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This implies

n

(Vu s (M+3 V)< Z(Z) 'M’“.‘z—nlt;:.v
k=0
= DI[E) ot s 0
=0

Since (¢7'-+4)" tends to zero if n—>oo, it follows that (Vy)" = V if o iy
sufficiently large. By Lemma 1, 4 is an AE-algebra and the theorem is
proved.

Remark. The metrizability of A is only used to prove m-convexity.
We regard as an example the algebra Z(R) of test functions, which is.
m-eonvex. Then our theorem shows that 2 (R) is an ARE-algebra.
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Spline bases in classical function spaces
on compact C* manifolds

Part II

by
Z CIESIELSKIand T. FIGIEL (Sopot)

Abstract. Using spline functions the desired Schauder bases in Sobolev and
Besov spaces on cubes with boundary conditions ave constructed. The combination
of these results and of the decomposition of function spaces established in Part I
permits to complete in Section 11 the proofs of the main results formulated in Part I.
Section 11 contains also applications (e.g., improved Sobolev type embedding theorems,
estimates for the eigenvalues of integral operators and asymptotic estimates for the
Kolmogoroy diameters in the class.of Besov spaces).

In this part we complete the proofs of Theorems A and B formulated.
in the Introduction to Part I of this paper. In order to read this part it
is necessary to know some definitions and results given in Section 2.

In Section 4 of Part I the proofs of Theorems A and B are reduced
to constructing suitable bases in the spaces Wi(Q), and BS ,(Q)z where

=0, s>0, 1<p,qg< oo, introduced in Section 2.

The boundary conditions induced by a set Z of the form (2.37) have
a “tensor product” nature. This allows us to reduce our problem essentially
to good approximation of vector-valued (IL,-valued) functions on some in-
tervals and to constructing special bases in I, spaces on the interval
<0, 1>. A1l this is carried out in Sections 7-10 by means of vector-valued
splines and spline bases.

Section 7 contains the basics on vector-valued splines.

In Section 8 we congider families of orthogonal projections onto increas-
ing subspaces of splines corresponding to the various boundary conditions.
We also study associated families of projections relevant for the Sobolev
spaces. The most important results are here the exponential estimates for
the kernels of these projections and for the basic functions (cf. Proposition
8.10, Lemmas 8.13 and 8.27).

In Section 9 special spline bases on the unit interval are defined.
Their tensor products (in the rectangular ordering) are bases in the spaces
W5(Q)z and Wi(Q)z for 1 <p < oo, and they are unconditional bages if
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1< p< co. Moreover, their biorthogonal sequences have analogous
properties (with Z replaced by Z’ defined in (2.47)). This is all we need to
complete the proof of Theorem A.

The bases in B} ,(Q)z needed for Theorem B of I’alb I are defined in
Section 10. The Schauder decomposition into dyadic blocks is here the same
ag in Section 9. However, in the finite-dimensional subspaces corresponding
to the dyadic blocks we construct new bases such that Theorem 10.19 holds.

Section 11 indicates some applications of the main results and contains
bibliographical comments.

7. Spline functions. We reduce the approximation problems with
boundary conditions on d-dimensional cubes to approximation of vector-
valued funetions. Approximating by splines we are led naturally to vector-
valued splines. The space of values is denoted by X and as in Seetion 2
it is equal either to R or to W5 (@), where @ iz a parallelepiped in R

The real-valued B-gplines supply the basic tool for our construction.
We recall some of their definitions, fundamental properties and results re-
phrasing them in the vector-valued setting. Most of the proofs will be omitted
a8 they follow by repeating step by step the argument applied in the cor-
responding real-valued case. For detailed discussion of the real-valued
B-gplines we refer to H. B. Curry—-IL. J. Schoenberg [18] and C. de Boor
[6] and [7].

For given positive integer ¢ and partition IT = (3;) such that #; <#;4,

4<ty, for j=0,+1,...,4 =lm ¢, < lim ¢, = B, the B-spline N,
pr——t >0
j=0,41,..., is defined by the formula

NPUs) = (yar— ) [y 8,

where the square bracket denotes the divided difference of (- —s)* taken
ab i, ..., t;,,. The function N is of the class "'~ at #, f<h<<j+r
Wlth o= F{&: §; =1}, Where (' denotes now the class of funections with
discontinuities of the first kind. ‘

For I = {a,b) = (4, B) the non-trivial restrictions N(f)l 7 are linearly
independent over I.

Moreover, the B-splines have the following properties:

ey biyps (B

(1.1) N=o0,
(7.2) supp N = <ty 44,
b ‘ ‘
(7.3) f NOydt = 2
tj 4
(7.4) DINO@ =1, te(d,B),
J . '
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(7.5) if MO = r(typ, —1,) N and
t1< ty‘+r~17 tj+1 < tj+r7
then :
DN{) = MY -y,
for 1< p< oo we have in the norm of I,(%,
PGNP < NP, <

DrriNmtioN 7.7. A function f: (4, B)-~X is called an X-valued
spline if it can be written as

f= Sanp,
7

The space of all such functions is denoted by 87 ((4, B); X) and if
I = {a,b) = (4, B) we denote by 8%(I; X) the set of all restrictions to
I of feS8%((4, B); X). In the real-valued case we simply drop the X in
these symbols.

The result below is a trivial extension of the de Boor’s result (cf. (8],
pp. 272-273) from the real-valued to X-valued splines.

TuROREM 7.8. To cach r = 1 there is a constant D, > 0 independent of IT
and p, L < p < oo, such that

Dol 0 < | szm

where = (x), ¥, € X, and

(7.6) Yigr)

Iy

meX.

g, B)\ ”m”zp(xp

N{) = NOWNPIE 5 -
Imposing on II additional conditions

(7.9)

we obtain
JOROLLARY 7.0, If rzl, 1<pK oo, I ={a,b), & = (T_ps1y---

oy yoa)y @ € X, then for some D, > 0 independent of II and p we have

bppy = e =1y =@y, by = .o =ty =b

N-1
. al el
YY)l ar gy < “ w,N“)!’. -
b, ”17”1'}}1‘%1(3.‘) = j:—;—x-l i B2 |V G 5 I l ”z;}"” Iixy ? .
d.e. N (L3 XY ds, uniformly in N, p end IInI, linearly isomorphic to
]’N-H -] (!{)
&)

For later use we introduce additional integer parameter ', 1 < 7' < 7.
We imposge on [I an additional condition

i =i .
(TAL) B <ty —rlue< oo, 4f = —'+1,...,N—1.
by =1

2 — Studia Math. 76,2
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Note that (7.9) and (7.11) imply
v N4r —1
|1
where |II],, = max{l, . —1t; —r'+1<Ii< N ~1}.
ProrosrrioNn 7.3 (Bernstein type inequality). Let I, I = {a,bd,
r" amd r satisfy conditions (7.9) and (7.11). Then there is 0 = C(r, I} such

that for feSH(I;X), k= 0,...,7—0, 0KEh<<|I] and 1< p << 00 one
has
(7.14) N4kl (T (BR); X) < O - (RTINS, (15 X).

Inequality (7.14) can be proved in exactly the same way as Lemma 9.2
in Ciesielski [12]. The intermediate step in the proof is an application of
Bernstein’s inequality for the X-valued splines. It can be obtained from
Corollary 7.10 and formula (7.5). )

Beside the Bernstein type inequality the orders of approximation
by X-valued splines are important in our considerations.

In what follows the space of X-valued splines of order » on I, corres-
ponding to a I7 satistying (7.9) and (7.11), is denoted by 87" (I, X). The best
approximation of fe Wi(I; X) by S5"(I; X) is

By (f; X)p = i {if —gl, (I, X): g e 8% (I; X)}.
For-the definition of the norm .we refer to (2.2).

ProrosITION 7.15. Let IT satisfy (7.9) and (7.11). Then there is a con-

stant C = O(L,r) such that
ESI;;(f; 'X) < er,y(f; 'X; [ﬂlr’/‘r)l
holds for fe Wi(I; X), 1< p < oo.

Proof. This result for real-valued functions is well-known and the
proof as presented by De Vore ([20], Theorem 4.1, p. 136) can be easily
adapted to the case of X-valued splines. .

