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Power series in locally convex algebras

by

GUNTER CZICHOWSKI (Greifswald)

Abstract. In this paper wo consider the class of AR- algebras. The main theorem
shows that this clags is the most general in a certain sense, having good convergence
propertics for power series.

A classical result concerning the operation of entire holomorphic
functions on loeally convex algebras is due to B. Mitjagin, S. Rolewicz
and W, Zelazko [2]. It can be formulated as follows:

Let 4 be a commutative and associative locally convex algebra.
Suppose that 4 is metrizable and complete and that every entire holomor-
phic function operates (by its power series) on the whole algebra. Then A4 is
M-CONVEX.

Clearly, this result is a partial eonverse to the obvious fact that
m-convexity of 4 implies the operation of entire functions on the whole
algebra A.

We shall give here in an analogous way a characterization of locally
convex algebras having “good” convergence properties for power series.
The motivation is given by infinite dimensional Lie theory starting with
the Campbell-Hausdorff series as a power series in a suitable locally con-
vex Lie algebra (this concept is realized in [1]). With respect to this appli-
cation it should be mentioned that the algebras occurring in this paper
are not associative in general, but the multiplication is bilinear and jointly
continuous. In fact, we regard a class of locally convex algebras —the so
called, ATi-algebras —with an estimation rule for long products. We show
that the convergence of power series in AE-algebras may be regarded
analogously to that in the complex plane. Many clagsical algebras are
Ali-algebras and examples are given.

Our main theorem shows that the class of AE-algebrag is in a certain
sense the most general class of locally convex algebras with the “usual”
convergence properties of power series. The proof uses a polarization for-
mula to compute products by powers. Formulas of this kind are well known
[3], [4], but here various types are given by a simple proof.
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1. AR-algebras. Let 4 be a locally convex algebra and p, ¢ seminorms
on A. We shall call g an asympiotical estimate for p if there exists a naturak
number m = m(p, ¢) such that
q(,)

Py .o @) < (@) .o

if n=m and zy,...,2, € 4.

Since 4 is not assumed to be associative, it should be noticed that
%, ... @, stands here for a product of these elements with regpect to arbitvary
parentheses, Further, for any subset B of A we denote by B” the seti of
all products with » factors from B with regpect to arbitrary parentheses.
It is easy to see that ¢ is an asymptotical estimate for p if and only if
for n > m we have V™ = U, where U = {#; p()< 1}, V = {w; g(2) < 1}.

DeriNrrioN. A locally convex algebra A is ealled an AB-algebra
(AE —Asymptotical Bstimate) if there exists a distingunished seminorm
Po on 4 and for every seminorm p on A there exists a system {g;; ¢ e I}
of asymptqtica.l estimates for p satisfying

1) {g;; ¢ eI} is d_irected downwa,rds,
(_1 inf{g,(x); s eI} = ) for every w e A.

Any such system is called an AE-system for p.

Replacing the seminorms by the corresponding absolutely convex
neighborhoods of zero, we get

Levva 1. A locally convex algebra A is an AB-algebra if and only if
there is a distinguished absolutely conves neighborhood U, of zero in A and
Jor every neighborhood U of zero there exists a covering {V,; i eI} of U, by
absolutely conver meighborhoods of zero satisfying

) {Vy; i eI} is directed upwards,
(2) V} = U for n=my where m; depends on V,

o
Obviously, subalgebras of AB-algebras are again of this type, and
by Lemma 1 it is easy to see that quotient algebras of All-algebras have
the AE-property, too.
ProrosiTioN 1. Hvery ARB-algebra A is m-conves.

Proof. If U is an absolutely convex neighborhood of zero in 4, then by
Lemma 1 there exists an absolutely eonvex neighborhood V of zero such
that V* = U if n > m. Taking V sufficiently small, we may assume 7" < U
for all n. Take W = L% V™; then W* = W < U, and the same inclnsion

NED
holds for the convex closure of W.

As a conseguence we may assume that the distinguished seminorm p,,
of an ARB-algebra satisfies the condition py(wy) < py(®) po(y) (We say
that p, is submultiplicative).
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‘We remark that many eclassieal locally convex algebras are AB-al-
gebras, for ingtance Banach algebras, the well-known algebras of test fune-
tiong or rapidly decreasing functions and free algebras with a finite number
of gencrators. ITere we shall give a typical example, for more details see [1].
" Let I denote a compact interval in R and let A be the algebra of all
complex. valued smooth functions f on I with support in 7, equipped with
the topology given by the seminorms

277;1.(f) == su‘p{ff(’“)

Then 4 iy an Ali-algebra with the distinguished seminorm P, To prove
this, let m be fixed and define for real numbers s,te R, 0 < s<<1,¢>1,
the seminorms ¢y by

Gt (f) == INAX {S Pu(f)y 00 (f)} .

