w e X and
some interyal containing w, Vawy g << lglle e Taking « finer than tho
cover {U,},.x woe obtain (11). B

COROLLARY 3. o every N = 1 and A 2> 2|yl there ewists 1) 7 O such
that for every feBV:

(12) VarPVf < 3 VarPY(f ) < AVarf 1 D [fl.

BepN
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Proof. We notice that PVf = Z‘P‘V (f 25)- We also have 37| f fam|

Adea A
< |Ifllx- So Lemmas 4, 5 and 6 give Corolla,ly 3. H

Sinee the sequence (|lgyll,)R.., is submultiplicative, the limit Hm (gAY
= ¢ exisby. N—roo

PRrROPOSIIION 1. Given x € (2, 1) we can find F = 0 such that for every
feBY,

(13) 3 VP (fo) < Pl Vo)

Beft
Jor m = 1,2, ..,
Proof., Tirst we fix &, 121, We will prove the following lemma:
LavmvA 7. Let A, 4 and Dy, D, be such that (12) holds with N =k
and N == 1, respectively, if one replaces A by A, A and D by Dy, D, re-
wootwelnj Then (12) holds with N = k-0 and A == Jyd ond D = Dy 4,D,.
Proof. We notice that for every B, e f* and B, € §:

(14) PHyp Py, ) = Pz f),

where B == I"'B,NB, & f*™. We use (12) for P!(f-gp,) instead of f:

(15) 2 VarP* H(XBZnJ""Hl < AIGV"]JTPL(XBB'f) ”I‘chnlﬂ(lnz'f)“v

Tyepk
We sce that [P (g, f) ]]1(f|f|dm Since if B; runs through f* and

B, runs through A, then BgnT" B, runs through p*+, we have

(16) E VarPe () <y, Z VarP (35, f)+Dyllflh
Bepli-+l Byet

< Ay (A Varf -+ D, [flla) -+ Dy | Fll
= A A Vary - (Dy -t 4 D) | flly.

So, we proved the lemma. M

Now wo fix M sach that x> (20457, We put A, = »". 'Wo also
fix some 4, and Dy sueh (hat (12) holds with A == 4, and D == D, for
N o1, 8,0, ML For any given o we can find &, 1 saceh that o = - -1
and O« el Moo Boe k vz Lweput Dy, v Dy b Agp Dygr ond Ay == Apg Ay
S0, by induetion argumaent we see that for every N 21 and fe BV (12)
holds with Dy, 1y instead of D and A. On the other hand,

(17) Ayt A Aol eny Dy < Dy (Lot Qg oo 12570
Waoput J0 = max (Dy/ (1~ Ag), 0/;»cw‘) Tt ix easy to see that (13) holds. M
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COROLLARY 4. For every N = L and f € BV,
(18) P )l < @F 1) [
Bep

Therefore, if P is meant as an operator on BV, then

(19) sup [PV] < 2F +1.
N

Proof. For terms P¥(f ) with the property

VarPN(f yz) > [PY(F- 25)lls
we use (18). Other terms give at most [[fl, < [fl. W
Luvva 8. For any f € BY and a finite partition a,

(20) ‘ Var®,(f|a) < Varf,

where B, (f|a) is the conditional expectation of f with respect to a. M

PrOPOSITION 2, There ewist N =1 and a findle-dimensional operaior
K on BV such that |PY —K| < 1. 5

Proof. We choose N and a partition o« such that Lemma 5 holds
for g with some 4 < 1/2. Let Bf = B,,(f|a) for ecvery fe BV and K = PV B,
We will prove that this choice is good.

Let us fix feBV and take h = f—H,,(fla) = (I~H)f. For cvery
Adea, thdm =0, 50 VarPVh < AVarh < 24Varf (Lemma 8) and [PV A,

P

< [, =B§NB{ |hldm. We sce that [hyple < 21f x5l < 2Varyf and
m(B) < lgylle < 4 for B e Y, so I[PV Al < 22)f. So [PYVR| < 241fl. We
recall that 21 < 1. W .