Let us now consider a sequence of partitions I7y, IT,, ..., of the same
type as I7 satisfying (7.11) and (7.9), and such that IT, < I7, ., and I1,,,\IT,
is a one-point set.

For simplicity we set

En;(f) = g;z,p(fi X)’ w[c(f; 6) = w/c,z:(f; X7 6)'

ProrosiTioN 7.16. There is a comsiant € = O(r, I) such that for

1<h<r—y

(7.12) CIg T, < oy

o (f5 1m) < O™ (Ifl,(Z; )+ Y7 By(f)

=1

holds for feL,(I;X), 1<p< oo
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To prove this we apply standard argument and use (7.14) (cf. [107],
Theorem. 10).

’ The last problem we want to discuss in this section is the best approxi-
mation of X-valued functions with small support by X-valued splines.

The theorem we are going to prove exhibits the local character of the best
spline approximation. :

For the proof of the theorem it is convenient to have the following
simple abstract

Lmyma 7.17. Let ¥ be o Banach space and T its subspace, and let T
be linear operator such that

'"=T, T(EcBH,
f’ = KerT, B= EnZOY.

o o
For given y, € Y let 2, 2, denote the best approvimations to y, in B, B, respect-
wwely. Then

150 —21 < o — 2ol < (L4 1T llye — 2]
Proof. Put #y = 2—~Te. Clearly, «, EIZ‘. Thus,
o —2oll < Y0 —all = llyo—2-+T (2 —yo)ll < (L +IT1)e —yoll.

In what follows we use I for <0,1> and J for one of the intervals
{~1,1> or (—1,2>. The uniform mesh corresponding to the step 274
4 2 0, with multiplicities r, a, 8, v,  at the points —1,0,1/2, 1, 2, respect-
ively, is denoted by II(a,f,y). It is assumed that »>1 is fixed and
1< a,§,»<r. The corresponding spline space is

'Sa,fé.v (J) = S;Y(a,ﬁ.y)(Ji X).

Moreover, let

Sapp () = {u € 84p,(J): suppu < I,

Sop(d) = MR

Bopy(I) = 8o, (I).

TurorEM 7.18. For given > 2 there is a constant O, such that for
282 2(r—1) we have
07 dist (b, 8,,,(9) < dist (h, &, (D) < €, dist (b, 8, ()

Sor h e Wo(J; X), L < p < oo, with supph < I. The dist is taken with respect
to the norm in Wy (J; X).

Proof. The first ocase: J ={—1,1>. Let Y = Wy(J; X), Z
= Wy (J\I, X), and let the operator restricting functions from J to J\I
be denoted by R, B: ¥—Z. Moreover, let the extension operator 8: Z—¥
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be defined similarly as in (2.7). Then, T'
=7, ¥ =keaT =

checks easily that TH < E and B = YnD S »(I). An application of
Lemma 7.17 completes the proof in the first case.
The second case: J = {—1,2). Let S, and S, be extension operators

= 8R: ¥->Y is bounded and 7%

defined similarly as in (2.7) extending from {—1, 0> to {—1,1/2), and’

from ¢1,2> to {1/2,2), respectively. Moreover, let

Sk (t) for 1<

i< 12,
Shit) = {Szh(t) for

12 <12,
We find as in the first casé that T = SR has similar properties, i.e. T is
bounded, T* = T, kerT = Y Let now B =§8,,,(J). It then follows that

TE < B. Moreover, B=YnE = S”,,(J) Application of Lemma 7.17
gives for h e Y

(7.19) dist (b, B) < 0, dist (h, T).

Introducing ¥ = S, (J) and T Sa »(J) we find dist(h, F) < dist(, F),
and this is the trlwal part of the inequalities m quesmon The opposite
inequality is proved .% follows. We note that F=F nD and that for

Wz20r—1) B =F —i—E where the sum is the algebraic one. Now, for every
¢ € E we have a unique representation in terms of the B-splines corres-
ponding to (e, r,y)

e—Za_N(” a;eX.
We now define

Po = Yadp, Qo= Yadp,
Jea jdo
with ¢ = {j; ¥{) e F'}. Since 2* > 2(r —1), it follows that for j ¢ o, N & .
Thus, P-+@Q = I1d and PE < F, QF < H. Clearly P and @ are projec-

tions and, by Corollary 7.10, they are bounded in ¥, and the bounds
for their norms depend on r only.

The dist(n, l?’ ) can now be estimated as follows. Let fe I, & e 12' Then
f—éeF and consequently

f=b =PF—8+Q(~8),
whence we infer

F=P(f-%) = 8+Q(f 9.

{feX: supprI} If now B = 8,,(J), then one -
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Now, the left- hand s1c1e is in F, and the right-hand side is in . Thus,
f—P(f—é) anE F and for he ¥

dist (h, F ) < o —{f—P(F—&)|| < Ik —fI-+IP] If — &I
< (L4 IPDIE A+ 1P 15 — &1
Since fe F and $e X are arbitrary, we get
" dist(f, F) < O[dist (k, F) -+ dist (b, B)].

Moreover, E = F implies dist(k, B)< dist(h, F). Combining the lagt
two inequalities with (7.19) we get the desired result.

OOROLLARY 7.20. Let r = 2 be given, and let J be defined as I in (2.38).
Then there is O, such that

dist (, 8,., (1)) < G0, (h; X3 1/2%),

holds for ke Wi(J; X), 1< p < oo, with supph < I, and for 2* > r|J|™

Thig corollary follows immediately by Proposition 7.15 and
Theorem. 7.18.

8. Fundamental estimates for the spline systems. We should keep
in mind that in the definition of W7 (I; X) the space X in general depends
on the exponent p. To avoid any confusion we shall use occasionally in
what follows the symbol X, for X In the space Ly(I; X,) we have the
natural scalar product

(8.1) (fs Dogrizy = [ (£ 90)) 5,8

I
In what follows we assume that I = (a, 1) and that the partition JT sat-
isfies condition. (7.9). Moreover, let B = {L—r, ..., N —1}, To each ¢ = H

there corresponds the X-valued spline space

St(l; Xj€) = {u w= YN0,z e X},
Jjee

Clearly, Su(I; X;e) = 84 (I; X; H) = 84(I; X), and, by Corollary 7.10,
for each ¢ = B it is a closed subspace in L,(I; X), 1 < p < oco. In particular
there is a nnique orthogonal with respecb to (8.1) projection PP (-, X,; ¢)
of Iy (I'; X,) onto 87 (I; X,; ¢). As previously, in the case X' = R we sunply
write 8 (I; e) for S (I; X;e). In the real-valued case there is a unique
biorthogonal system (Nﬁ, jee) in 8%(T, ), i.e. such that

WP, V) =6 for djee
and

87(I; €) = span [N}, j e 6] = span[N {1}, j e e].
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For the kernel of the orthogonal projection operator P (-;¢) from IL,(I)
onto 8%(I;e) we have the formulae

ERe = D NOQN{) = 3 af;,NPQN].

ice i,jee

(8.2)

The matrix A° = (af,); . is the inverse to the Gram matrix G*
= (N9 NP zy0)i jeer For p =2 We check directly
(8.3) PY(f; Xp3 0)(8) = [ EQ, (¢, 9)f (s)ds,

I
where f € L, (I; X,). Since the kernel K%, is bounded, formula (8.3) makes
senge for all p: 1< p < co. Thus (8.3) is the definition of a projection
PR (-; X;e) from L, (I, X) onto 8%(I;X;e). Actually by interpolation
(application of Holder inequality) we get
(8-4) IPR (5 X5 o)l (I3 X) < sup [ 1K), (5, 1l

8e. I

and it should be mentioned that the symmetry of the kernel K(}}fe was
used here. Now, properties (7.3), (7.4), formula (8.2) and inequality (8.4)
give

(8.5) sup JIEQ. (s, Ddt<rrsup 3 1ag1 (60 —1,).
SE. I

jee “eg

PROPOSITION 8.6. Let » > 1 and I = {a, b> be given, and let IT satisfy
(7.9). Then there are consianis C,< oo, 0< q,< 1, such that
(8.7) lag] < O (iyr—8) 72 (G — 1) 7P, 4 j e,

This result is due to de Boor [7], Corollary 2, p. 17. The version pre-
sented here follows from Corollary 7,10 with p = 2 and from a slightly modi-
fied result of Demko ([19], Theorem 2.2). The modification means simply
that Demko’s theorem can be extended by the same proof to the case of
maitrices with entries indexed by pairs of elements from a countable metric
space. In our case the metric space is the set ¢ with the natural dist induced
from the real line.