Obviously, the system {g,} is directed downwards and
inf{gy(f); 0<s<1,8>1} = po(f).
vy Jo € A satisfy g (f) <lfori=1,...,7n

(@); wel, b<<my.

Let now s, ¥ be fixed and fy,
Then the Leibniz formula

(Gooefi)0= ¥

it b=k

k (11) . (1)
(ﬁ.h . ,%) fi L £

implies in the case & << m = n the estimate

Iy -ee )P (@) < 0

Since the right-hand side tends to zero as n-—>oco, it follows that p,,(f1...

.. fo) < 1 for sufficiently large n and ¢, is an asymptotical estimate for p,,.
Therefore 4 is an Al-algebra.

S-—-k tlcr—n < P g Mg

2. Power series in Al-algebras. Let 4 be a complete AE-algebra
with the distingunished seminorm p,. To regard the convergence of power
geries in A we restrict our considerations to the essential case of two va-
riables and remark once more that .4 is not assumed to be associative
or commubative.

A monomial M (@, y) of length 1(M) = m in the variables @,y is by
definition o product (with arbitrary parentheses) of m factors each of which
equals @ or 4. If there is a unit in 4, then it is by definition the unique
monomial of length zero.

DEFINITION. A series 2 oy M (2, ¥), 0 € €, I8 called a power series
Jowal)
in x, y if the M, (2, y) avo monomialg in &, y and for every m = 0,1, 2, .

we have a* = Y - |ay< co. The real number B = [lim (@) )= is
I, l(Il] o) = e

called the radius 4)] convergence of the power series.
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To prove some results concerning the convergence of power series,
we need the following two lemmas.

LEemMA 2. If A is an AB-algebra and p a seminorm on A, then there exists
on AB-system {q;; ¢ eI} for p such that p < 0;-q; with certain constants 0;.

Proof. Let {¢;; ¢ ¢ I} be an AB-system for p and define for every
Dositive real number s > 0, ¢, (%) = max {g;(x), s-p (x)}. Obviously, {g,; ¢
€l,s> 0} is an AE-gystem for p, oo and p < s~'-¢, holds.

LEMMA 3. Let p denoté a multiplicative seminorm on A and q an asymp-
totical estimate for p such that p < C-q with C = 1. Let further m = m(p, q)
and assume q(my) <ry0 =1,...,n.

If @y ..., denotes a product of these clements with respect o arbitrary
Pparentheses, then

D@y ... 2,) < O™,

Proof. If n=m, we have p(wy...2,) < g(®) ... q(a,) < O™-¢" Tf
n < m, we use the fact that p is multiplicative and get

P(®y e @) S P(®y) v D (@) < O™ < O g™,

PrOPOSTION 2. Let A be o complete AB-algebra and let 3 a, My (@, y)
k=0

denote a power series in m,y & A with radius of convergence B > 0. Then the
power series converges for all w, y with po(x) < R, p,(y) < R, and the conver-
gence is absolute and locally wniform with respect to an arbitrary seminorm
of 4.

Proof. Suppose po(2) < r, po(y) << » with 0 < r < R.

Further, let p denote a seminorm on 4, which we may assume to be
multiplicative, and ¢ an asymptotical estimate for P satisfying g(z) << 7,
¢(y) <r. By Lemma 2 we can assume p < (+¢ with ¢ > 1 and by Lemma 3
we get

2 lag] - (M (0, y) < Z gt - O™ 1k < g Z ay -ty
k=0

k=0 n=90

where m = m(p, ¢). This implies the absolute convergence with respect to p.
Moreover, the estimate proved above holds uniformly for all @, y with
2(x) <7, ¢(y) <r. That means that if z,, y, ate points with py(w,) < r,
Dolye) <1,0 <7< R, and p is an arbitrary seminorm, then there is a neigh-
borhood U of (#y, y,) in A X 4 such that the power series converges ab-
golutely and uniformly with respect to p on U.