§ 2. In this section we give a description of somo spectral propertios
of P.

TewoREM 1. If P is meant as operalor on BV, then:

(a) o (P)NS* consists of a finite number of simple poles of the resolvent
of P. Moreover, o(P)NS' is a union of full eyclic groups.

(b) Other poinis of o(P) are contained within a cirdle of radius r & (0, 1).

(€) If o(P)NB" = { &, ..., &}, we denote by @y the projector on the
corresponding eigenspace, § =1, ..., L; then I’ admils the reprosemiation

X
P = A\J 5}@;‘["“7
Fuml

where B: BV—BV and o(R) = in’:f{l.li’,f"n""N< 7o Operators Quy ooy Qpy I
commute and, moreover, Q,Q; =0 Afor t g and QI = RQ, =0 for ,j
=1,2,..., L
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Proof. All these faets are implied by Proposition 2 and (19), by
using the uniform ergodic theorem (see [3]), except for the possibility
to represent o(P)NST ag a union of full eyelic groups. It is a consequence
of the theory of positive operators (see [4]). We would like to quote one
theorem which refers to our situation.

Let ¥ Do a Banach lattice. We assume that the absolute value on
¥ wllows an extension on the complexification of ¥. Let U: Y-»Y be
w positive operator such that there existy a strictly positive functional on
Y which is an eigenvoetor of U™ pertaining the cigenvalue o(U). Then
ihe peripheral point speetrum of U is cyclic (£eap(U), & = o(U)
= F(ENEIN" @ op(U), m ==1,2,,..).

Tuworsm 2. Operators Gy, ..., Qp, B have unique emtensions to oper-
ators on Ly, Moreover, Q;(1,) = BV and Q; is bounded as an operator from
T to BV, Qi 51, § =1, ..., L, and sup ||[R¥||; < --oco. For every f e L,
Tm RN e 0. N

N-»00

Irroof. We notice that for § =1, ..., L and & e §*

‘ N1

L 0 as  E¢{&, ..., &),
21 1im - PIEF =
() 2o ¥ /‘%f o Q s £=§,

wlhere the convergence is in BV, But |[P/£], =1, so @; can be defined
on Iy by (29), beeanse BY is dense in Ty, and the extension is unique.
Using Lemma § and Corollary B we casily prove other points.

Now wo are ready to analyse the situation when o(P)nS* consists
of 1 only. This allows us to deseribe the cigenvalues of P in the general
©ase.

Lt P = QR be the decomposition from Theorem 1. By fiaf, we
denote min(fy, fo). We write If instead of foT.

TinoREM 3. There ewist monnegative functions @y, ..., g, € BV and
Py vony Wy &L, sUCh that:

() Jor every f e iy,

8

>

-

(22) QO == > m(yf)gy.

(B) s = guy T == s Jor & =1,y 5

(©) mlpp) = Sy, way =0 =q@ag; as @ %j; mp) =1 for
1

(

G Ly, 8
d) Lheve eaist measurable sots Oy, ...y Oy = X such that vy, = yo, o.c.
8
Jor & w1, 0,8 and A = \J O aee.

qem]
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oo o0
(8) () TN(Ly) = () TV (L) = {yy, -, psp (vector space spammed by
N=1 N=1

Yoy ooy Yg)o
() For every felLy,, TVf—+Q*f in o(Ly, BV)-lopology as N-»+ oo,
Similarly, for every f € Lo, TVf—@Q*f in o(Ly, Iy)-topology and

o'f 212”1 m(gefi,

Proof. @ is a positive operator by (21). Let Z = #(Q) == ker (I —P).
Then Z is a Banach sublattice of BV and I,. Indeed, let f,, fo € Z. Then
QUfirfy) < QFLAQfs = S fo- But @ preserves m and wo have m(@( FinJ2))
=m(finfa). S0 Q(fainfy) = finfs a.e.