Particular cases of Proposition 8.6 were known earlier (ef. [10] and
[21]).

The inequalities (8.4), (8.5) and (8.7) give now

PRrOPOSITON 8.8. Let I = {a,bd,r=1, and let IT satisfy (7.9) and
(7.01). Then there is a constant O, such that

IPR(; X5 0)l,(I5 X) < 0, < oo
holds uniformly in p,1 < p < oo.

* ©
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Tn what follows we are going to specialize the partitions 7T and the
sets ¢. Thus we introduce the dyadic partitions Iyn=1o0f I =<0,1>: IT,
={sypf=1-r,...,n4+r—1} and Sp1op = .-
v =S =1, and if 0 =249, 4 >0, 1 <v< 2% then

¢ = S :03371.11 e

' _[djertt for

s — J=0,...,2,
T \(G—v)j2*  for

J=2v+1,...,n.
Cleaxly each [T, satisfies (7.9) with N =n,a = 0, b =1, and (7.11) for
P ==y,

The subsets ¢ = B = {l~r,...,n-+r—~1} of particular interest to
us are the following: (i) ¢ = & and (ii) ¢ = {0, ..., # —1}. The two cases
will be treated separately.

Oase (i). Let us introduce the following notation for # > 1:
PP X) =Py (5 X; B),
Sull; X) = 8g, (I; X; B),

Py — P R), |
8, (I) = S, (I; R).
These definitions are extended to the indices 2 —r <% <0 as follows:
P{(-; X) is the orthogonal projeetion of I, (I'; X) onto
ST X) = Py (I3 X),
where #,(I; X) is the space of all polynomials #,+ta,+ ... + 5,

with ¢e I and »; e X. Thus, we have an increasing sequence of spaces

ST X) = 8,,(I;X), n>2—r

and the corresponding family of orthogonal projections {P®(-; X),n > 2 —
—7r}. Moreover, dimS},(I) = n+r—1. Let us now define an orthonormal
system (), m > 2 —7) in Ly(I) as follows: f{0, =1, e 80 (I) and fo is
orthogonal in L,(I) to 8¢, (I). If in addition to this we assume that
IfPU2 (1) =1, then f{ is unique up to a sign. It is clear that

PO X)) = [ KD (s, 1)f (s)ds,
I

n

D )N @).

Fe=2emg

Kg)(s’_ t) =

To construct suitable bases in Sobolev spaces we need to consider the
differentiated and integrated system (f(), n > 2 —7). For this purpose let

: a
Bf@) = [ f6)ds,  Dft) = —-10).
t ‘
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We now define for —r<E<r,n=>2—r4 |k
fr — DHI for < ?c <7,
" HO  for  —r<k<O.

Integration by parts gives immediately for [kl<<r
(8.9) (00, f By = dip G j 22—+
Defining for |k <, n=2—r+ |k

7
> e IR,

J=2—r4-1ki

-Kg"k) (s, %) =

we check using (8.9) that
PR (f; X) (1)

is a projection in IL,(I; X).
PROPOSITION 8. 10 Letr =
and g, 0< g, <1, such that

(8.11) LK (s, 1)] < Opmg ™

holds for m = 2—r+ k| with |k <7.
Moreover, for tel, —r<k<r and nz>

(8.12) [0 (8)] < O, mF+Y2gnii—tal

wWhere by, = Sy o,y = (29 —1) 2% if m = 2849, 1 <y <28

The proof of (8.11) is given in [14], and for the proof of (8.12) we refer
to [15] and for a much simpler proof to [12].

Case (ii). Now we do not have ready results. The basiy in question has
t0 be constructed. We apply the same technique starting with orthogonal
projections. Referring to the notation introduced earlier we recall that now

= [EYH(s, 1)1 (s)ds
I

s,tel,

2 —r4 k| we have

E={—r...,n—1} ¢ ={0,...,n—1}, N =n and I = II,. In analogy
to the case (i) we introduce for n > 1 the notation
QU (3 X) =Pr, (s X50), Q) =QP(5R),
Sul; Xse) = SGI“( s Xse),  SL(I5e) = 8,(I; R;e).

Now dim8%(I;e) =n and, clealy,

Sr(I;X5e)  8pa(I;X5e) for nzl

and {QW(-; X),n>1} is the corresponding family of orthogonal
projections. We define the new orthonormal system as follows: g{?
= NEINO(T), ¢ e S3(T5¢) and g% is orthogonal in I*(I) to

> 1 be given. Then there are constants €, << co
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Sn-1(I; e), llg"’llz(l) = 1. Again,
QY (f; X)) = [I(s, 1) (s)ds,
I

where

L (s, 1) = Zn’ 957 (s)95” (¥).

F=1
Moreover, we introduce for n=1, —r<k<r,
4P = {D'” § for  0<k<r
" H D for —r<k<O

It then follows that for |k|< #

(G0, g ™9) = 8y 4,510
Thus the operators

QYI(f; X)(6) = [LGM (s, 0)f(s)ds,
I

with

K3
T (s, 1) = g 0(s)gf R 1),
J=1
are projections for |k|<< .

LevmA 8.13. There are comstants C,< oo and ¢, 0< ¢,<1, such
that for |kl<<7r and n=1

(8.14) [LEM (s, 1) < g,
In particular the operators QU9: Ly (I)—>L,(I) are bounded uniformly in n
and p, 1< p<< oo,

Proof. It is sufficient to prove (8.14) for 0 < %k << ». The proof goes
by induction in %. For % = 0 (8.14) follows by Proposition 8.6. Suppose
now that (8.14) holds for some %, 0 < k< r—1. Now, for f e 8,,(L; ¢) by
the Markov inequality for a,lgebr&ic polynomials we obtain
fO—16s)

t—s

s,tel.

QG; |Inﬂ flﬂ; s tEIn,ﬁ

where I,; == (84,71 8,,5) a0d O, is a consmnt depending on r only. In
particular (8.15) implies

(8.15)

(8.16) IDf ()] < O, |zl f[f[, sel,,.

n;l
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Applying (8.16) to
fis) = L§M (s, 1),

and then using (8.14) we obtain

(8.17) [D, LR (s, 1)] < Cmgri==!,

If now ¢ > s, then (8.17) gives

1
LG+ (s, 0)| = | [ DG (s, w)dn| < Oymgp=o.
i
However for t< ¢ we have by (8.17)

1 1
IZ* D (s, 0) =| [ DIE(s, wdu— [ DIEH (s, u)dul
0 0

. .
< [ IDIEP (s, w)] du+ 1D, (ZEH1) (5)]
]

< Ong =2+ | Dy (LM (5)]
Since for 0 < 1 <s we have ¢} < g7, it is therefore sufficient to prove
(8.18) [D(LS™M1) ()] < Cyngle.

In what follows we denote by N¥), the jth B-spline corresponding to the
dyadic partition IT,. The biorthogonal functions in 87 (I;e) are denoted
a8 N, iee ={0,...,m—1}. It is convenient to introduce also the ope-

= a1,
rator

14
G () = [ f(s)ds.
0
Now,

n
IE91 = D* 3 (1, Ho) 007

f=1

n
= D* 31 (G*1, g0)ang)
=1

(8.19)

n—1 :
=D¥ 316", ), ) NE).
i=0
Moreover, let
-1
6" = > NG

Jeml—2

(8.20)
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Since (6*1)(s) = s*/k! and ¢*1 e 87(I ), it follows that the b’s are uniquely
determined. For later convenience we introduce

-1
9= uN,.
F=l~r

According to (8.20) we have

n—1
(8.21) Gl —g = ijzvg;)j €81 (1; 0),
=0

and therefore for jee
(822) by = (6"1, N{7)) — (9, N20)-
Using (8.22) and (8.19) we get

n-—-1 Pl

DLEPL = DM 30,80+ 3 (g, N, ) NY)
§=0

7=0

(8.23)

71 .
= D* 39, NN, —g).
i=0
Notice that suppg < <0, 5,1
Moreover, we are going to show that

{8.24) 191eo (05 8—1) = lglloo (1) < O0™%,  m>1.
In order to see this we define I7' = {s;, ;,j = 0, 1, +2, ...} as follows
Suig for j<gr—1,
Spi = 1Snr1 for j=r..,2r~2,

arbitrary increasing for §> 2 —1,
The corresponding B-splines are denoted by . ;- Clearly, N®); = N 3 for
J< —1, and for 0< s<<s,,_, we have
-2

@1)s) = D ;.