COROLLARY. The mapping f: f(z,y) = 2 My (m, ), defined for
k=0
all =,y with py(z)< R, Po(¥)< R, is continuous.
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Remark. It ean be proved that f is in fact smooth with respect to
the Michal-Bastiani differentiability. Moreover, the ugual statements con-
cerning multiplieation or composition of power series hold for power series
in complete AB-algebras [1].

3. Polarization formulas. Let A be a commutative and associative
locally convex algebra over K = R or K = C. We ghall prove formulas
expressing the produet @, ..., by powers. )

ProrosrrioN 3. Let T = {t e K; [4| = 1} and u o measure on T, which
s invariant under the tramsformation t-~—1t and normed by u(T) = 1.
Then for arbitrary g, ...,x, €A we have

1 b7 S S A 3 L
By eos lly wr f f»(-‘»i—'i———-’uidﬂ(tl)...dp(tn).
no Toeardy

Proof. Calculating the power under the integral, we get on the
right-hand side of the equations the terms:

%-(il,_f,,in)' @ L.l f ft‘il“l...t;;"_ldﬂ(tl)...cl,u(t,,),
’ i &
which are equal to zero if at least one of the numbers 4, is zero. This implies
the formula stated above.
BExampres. (1) If K = R, then the unique measure x hag the form
#({1}) = u({—1}) =1/2, and we get the “discrete” formula

3

1 (exy+ oo + ently)
[ =T e e—
‘1. &1 <44 &
2 n Bpyiens &=kl 1 ™

(2) I K = C and u is invariant nnder rotations, we get

1 (tlwl see tnmn)
. R s R (] ... |
Dg, o ns Dy, (2 )nwl! f . 1.1{ tl o~ tn [ 1| | nl

(8) The following formula for the case K == C is a simple consequence
of Uauchy’s formula

\(2
) - f...fwﬁfﬁ—dtl...dtn.
T @mayral Y .8

ProvosrtioN 4. Let A be a commutative and associative algebra over R
or C and let U, V denote absolutely convew neighborhoods of zero such that o™ € V
for every w e U. Then U™ < ¢ V.
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Proof. For @y,...,2,e U we get by a pola,rization_ formula

» bm) ey + .o (8, ),
By oo By = f f((l/ )w1" (/1)) du(ty) ... du(t,).
n! P . by eenty

If p denotes the seminorm corresponding to V, this formula implies the
estimate-

n™ "
p(ml'-'mn)<ﬁ“< o,

4. A partial converse theorem. We shall prove the following theorem
generalizing the cited result of Mitjagin, Rolewicz and Zelazko [2].

TEROREM. Let A be a commutative and associative locally convew algebra,
which is complete and metrizable. If every power series with positive radius of
convergence is convergent in a certain neighborhood of zevo in A, then A is an
ARE-algebra.

To prove this, we only use the fact that the geometric series 3 ™ is
convergent in a eertain neighborhood W, of zero in A. We assume that
W, is open and absolutely convex and the geometric geries is converging
on W, too.

At first, we prove three lemmas, each of which being formulated
under the same assumptions as in our theorem.

LeMmva 4. If p denotes a seminorm on A, then the geometric series con-
verges absolutely with respect to p on Wo. Furthermore, there ewists o neigh-
borhood W of zero in A such that the geometrio series converges absolutely and
uniformly with respect to P on W.

Proof. The first part of the proof is classical, the second part uses
ideas from [2]. If € W,, there is a real number ¢ > 1 such that ¢-o  W,.
Hence p ((tm)“) < 1, this implies p (2”) << 7" it n is sufficiently large, and the
convergence is absolute with respect to p. Let ¢ denote a seminorm on A
satisfying p(@y) = q(2)-q(y) for all #yed and’

W ={oe Wy; g(@™)<m for all n} (m=1,2,...).

Then the sets W,, are closed and U W,, = W,. Therefore there existy

m
m=1
a set W,, with non-void interior and, using W,, = m-W,, we conclude
that the interior of W, is not void. Now, a simple calculation shows that
forz e 3+ W, —4-W, holds P (2") < 1 for all #. But this set; contains a neigh-
borhood W of zero in 4, and it is eagy to see tha the geometric series
converges absolutely and uniformly with respect to p on ¢ W if 0 < < 1.
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COROLLARY. A is m-conven.

Indeed, if V is an arbitrary absolutely convex neighborhood of zero

in 4, then by Lemma 4 there exists an absolutely convex neighborhood W
of zero such that 4™ e V for all n if » & W. By Proposition 4 we have

Wree™V  or

("Wl eV dor all q.

The proof is complete by the same arguments as in the proof of Prop-
ogition 1.