Let 4= {peZ: m(p) =1 and ¢ = 0}. We notice that if ¢, ¢
are two digtinet extreme points of 4, then pag’ = 0. So extreme points
of A are linearly independent and there is only a finite number of them.
We denote them by g¢q, ..., . Hence s dimZ. On the other hand,
s> dimZ, since @y, ..., ¢, span A, by the Krein-Millman theorem, and
4 spans Z, because 4 = Q({feLy: fz=0 and m(f) = 1}). So § = dimZ.
For every feZ,

(23) f=2 oo

where (@f)..; it the basis dual to ()5, . So for every f e Iy,

(24) Qf = X ol @hge = D m(Pesy
7 7
where u; = @*¢} is a positive functional on I,. As such, x; can bo repre-
sented as
(25) wi(f) = mlpf), fel,

Where @y, ..y ¥ € L. We obtained (a). We notice that P* = 7. Using
PQf = Qf = QPf = X m(p,Pf)p;, wo infor that m (P yyf) = m(p,Lf)
3

= m(yf) for every fely and ¢ == 1, ..., 8. 8o P*(y;) ==y, = Top,.
Now we use @ = Q. Wo have I m{ypf)p; = QF = Q*F == Q{3 m(y,S)py)
i i

= 3 m (o) mpf) . Thiv gives m(pey) = 0y Now we choek (1), T6 ds
A
casy to seo that m(QF h) == m(f Q" h) = 3 m(p)m(ph) and (£) follows by
i
m{TVF-0) == m(FPYh)=m(f-QR) = m(@Q*fh) ag N>} oo
‘We notice that 1’“’:}?1—»;}] m @)y = () w, i oLy, Ty)-topology

J
a8 N—>oo, i =1, ..., 8 We also have (for i # ) yn TV = (p;a )oY
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=0, N =1,2,... We get 0 =m(y,Tp)»m(pp)m(gl) as N—>oco.
Since m(pf) > 0, m(p;9) = 0 for i # j. So, p; A w; = 0fori # 4.

‘We completed. (a), (b), (¢) and (f).

Since TL == 1, 50 @*1 = 1 and

(26) = Dy

Pmal

This gives (d).
[
Lot b c—:Ip1 T¥(L.). We choose & sequenece iy € Ly, such that b = hyo TV

and I]/I/NHMﬁ il . Since (Q*hy)R.; is bounded in {Puy weey Popy, WO cCAD
choose a subsequence Ny, -»oco guch that @* hy,~hy a8 b—>oc0. We will see
thati b = Ry a.c. In fact, for every f e Iy,

(27) m(f+h) = m(f Ty, 0"%) = m (P *f Dy, )
= m{(P™* = Q)f g, -+ m(QF Ty,

Since the fiest term tends to 0 and m(Qf hy,) = m(f -Q*hNk), we obtain
m(frh) = m(f-he) for every f. 8o, b =hy a.e. and ke {py, ..., 9,>. By
approximation argument,

o

A TN e N
z\Q1T (L) MNﬂ T7(Ly). W

Nwal

o0
COROLLARY 5. Lot Bo= (Y TN(H). Then & is generated by decom-
N0
position (Cy, ..., C,). The eigenspace of T for the eigenvalue 1 is exactly

Pay oney Yoo
o0
Proof. () T¥(Ly,) = {fe Ly: f is B -measurable}. M
Neal
[ Remark 4. (a) py, ..., p, debermine extremo rays of the positive
cone in Q). .

(b) Dynamieal systems (T, %), where T, = T, and w = @;m,
€1, 8 are exact and v is the only invariant measure for 7' absolutely
continuous with respect o g, -

Trenonmne 4. Let ' bo as in §1. Fin some M verifying o (P¥)n8* = {1}.
J)vr( Pas ovny Pur Yo = Koy oy Yo 5 Ao, D6 construicted by Theorem 3 appliod
to M. Them thove crists o permutation m of the set {1, ..., s} such that

(28) [ Loy v pay, Dipoggy ==y Jor i ==1,..,8.