Fe=l—r

f

An applieation of Corollary 7.10 gives

. -1
2 0 (0, 50,00) ~ max B> max bi>] 3 B0 (0,5,,-,).
1—rsGf<r=—~1 1—-r<i<0 Jamlmr
However, on (0,s,,_;) we have, by (8.20),
-2

61 = > bN0,

. =1
and, moreover,

~1 r—2
G*L = D' BN+ N oy,

Jel—p J=0
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The properties of the B-splines imply now b, =bjforj =1 —r,...
, —1, whence we infer (8.24). Using (8.24) we shall estimate the

right-hand side of (8.23). It follows by the definition that

; aﬂ,'b.] ’Ii,’l,

iee

(8.25) N

n],

Proposition 8.6 implies mequahty
(8.26) < O,nglt,
which together with (8.24) gives

—Ic f

(g, O ~"ql,
This and the properties of the B-splines imply

g4,1] < Bhjee,

n.;.a)| jee.

n—1

| D4 3N (g, ND, VW, (s)|< Ongle.
=0
Finally, g by definition is a spline with sapport in <0, s, ,_,>, Wwhence,
by (7.14),

for
for

Snp—1 < S 1,

0
_Dk+1 < !
D (s)] {M pos

7,r—~1
and this gives

1Dk+lg (s)I < Oyngy®,
The combination of these inequalities and (8.23) give (8.18), and the proof
is complete.

LevwA 8.27. Let v > 2 be given and let f, = s,,,_, for n =24y,
1< v<< 2" Then there exists C, << oo such that
(8.28) 9P @) < Oy rEgpi=tl
holds for —r<k<wr,icl,n>1.

Proof. The function g’ is orthogonal to S

sel.

_1(T5¢e) and therefore
95 = > (g, NEHNL),

Ny fs€
jee
2r~1
\ !
= > (gD, NO)NE,.,
Je= QL

where ¢ = {0,...,n~—1}. However, (7.3) and (7.6) give

(g%, N < IV O, < Com—b2,
Thus,
P <Cn ™ max NG, @)

—1—r<< i1
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Now, (8.25) and (8.26) imply

(8.29) I < Omgli=tl,  jee,tel,

and this proves

(8.30) 195 (1)) < Cmiigni=al.

Inequality (8.28) now follows for 0 < %k < 7 from (8.30) by (8.16).

In the proof of the remaining case of (8.28) we use the representation
{0<< —k <)

-2

(w—1)7*" = 2 b, 4(

(u).

It now follows by the very deﬁm’mon of g that

f (=" ) du = V by () (N0 50 93
j= l—r
whence, by (8.30), we obtain
| [ man]< oaotg ST o,
I j= 1—7‘
To estimate the right-hand side we introduce a new partition JI”
= ($p-1,pJ = 0, £1,...) as follows

, Ty for <
Su-1,5 = ] Sn—1,r—1 for j=r7,..,2r—2
arbitrary increasing for j>= 2r—1.

Moreover, for 0 < u < §,_;,_; let

—2
(w—1)7" = }j BN, ;(w),
’ F==l—7
where NV, . are the B-splines of order » corresponding to IZ’.
It now follows by Corollary 7.10 that uniformly in¢el and n=1

Sp—1,r—1 r—2
[(w—1)""" Y du ~nt 2 [0;(0)].
0 F=1—r
However, N7, , = N@, . forj =1—r, .
<< 8),_1,r—1 the two representations for (u —
for j = 1—r,..., —1. Consequently,

S

Jml—p d

—1, and comparing for 0 < u
)“’ ~! we find that b, (5) = b;(t)

b)) < O )R

f[‘ o

-
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and

(8:31) | [ (=t ) du| < On=og) o)
I

If now ¢ >1,, then (8.30) implies (8.28) for —r < k< 0. On the other
hand, if 0<t<t, = Spa-1; then by (8.30) and (8.31)

0] = | =

1
| (a7 () dus
“h—1) ,f ‘

3
< 0| [ W=t w)au] +0,
0

[ w=070 ) au
I

S Or(n1/2+lcg:z{t—tnl _[_n-1/2(t+,n—1)—-k—-1g;)
S OG-l 0 < g, < §,< 1

and this completes the proof.

Lemma 8.32 (Jackson type inequality). Let —r< k< r—1 i<y
< oo. Then there is a constant C, such that

If — Q™ < O D (f — QLS

kolds for f e Wi(I) with f(0) = 0 if k> 0, and for f € Wi(I) with f(1) =0
if k<< 0.

Proof. The proof is based on the idea of G. Freud and V. Popov in
[23]. For the proof let

(8.33) n=1,

859 = span[gi®,j =1, ..., n].
It follows, by Lemma 8.13, that with some ¢, < oo

”f— Qg’k)f”p < Gr”f—h”m

holds for f e I, (I) and h e S,
In order to get (8.33) it iy important to construct a suitable k. This
is done below. We let

g = D(f—Q52f),

n=1,

O = ffa Loj = <8251 Sn5a) s
Inj

4 1
=M, e=[, H=],
. ¢ {

where M{), is the, corresponding to the nth partition, B-spline normalized
in I, (cf. (7.5)).
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Case: k= 0. We modify the nth dyadic partition assuming that it
has mulbiplicity » —% -1 at 1. It should be clear that
85 = span[@b;,§ =0, ..., n—1].
We now define

n-—1
b= QURf+ > a,6b;.
=0
Case: k<< 0. It is assumed in this case that the nth dyadic partition
has multiplicity » at 1. It then follows that

Hby e S§(I)  for  § =0,...,n+k+1,

and we define

W — Q(r.k)Jv_'SMa Hb»—( E a.) Hb
4 HDb; 5| A0 g iy«
= J=ntk+1

" Having the proper % in both cases we complete . the proof by applying
an argument similar to that in the proof of Lemma 4.8 in [17].
In what follows we denote by (B, 3> n,) either (0, n > 2 —r - [k])
or (¢4, m > 1). Thus in the first case 7, = 2 —r+ |k| and in the second
case %, = 1. For |k| < 7 we introduce the operators

HOfw) = [ M50 (s, 1)f(s)ds

with

n .
MM (s, 8) = DR ()5 (1),
F=ny,

To each system (A{*M, n > n,) we assign an interval J and an integer m as
follows (ef. (2.38)):

I (R3M) = (f09), then J =1 =<0,1) and m =r—kfor k> 0;
J =<K ~1,2> and m = —k for k< 0.

I8 (M) == (g0, then J =< —1,1) and m =r—Fk for k> 0;
J = (0,2> and m = —% for k< 0.

It f is a function on I we let f, denote the extension of f to J which
vanishes on J\I.

We are now in a position to formulate the basic results on the (Al"¥)
systemns.

Prorositon 8.34. Let —r < k<<r—1. Suppose that f W) and
fre WilJ). Then, for n > max(n, Npr1)y ONE has

DHf = HpHDy,
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Moreover, for k| <<r we have
(hggv,—k), h(jr.k)) o 61_’!7 @;j = my.

A direct proof of these formulas is omitted.
ProposITION 8.35. Let |k|<< 7. Then there arve constants O, < oo,
0< g, <1, depending on r only such that

| M5 (s, )| < Cymgte,
In particular, the projeciions
HO®: Ly (I)->L,(I),

nzl,s,tel.