Lmmma B. Lot p be an arbitrary seminorm on A. Then the convergence of
he geomelrio serics s absoluie and locally uniform with respect o p om W,.

Proof. By thelagt corollary we may agsume that 2 is submultiplicative.
Let wy & W, be fixed. Then there exist real numbers ¢ =1, t> 1 guch that
2 (@) < 17" for all n (see the proof of Lemma 4). Choosing & > 0 such that
1™ e <1, we geti for every ye A satisfying p(y) < e and for every »

n

» {(m0 ~]~Ay)n) < 2 (Z> -p (F) -p (g™ F)

fo=0

k3

Tome

This implies our statement, and moreover, the following

OonorLARY. If M is & compact subset of W, then the geometric series
converges absolutely and wuniformly on M with respect to every seminorm.

Lemva 6. Let M denote an absolutely conves compact subset of W, satis-
Sfying ¢ M = Wi, If V is an arbitrary neighborhood of zero in A, then there
exists a number m such that M™ < V for all n > m.

Proof. Since 4 is m-convex, we may assume V? = V. By the last cor-
ollary there is a number m such that " ¢ V if w € ¢-M and o > m. By Prop-
osition 4, (¢-I)* < (¢- V)", that means M" < V* < V for n =.m.

Proof of the theorem, Let U, = (2¢)~* W, be fixed. If V is an arbitra-
ry absolutely convex neighborhood of zero in 4 with V* ¢ ¥, and I is an
absolutely convex compact subset of U,, we define

Vi = (M4 T)nTU,.

Olearly, the system {V 3}, where V is fixed and M runs over all absolutely
convex compact subsets of Uy, is a covering of U, and is directed wpwards.
To finigh the proof in terms of Lemma 1 we have to show ’gha’o VsV
for m > m, where m iy a number depending on M. At first we remark
that by Lemma 6 there exist numbers 0> 1, £ > 2 such that

M < ¢4V for all n.
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This implies

n

(Vu s (M+3 V)< Z(Z) 'M’“.‘z—nlt;:.v
k=0
= DI[E) ot s 0
=0

Since (¢7'-+4)" tends to zero if n—>oo, it follows that (Vy)" = V if o iy
sufficiently large. By Lemma 1, 4 is an AE-algebra and the theorem is
proved.

Remark. The metrizability of A is only used to prove m-convexity.
We regard as an example the algebra Z(R) of test functions, which is.
m-eonvex. Then our theorem shows that 2 (R) is an ARE-algebra.
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Spline bases in classical function spaces
on compact C* manifolds

Part II

by
Z CIESIELSKIand T. FIGIEL (Sopot)

Abstract. Using spline functions the desired Schauder bases in Sobolev and
Besov spaces on cubes with boundary conditions ave constructed. The combination
of these results and of the decomposition of function spaces established in Part I
permits to complete in Section 11 the proofs of the main results formulated in Part I.
Section 11 contains also applications (e.g., improved Sobolev type embedding theorems,
estimates for the eigenvalues of integral operators and asymptotic estimates for the
Kolmogoroy diameters in the class.of Besov spaces).

In this part we complete the proofs of Theorems A and B formulated.
in the Introduction to Part I of this paper. In order to read this part it
is necessary to know some definitions and results given in Section 2.

In Section 4 of Part I the proofs of Theorems A and B are reduced
to constructing suitable bases in the spaces Wi(Q), and BS ,(Q)z where

=0, s>0, 1<p,qg< oo, introduced in Section 2.

The boundary conditions induced by a set Z of the form (2.37) have
a “tensor product” nature. This allows us to reduce our problem essentially
to good approximation of vector-valued (IL,-valued) functions on some in-
tervals and to constructing special bases in I, spaces on the interval
<0, 1>. A1l this is carried out in Sections 7-10 by means of vector-valued
splines and spline bases.

Section 7 contains the basics on vector-valued splines.

In Section 8 we congider families of orthogonal projections onto increas-
ing subspaces of splines corresponding to the various boundary conditions.
We also study associated families of projections relevant for the Sobolev
spaces. The most important results are here the exponential estimates for
the kernels of these projections and for the basic functions (cf. Proposition
8.10, Lemmas 8.13 and 8.27).

In Section 9 special spline bases on the unit interval are defined.
Their tensor products (in the rectangular ordering) are bases in the spaces
W5(Q)z and Wi(Q)z for 1 <p < oo, and they are unconditional bages if
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