Lt Ty, ...y I, Do the lengths of the independent eycles of =, Then
()Nl dx o union of cyelic groups of ranks Iy, ..., 4. Let Te {l, ..., Ly


GUEST


78 M. Ryehlik

and & = 1. The cigenspace for £ is generated by funetions

-1 -1
I I A
(29) _Z—Z\.J EFPrp = "‘;\J E sy
k=0 k=0

where ¢ Delongs to some eycle of length 1. Similarly, the cigenfunctions
for T are given by
-1
1 .’ " .
(30) -6—4}.4 by b=y, 8

Tes0)
Remark 5. It is easy to prove thab
(31) s Carda,
where a is chosen as in Proposition 2.

§ 3. We are going to diseuss in detail the Bernoulli property for the
systems (T, %) (see Remark 4(b)). The restriction te such dynamical systems
is equivalent to the assumption that 1 is the only eigenvalue of P on the
unit eircle and there exists only one ¢ & Ly, Pp == ¢ and m(p) = 1 (p = 0).
The system (T, p), where y = ¢m, is exaet hy §2.

Let us introduce the following notation. Given partitions &, £, we
define

(32) AE O = Y 1p(AnB)—p(4)u(B)]
Aek, Bet '

m SUNY (A (B — W (B).

ﬁﬁm(um w(A) p(B)

By the Ornstein theory [6], the Bemoulli property ix implied by
(33) supd(ft, it -0 as  m->oco.
=1 )
We denote by ?”Fﬁ% (0 < 4y <ty -k oo) the c-algebra gencrated by the
2
partition gz = V I7%(f). Let

temiy

(34) b(n) = sup H,( sup |u(d|1F) —p(A)]).
t

=33 &P
Jle‘ﬁt'}_n

Let us notice that 2b(n) is equal to the left-hand side of (38) (ef. [1])-

So, we want to prove b(n)-»0 a8 n-—>oo.
TrmoreEM 5. There ewist K = 0 and r & (0, 1) such that

(35) by < Kv”, n=1,2,...

©
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Proof. Take A e, ¢,n>1. There exists 4 eFP — @ such
that A = T~ 4, We have

- w_w_l_._. g 1 " .
AT =~ Aj xapdm = mj{ P (9)dm

T
P2

on B ep. Of course, p(d) = ul{d) = [ pdm. This gives
1
(86) (4176 ) — () < J 1P ) 10 (B) — ol G
A

< NP () [1(B) =gl
This implies ‘

(87) bm) < sup 3P (rpg) —p(B)gl,  for a1
[ i
But

2™ () — (B glly == || P™ (P (50) —u(B)g|l,
< Ko™ (1P () |+ 1 (B) gl
by Theorem 1 (¢) since in owr case o(P)nS = {1} and, by Theorem 2.

the projection of P(y,e) on the cigenspaee equals m(P(x30) ¢ =p(B)e

” . ’ 4
Using Gorollary 4 we obtain

(38) b(n) =5 Ko™ (Zt 12 ()l Wn) I, (27 4-2) g™
Hiep .
Bo, we ean put K == K, (28--2) gl &

CoROLLARY G. The natural cxlension of the dynamical system (r,»)
is ésomorphic with some Bernowlli shift. .

(b) Limit theorems hold in the form proposed by Hofbauer and Keller
an [1]. :

§ 4. Many cexamples ean be found in [1]. We give one example
thati eannot he verified there,
Pute &7 = [0, 1] andd et an Do the Lebesgue measure on [0, 1], Tiet us

oo
ehoose o Tumily of open disjoint intervals (1)), for which m{I\ () L) = 0.
=1

o)
We considor ' ) Ty-I sueh that, for auy g, T!,ji.% Tinear with slope k. Our
i

conditions in this euso are ecquivadent to

=]
(39 inf k1, MNE'< oo
Lagid - 00 ! ! m '
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The following example shows that the second condition cannot be omitiod:
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(40) I = (129, 1/21—1): J=1,2,.., (T]L) (w) = 2(””1/2j)'

T has no measures absolutely continuous with respect to m, beeause almost
every point of [0, 1] tends to 0 under iterations of 7. This example shows
that our method is very effective for such 7.

I express my sincere thanks to M. Misiurewicz who read earofully
the first version of this paper and contributed many critical remarks
and suggestions.
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