1<p <K o0,
are bounded uniformly in n and p.
This proposition follows from (8.11) and (8.14).
PROPOSITION 8.36 (Bernstein and Jackson type inequalities). Let
—r<k<7-1, 1<p< co. Then, for feL,(I) we have
(8.37) IDES S, (1) < ConHEPf|, (1), n>1.
Moreover, for fe Wy (I) with f;e Wh(J), we get
(8.38) If = B2, (I) < Cn= | D (f — BEHf), (1),

In.both inequalities O, depends on r only.
Inequality (8.37) follows from (7.14); (8.38) is a consequence of Lem-
ma 8.32 and of Lemma 4.8 in [17]. .
PROPOSITION 8.39. Let —r < k<< 7. There are constants C,y 0 < ¢, < 1,
such that

n>=1.

I (0)] < Ottt tel

holds. :
This proposition follows by (8.28) and (8.12).
' Applying similar arguments as in the proof of Theorem 7.1 in [12]
and using the last proposition we obtain:
PROPOSITION 8.40. Let v > 1 be given. There is C,<< co such that, if
I<p<oo, N=2%u=0,1,...,aell, then

n=1,

aN
| X @, (D < 0,y
N1 n
holds for —r<Lk<r and

2y
X o Tt

a, 1), (1)
N+1

Wt g) y <
D

holds for |k|<<r.
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LenmA 8.41. Let |k| < 7 and let J, m be defined as before. Then for some
0, < oo ‘ )

(8'12) ”f"’Hg:’k)f”p (I) < Or{))711,p (fJ7 1/”)]’

holds for fe IP(I), 1 < p < o0, n > 1.

Proof. It follows by Proposition 8.35 that it is sufficient to prove
(8.42) for » = 2%, 4> 0. In the rest of the proof we assume therefore
that » is of such form. We now distinguish four cases. At first let (R
= (fi"M) and let 0 < k < 7. In this case inequality (8.42) follows by The-
orem 4.1 of [12]. In case —r<<k< 0 we define

Suy (1) = span[(9),, § = nyy ..., 0],

where the order of the splines is 7 —% and the multiplicities at 0, 1 are
a =7, f = r, respectively. To obtain (8.42) it is now sufficient to apply
Corollary 7.20 and Proposition 8.35. The last proposition i3 used to pass
from the best approximation to ||f —H{®f||,(I).

In the case (A{"™) = (40¥) and 0 <% < » the argument is gimilar
and it is omitted. It remains to prove (8.42) in the case of the system (gl
for —r< k< 0. To this case there corresponds J = <0, 2>, I = €0, 1>.
For the given f e L,(I) we use f to define the Steklov mean; here f is the
extension by zero of f to <0, co). The definition is as follows: for A > o0,
ted

m

~Z(—1)"”"'(}“) [ [Fltins+ ... +sp)dsy ... ds,,.
I I

=1 v

g(t) =

It then follows that g e W), g1 ~u = 0 and that for the restriction
go of g to I we have

”f_gt)“p(l) < Orwm,p(fJ§ h)J:'
™ Dmgoﬂp (I < erm,z) (fr; h)ge
On the other hand Proposition 8.35 gives

If —EG B, (1) < O, (IF = golly (1) + gy — HGPgol, (T )s
and Propositions 8.34 and 8.36.imply

”.(]l) _[JSI’“!]D”p(-[) < 07-"7‘~m”01 _H}{’o)glllﬂ(_[)
with gy = D™y, m = —Fk. However, Proposition 8.35 implies
llgs — H g1, (1) << CLD™gqll,, (1)

Thus, the combination of these inequalities with (8.43), h = n7!, gives
(8.42), and this completes the proof.

Remark 8.44. It should be clear that all the results on the operators
H{™, [l < »; can be extended directly to the X,-valued case.

(8.43)

3 — Studia Math. 76.2
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The last lemma of this section is needed in the next section in the
proof of the unconditionality of the systems (A{"™), |k| < ». The next lemma
is preliminary to the last one. We need some more notation. For a linear
operator 7': L,—L, we denote by T* its Hilbert space adjoint, For —r < &
< r and f e C(I) we define

ABf — ZJ‘V (f FARGTEI) RS, N = 2%,

N+ I

In particular, for |k| < r we have the relation
4G9 = AP —HG.

LevMva 8.45. Let —r<k<r,N =2%pu =0,1,... Then for some
0, < oo,

AP (T) < O,N 2.

Proof. Notice that —r» <k< r implies —r< —k—1< r. Thus by
Proposition 8.40

4G, = || ZII’V (B == @) — R0 (0 ) eH

N1
2N
(k) (r,~k—1)
<2( sup 1B | PR i

< CTNkNllz-k—l — CTN_IIZ.

LmMvA 8.46. Let k| << r. Then (ADM)* = A8 and for some €, < oo
we have for feL,(I), p=0, v=0

145D A9 (1) < 0,271 flly(I).

Proof. The case k = 0 is trivial since (409, 4 = 0,1, ...) is an ortho-
gonal family of orthogonal projections in L,(I). For later wuse let
N =2, M =2* and g = 4""f. By duality we reduce the proof to the
case where u<<v» (M < N), and this inequality is assumed whenever
—r+1<k<r Rach of the following three cases will be treated separ-
ately: 0 < k<7, —¢r4-1<k<<O and kb = —pr-41.

Oase: 0 < k< r. Using Bernstein’s inequality (7.14) and Proposition
8.34 we obtain

14ERAE=Bf, = [ 45D,
= | DAL* V6], < C, M| AT-Vgg],
< O M{[[ 455D (Gg — (g, V)lla+ g, VI 145+ D1}

icm°®
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Applying now Lemma 8.45 we get
g, 1)1 IAGEDLY, = (409, IO M)

= |(f, 47P0)0(M ) = |IfI:0 ((MF)~*").

Moreover, Proposition 8.35 implies

42 {Gg —(g, 1)

2 < ClIGg — (g, L)lla.
However,
aN

(9, 1) =69 = > (f, ro)ng—rn,

N1
and therefore by Propositions 8.40 and 8.35

I6g —(g, Dll. < O AE~9Sll, = O )||flp-

Combination of all these inequalities completes the proof.
Case: —r--1< k< 0. The Bernstein’s inequality implies

(8.47) 14GRAL=Bf), = | DHEATPg), < O,MIH ATy,

For the latter function we write the following identity

(8.48) HAGRy = A=Yy 4 (g, 1) 7,
= AP Hg —2)+ (g, 1) P, + A4V,
where
M
Fp= ) WP )R+,
MA+1
2N
A= D (f BE) R (1),
N-+1
Now,

2N
A—Hg = 3 (f, Wy)grD
N+1

and therefore by Propositions 8.35 and 8.40

(8.49) 145D (Hg — )y < CN ]l
Next, Lemma 8.45 gives

(8.50) Itg, DI = I(f, 48P1) < ON 2 fll,,
and Proposition 8.40 implies

IEulls < C % ZJ‘;'[ [BR(0)) < 0, M,

M1

(8.51)
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and

(8.52) 12l < O, N2 fllge
Moreover, Lemma 8.45 gives

(8.53) 1ACE=D1 ), < €, M,

Combining (8.47)-(8.53) we obtain the desired inequality.

Case: k = —r+1. Let m = —k =r—1, h = A"~V and let h, be
its extension by zero from I = <0, 1> to J == €0, 2). The functions » and hy
are splines of order 1 corresponding to-the wniform dyadic partition with
step (2¥)~% By a duality argument it is sufficient to prove our inequality
for v (M > N). Now, by Lemma 8.41,

A=+ 04T g, = AGr+0p)
KO 1,5 (s M7 < Cpoy g (hys MY 4,
and the L, improved version of (7.14) (cf. [12], Lemma 9.3) gives
@z (hys M7y < ONPM PR, < O NI g,
This completes the proof in the last case.

9. Spline bases in Sobolev spaces with boundary conditions on cubes.
For fixed integer d > 11et @ = I% I = <0, 1), and let Z,Z' be two comp-
lementary boundary sets as defined in Section 2 (cf. (2.37) and (2.47 )

Our aim in this section is to construet Schauder bases in the Sobolev
spaces Wi (Q)z, m 20,1 <p< oo. The bases we are constructing are
tensor products of one-dimensional bases. Therefore we stars with the
definition of the one-dimensional bases.

DEriNirron 9.1. Let the integers m = r —2,r > 2, and the set Z, < oI
be given. Moreover, let n(Z,) = 1 for Z, = {0}, {1} and n(Z,) = 2 —» for
Z, = 9, {0, 1}. The basic functions are now defined for % > n (Z,) as follows

g i Zy= o,
Crng) it Z, = 0,1
Feszy) = (O =0
gy i %, = {0},
gerI) it Zy = {13,
It should be now clear that for n > n(Zy)
B3 Z0) e Wit (I),,  for 1<p< oo
and .
FSZ”)(';Zo) EW;;”(I)Z0 for 1<p< oo,

The very definition of the functions F™ implies for 4, j > n(Z,) = n{Z).
(9.2) (ﬂ’“’(-; Zy), Fy('m)(‘i Zl;))LQ(I) = ;5.
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For given f e I'(I) we define the partial sum operators

(9.3) U3 20) = D) (£, B (5 ) B (5 Z,).
F=n(Zg)

To treat (F{™(-; Z,), n > n(Z,)) in Sobolev spaces we need
DrrrNrTIoN 9.4. Let k, 0 <k <m-1, be given, and let #(Z,; k) be
equal to 1 for Z, == {0}, {1} and to 2 —r % for %, = @, {0, 1}. Then
FGR (5 Zy) = DEF(-; Z,),
HEP(5 ;)
(—=LG* P (-; Zy)
We have again the biorthogonality eondition
(9.5) (TP (-5 Zo), P95 Z)) = 6,5

satistied for 4, j > n(Zy; k), 0 <K E<m-+1 and Z, = 8I. The corresponding
partial sum operators are given by the formula
ngn,k)(f; ZU) — 2 (f’ F(m,—k)(,; Z")))ngn,k)(,;zu),
n=n(Zy:k)
where 0 < k < m4-1. Tt follows by (9.2) and (9.5) that U™ = U™ and
U™¥ are projections. An application of Proposition 8.34 gives:
Prorostrion 9.7. Let 0 <k<m-+1, and lot f e Wi(I)z,. Then
DEUP(S; Zo) = UPP(DY; Z0), > n(Zy; b).
LevmA 9.8. Let Z, < oI, 0<k<m+1. Then
(FE9 (3 Z4), m > n(Zo; B))
is a Schauder basis in L,(I)if 1<p<< oo, and in Wg(I)ZO if k< m,
1<p< oo )
* This lemma follows directly from Definitions 9.1 and 9.4 by Prop-
osition 8.35. .
Lmnvwd 9.9, Let Zy < 01, 0 <<k <m+1,1< p< co. Then
(FGR(5 Z4), n = n(Zo; 1))
18 an wunconditional Schauder basis in L, (I).

Proof. According to Definitions 9.1 and 9.4 it is sufficient to prove
that (W*n 2= ny), k| < » = m -2, is an unconditional basis in L,(I).
Duality arguments reduce the problem to 1< p < 2. Let us now define
for given ¢ = (g,), ¢, = 41, the operator

o

Tof = D) eulfy By )nin,

n=ny,

for
for

Zy = @7 {0}1

F,(:n’—‘k)('E Z(;) = { Zy = {1}, {0, 1}.

(9.6)


GUEST


118 Z. Ciesiclski and T. Pigiel

It is sufficient to check that T,is of strong type (2,2) and of weak type
(1,1) and then to apply Marcinkiewicz’s interpolation theorem.
The strong type (2,2) of T, can be proved as follows. Lemma 8.46

says, tftha the hypotheses of Cotlar’s lemma (cf. [22], pp. 102-103) are

satisied. Thus in the notation of Section 8 we have

IFICT) ~ LEEPAE( N#»)

whence by Khinchin’s inequalities

IFIS(E) ~ WEEPAIS D+ D)1 40Pf(T).

Hu=0
Now, Proposition 8.40 gives

2N
IAGBARI) ~ D IF, hE=RRPIE (T).
N1
Consequently,

(Fle (L) ~ 1Tl (Z

The weak type (1, 1) of T, can be proved Wlth the help of Propogition 8.39
exactly in the same way as it was proved in [13] that this property holds
in case (B®) = (fM). This completes the proof of the lemma.

We are now ready to pass to the d-dimensional case. Let Z be given
as in (2.37). For given multi-indices k = (ky,.. aka)y 0Ty < m-1,
N = (Ny, ..., Ng), N; = > (25 k),

Fi(; 2) = BRa (5 2,8 ... @Bk 2,),

F(m) Ivm 0)
It now follows by (9.5) and (2.47) that
(9.10) (FgaB(; 2", F%’”"”’('; D)rye) = Sy
where i, 1= n(Z; k), i.e. i1 2 n(Z5 k) for j =1, ..., d. It follows from
(9.10) thafn the following operation 1s a projection: for Fel (@)
(9_11) U,’:’U"J(f; Z) — 2 (f, Ip&m,—h)(‘;Zr))_lpgm,h)( 5 Z).
Cleaxly, for f = fi® ... ®f;
(9.12) UMf5 2) = UM (f5 208 ... @UH(fy5 7,).

We use later on the 1dent1f1c,a;t1on UMY = gim. Tt is important that
Proposition 9.7 in view of (9.11) and (9.12) extends to

Propostrion 9.13. If 0 <k <m+1 and fe WEQ)y,, then
DM (f52) = UGB 2).
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The ordering of multi-indexed sequences of functions which was used
in [14] is called rectangular. )

Lemma 9.14. Let Z be given as in (2.37) and let 0< k< (m+1,...

oy m+1). Then (FPM (-5 Z), n= n(Z; k) in the rectangular ordering, is
a Schauder basis in L,(Q) if 1<p < o0, and in WH(Q), if < (m,...
ym), << o

This lemma follows from Lemma 9.8 by an argument similar to the
one applied in [14].

LemmA 9.15. Let Z be given as in (2.37) and let 0< < (m+1,.

coy A1), Then (FGN(-; Z), n=n(Z; k) is an zmcondztmnal Schauder
basis in L,(Q) if 1< p< oo.

To obtain this result we use Lemma 9.9 and a result of McCarthy [31]
on products of uniformly bounded commuting Boolean algebras of pro-
jections..

THEOREM 9.16. Let m >0 and let Z be given as in (2.37). Then
(FE(; Z), n > n(Z)) in its rectangular mde;mg is for each E, 0<%k < m,

a Schouder basis in T/V’“(Q); with 1 < p < oo

The proof of this theorem is a direct consequence of Lemma 9.14 and
Proposition 9.13. From Lemma 9.15 and Proposition 9.13 follows

THEOREM 9.17. Let m= 0 and let Z be given as in (2.37). Then
(FGI(:5 Z); n = n(2)) is for each ky 0 < k< m1, an zmcondztwwal Schau-
der basis in WE(Q), with 1<p< oo,

Using the notation of Section 2 we now state the fundamental result
on orders of approximation.

THEOREM 9.18. Let m=> 0, u >0, N =2, n = (N, ..., N), and let Z
be given as in (2.37). Then for some constant C = C(m,d) we have for
fel,@),1<p< oo

If = TS5 2)p(Q) < Copyo (Fzs N a0
where f, is the emiension of f by zero to Q.
Proof. For given ¢ =1,...,d we define the following projection
U5 2) = Bh® ... @B, QU (5 Z)@F,,@ ... ®F,,
where the B;’s are copies of the identity operator acting in Lp([ ). It then
follows by a telescoping argument (cf [17], proof of Lemma 5.9) that

(9.19) If = TS5 2l (@ ~2 If = U5 21 (@)
We now apply the veetor- valued version. of Lemma 8.41 to obtain

If = USI(S5 Z))1 (@) < Ow%{’, 20 (23 N g0
Moreover, there is a trivial inequality, o(l),, , < @,,1s,,, and this completes
the proof.
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TumorEM 9.20. Let mz=0,uz 0, N =2 n = (N,..., N),
< k1< m, and let Z be given as in (2.37). Moreover, let
Unf = UP(f; 2).

Then there is a constant € = C(m, d) such that for 1 < p < co and f € WE(Q),
we have Bernstein’s and Jackson’s inequalities

ITAA15+9(Q) < CNHUAIS (@),
If = UxFIPNQ) < CNHf — Usf I+ (Q).

Proof. This result was established for Z;, = @, = 1,..., d and for
Z; = {0,1},j =1,...,d, in [17], Theorem 5.16. Sinece wo have (9.19),
Propositions 8.36, 9.13 and Theorem 9.18, similar arguments can be used
to establish the theorem in the remaining cases of Z.

Remark 9.23. Tt is important to realize that we have the following
formula for the adjoint operator (in the sense of the Ililbert space L,(Q))

0k

(9.21)-
(9.22)

U5 2)* = U (52).

10. Spline bases in Besov spaces on cubes with boundary conditions.
Let us start with some obvious conclusions which can be drawn from
the results we have already established.

ProposrTIoN 10.1. Let @ = I% and Z be given as in (2.37), let m be an
integer. Moreover, let 0 << s < m, 1 < p, ¢ < oo. Then (FU(-; Z)), m 3= n(%),
in the rectangular ordering, is a basis in By (@)

Proof. Proposition 2.50 (cf. also Remark 2.51) characterizes B, (@)
as an interpolation space between W, (Q), and W (Q),. Sinee, by Theorem

n
9.16, the sequence (F4V(-; Z)) is & Schauder basis in the latter spaces, the

proposition follows from the fundamental property of interpolation spaces -

(¢f. e.g. [3], Theorem 3.1.2).

ProPOsITION 10.2. Let the hypothesis of Proposition 10.1 be satisfiod.
Then for 1<p < oo the system (FM(-;Z), n> n(Z)) is an wnconditional
basis in B} (@) - '

Proof. Apply similar argument as in the previous proof using Theorem,
9.17 ingtead of 9.16.

The space By, ,(Q)y, for arbitrary Z and for any choice of the pae-
ameters § > 0,1 < p, ¢<< oo, has an unconditional basis.

We are going to construet such a basis in two steps. The fhst stop
gives an unconditional Schauder decomposition into finite-dimensional
subspaces, providing at the same time a new equivalent norm in B3 ().
In the second step a recipe is given for choosing in each of the finite dimen-
sional subspaces a suitable basis so that they will provide a linear isomor-
phism between Bj (@), and certain sequence spaces.

e ©
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DEerINITION 10.3. For given Z, m >0, ¥ = 2", u >0, let
V! = UGN 2)-TUP(f32), n=,..., V)
Vof = UM(f52), 1=(1,...,1).

THEOREM 10.4. Let Z be given as in (2.37) and let 1< p, ¢ < oo,
0< s< m. Then Bj ,(@); has an equivalent norm

00

IALL@ =X 17, @) )"

H=0

(10.5)

Proof. Theorem 9.18 implies that for some constants ¢ = ¢ (m, d)
we have
”V,uf”p (Q) <~ Oa)m,p (fZ7 AT_])QZJ
whence we infer
A @)z < C s, my DIFAS (@)
The opposite inequality can be proved as follows. In Section 2 we have
defined

d
Q,=]]1, with I,=1,.
i=l

Let now for fixed j,1 <j<d,

d
Qo = ” I«i;

X =Wy
jwAi=1 L
Our aim is to estimate from above
w%),p(fz; N_l)l.?z = W,y (fzﬁ X; Ar_l)lj)

‘where fzj has the obvious meaning. It follows by Proposition 7.16 that

N
iz TNy < ON(Ifall(02)+ 3 KB 1))
‘where
B(f) = ind {Ifz, —glp (L5 X): g & Sl T}

and §,(I;; X) is the space of X-valued splines on I, corresponding to the
kth dyadic partition such that it contains (see below)

13 ) ] i
span [ D) FF(52), 5 1 e Ly(Qo)]-
i=n{Z;)
16 then follows that (m = (N,..., N))
Ex(f) < Olf — USHS; Z)1n(Q)-
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Applying (9.19) we find that

a »
D ol (fz3 N7, < ON7" N 2™V, f,(Q).
j=1 pe=()

This implies that
4
D 5(@2) < CIFI Q)
i=1

whence by Theorem 2.28 the proof is complete.

CorOLLARY 10.6. For arbitrary boundary conditions Z we have the fol-
lowing decomposition (cf. Definition 10.3)

f"':ZV/Af

n Wi @)z and B (@) for L<p < 00, 1< g 00, 0< 5< m. It i un-
conditional in the Sobolev space for 1 < p < oo, and in the Besov space for
1<p,0<< 00,0 8s< M.

This follows from Theorems 9.1 and 10.4.

‘We now pass to the constiuction of suitable bases in the finite dimen-
sional subspaces. Let us start with a decomposition of the index set N (Z)
=N(Z)x ... xN(Z,;), where N (Z,) =N+n(Z;),n(Z;) is given as in
Definition 9.1, and N is the set of all non-negative integers.

For given u>1,ueN,@ e D = {,...,d} define

Ve = {n: 2*71 < m; < 2% for ¢ e 6, m, < 247" for i e D\e},
Ny = U Nﬂ,e’

D #esD
Ny ={neN(Z): n;<1 for ¢eD}.

Clearly, all the sefs are disjoint and

(10.7) NZy=U¥VN,=N,u U U N,
n=0 u=1 GstecD
To each of the components in (10.7)

sional multivariate spline space:
S}l,(: (Z) == fpan [:an)(' 3 Z) the N/l,ﬂ]’
8y(Z) = span [FE(-; 2): n e N,].
In 8,(Z) the basis will be left as it is.
In 8, . (Z) there will be constructed a tensor product basis in such a way
that its coefficient space will be, wniformly in wand p, 1 < p < oo, linearly

isomorphic to 1%, k = dim 8, ,(Z). Moreover, the dual basis will have the
same property with respect to §,,(Z’).

there corresponds a finite dimen-
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In what follows we consider a uniform partition I7(u) with step 27
and with multiplicities one at all knots but 0 and 1 where the multiplicities
are assumed to be 3r and 2, respectively, i.e. IT(x) = (t,,),

(i+3r—1)27* for i< —3r,

0 for —3r<i<o,
t={ i27" for  0<i< 2%,

1 for 27 i< 24-2r,

(4 —2r+1)27% for iz=2¢42r.

The B-spline corresponding to the support <f,, t,...> is denoted by
NV == N4y ooy tugip; D). The function NU) is well defined for
', 4 satisfying the condition ¢, ;< 1, ,,. With such understanding of the
B-gplines we can. state and prove]easily:

PROPOSITION 10.8. Let H = [, u=>1,7 > 2. Then we have
i

span[fern, j = 2 —r, ..., 2"] = span[NO, j =1—r, ..., 2" 1],

span[f ", j = 2—r, ..., 2] = span[N$},j = —2r+1,...,2¢—r 1],
(10.9)
spanfgi™, j =1,...,2"] = span[N{),j =0, ..., 2¢ —1],
spanfgfn ™, j =1, ...,2*] = span[§C?, j = 0, ..., 2¢ —1],
where (
ryr AT (2r . _
S F A i el

PROPOSITION 10.10. There is a constant O, such that for p>=1 and
1€<p<K o

Ol L YR (D) < 0,27H7,  j=0,...,2"~1.

Moreover,

, (1)< 0,

21
(10.11) Nl 05 < | 3 a5V 67
oy

where ljall, is the norm in ¥y and
i, = FED (P D)7
Proof. The first two inequalities for r < j << 2¥ follo_w by (7.3) and
(7.6). Now, suppH'N¢) < sup N8 = <0, (3r—1)27* for j = 0, ..., 7—1,
and

1B NE) | < 0,274
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Thus, )
IFED, () <

The opposite inequality follows from Bernstein’s inequa]ity
2NHTN G (1)0, > | DHN |, (1) = NI, (1) =

The right-hand side of (10.11) can be proved in a similar way as in
the case of the B-splines (as in Corollary 7.10). The left-hand side can be
proved as follows. We notice that there are coefficients b, _;,, ..., b_, such

that on I = €0,1)
-1
2 bV 5?,?,17 2 a; ") %,w

F=1—3r J=0

‘where N E;"?y is defined as in Theorem 7.8. Thus by the theorem just quoted.

-1 2b_p—1
3 Y
| 2 W], @ =] X 0 2
ak_q

>0 5’ |bj|f’+2 g

>0, 3 j (1) 4; ).

However, by Bernstein’s inequality we obtain

027, §=0,...,r=1,

~—1 2 —uin

N

(37)
Bgp N M,z?

oo

I 2 LW = WN‘f;’p " (1)
= 2ma z ajNﬁf?pl I () NF S (D)
-1
= Nﬁlep ()= 0 > a7,
F=0

and this completes the proof of (10.11).

LemmA 10.12. Let By, = (b“) k=01,
b“’) _ (N(r) Nl(;z) )

bY) = (), FE),

be the Qram matrices with
Ay j = L—ry ..., 201,
4§ = 0,...,2%—1.

Let 4, = B!
<1, such that

0] < Cmgl= for

where ik =0, 1.

= (), & = 0,1. Then there are constants C. and ¢, 0 < g,

4§ = (1—E)(1L—7), ey 21,

icm
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Proof. We are going to prove the case & = 1 only. The other case is
quite similar and the proof is omitted. Since (cf. Section 8) for n = 2#

n—-1 .
L& (s, 1) = > alff ) (s) N0 (8),
=0

it follows that

(10.13) af) = f f LG (s, FC) ()N, (1) ds dt.
Tiere, (F07) and (N{)) aro the dual bases to (F¥7) and (N)), respectively.
Using Corollary 7.10, (10.11) and Proposition 8.6 (smta,bly adapted in

case of (FE)) we obmln
(1) (t) r,”qLM zl
[ﬂ%’( )| < CngH

0<g.<1,

These inequalities, Lemma 8.13 and (10.13) give the desired result.

DrriNrroN 10.14.
0 21
N = 3 i,
goalem
2"-—1

1
NG = > W,

4=a0

261,

j=1l=r,..,

j=0,...,2¢=-1.

LevmA 10.15. The following relations hold

(Nu,u fo,?) = 'ji,jr GWi=1-r ... 2k -1,

(fo,)i: N%)) = bip 4J =0,...,2"—1.

Moreover, if (f.q) is one of the systems (i, 4 =11~—4", Ly 28-1)
(N“'),o Ly, 20— 1), (N0 6 = 0,..., 8¢ =1) or  (NGD, 4=0,
.y 28 —1), then fm some constamt C, we hcwe
lall, 07 < Za i pé Oyl
b 1ol A

where A == dimspan[f,,]. In addition fo this we have
1
IINfZ?IIp ~ |8y, ~2%  1fp +1/g =1.
Proof. The duality relations follow by Definition 10.14, Lemma 10.12
and Definition 10.14 imply for & =0,1;n = 2

%)(t)[ <0 ”qlni—-ﬂ 0< g < 1.
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This, the duality relations and the properties of the B-splines imply
the remaining statements of the lemma.

DerFINITION 10.16. Let

fom =N ff,’j_l/HN ff,),_lllz for j=2-r..,2%
185 = N e 1/IIN Sl dor

g(2r,r) —_ _N(")j I/I]Nfﬂ_lliz for

J=2-r,..,2%
J=1,..,2%

685 = NEL NSl for

=

jo=1,..., 28

DerFinrrion 10.17. The function F (45 Z,) for w1, n(Z,) <n < 2¢
1s defined by the formula as given in Definition 9.1 if we repla,ce formally

n, Jur 90 B Pruns fums Gums Tespectively. Moreover, let F{m = F™ for
Zy<sn<l.

We are now ready to define our new basis.
DEFINITION 10.18. The new system for given Z is defined according
to the decomposition (10.7) as follows
KN (32) =FM(;2) for melN,,

EN(32) =QFW(5Z)® Q FM, (5 %)
ice eD\e
for neN,,u>1,0 ¢cD.
TuEOREM 10.19. For given m =0 and Z we have
(10.20) (G52 655 2)) iy = Srems

where n, k > n(Z). Moreover, for u3x0,

(10.21) span[Gi (-3 2): meN,] = span[F(; Z): ne N,]
and for pw=1, feL,(Q)
(10.22) Vil = (60520605 2),

neN,
where V, is given as in Definition 10.3.
Tinally, for some constant O = C(m, d)

(1028)  fal, 07 < 2re | 3 a6
neN,

o I < Cla) B

where 4 = cardinality of N ,.

Proof. Property (10.20) follows immediately from Definitions 10. 18,
10.17, 10.16 and Lemma 10.15. Let us now introduce

8,(Zo) = span[F((+; Z,), n(Z,) < m < 2¢],
- 4,(Zo) = span[F) (5 Z,), 271 < m < 24].

icm°®
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It then follows (see the definition following (10.7)) that
8,.(2) = ® 4,(Z)® ® Su-— (Z,).
‘IEE

Proposition 8.40 gives with 2 = 2#71

WT 3 2], (@) ~ 2,
by

ob—1lyq

and Lemma 10.15 implies with 2, = 2% ' —n(Z,)+1

gl~1

“ 2 @ F (¢

s 20, ~ 2Pl
F=r{2;)

Applying a standard lemma on products of operators in L, spaces we find

| S a5 2)],(@) ~ 200,
MEN P

where 1 = dim§,, Z). Since

=\ N

ﬁaée
it follows that (10.23) is satisfied. Introducing

8,(Z) = 8,(Z)® ... ®8,(Z,),
we find that
SH(Z) =Su—1(z)® ® S_u,e(Z)

BesD

whenee (10.21) follows, and this ecompletes the proof.

COROLLARY 10.24. The sysiem (GSV(-;2), n > n(Z)) is an unconds-
tional Schauder basis in By 4(Q)z for 0 < s < m, 1 < p, g < co. Moreover, if
F= D a.80(;52),

n>n(Z)
then letting o = sjd+1/2—1/p

1718, 0(@)z N{S’ [2/md( % ]%[p)llp]q}ua'
=0 nel,

Remark., The system (G (-; ), n = n(Z)) in snitable ordei'ing is
& Schauder basis in W5(Q), for 1< p < oo.

11. Final comments. Let us complete the proof of Theérems A and B
formulated in the introduction to Part I. Recall that M is a compact
d-dimensional 0 manifold and m > 1 is a fixed integer. The sequence
(fa)e, = O™ (M) referred to in Theorem A can be obtained as follows.
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Let Qi ...,Qy be the decomposition of M into non-overlapping
d-cubes constructed in Section 3. Let 7 be the isomorphism constructed
in Theorem 4.9, i.e.

T: F (M)~ D ®F @)y,

<N

(11.1)

for F = WE, 0<k<m, 1<p< oo,

Recall that, if we fix diffeomorphisms @;: I, for ¢ =1, ..., N,
then each summand & (@;)z, i¢ in a natural way identified with the space
.?7(1'3)@-1(2.). Consider, for ¢ =1, ..., N, the system

i = C™(@Q))z, = T{C™(I))
which corresponds in thig identification to the system
{0, 071(2): n=>n(074(Z)} = (19,

)
consgtructed in Section 9 (cf. Theorems 9.16 and 9.17).

The union U ... U §y can be ordered as (b, )p.; 80 that (Ay_yy.p)i2,
ig the enumeration of §; which corresponds to the so-called rectangular
ordering of §; (as defined in [14]). Put f, = T~ (h,) e O™ (M) forn = 1,2,...
Then (A1) follows from Theorems 9.16 and 4.9 and (A2) follows from The-
orems 9.17 and 4.9.

Recall that we have fixed a smooth measure x on M (cf. Section 4).
In particular, on each @; one has du = g,dx for some positive function ¢,
€ 0°(Q,), where dz is the measure transported from the Lebesgue measure
on I? by means of @,. Since (f,)%., is, in particular, a Schauder basis in
L, (M, du), there is a unique u-biorthogonal sequence (g,)_; which consists
of elements of L. (M, du). A different deseription of this sequence will
show that (A3), (A1) and (A2') are satisfied.

By Theorem 4.9 the operator V, (which is the inverse to ™) induces
linear isomorphisms

Vi (M)~ D F Q)2
1<N
for F = WEO<h<mL<p < oo
For 4 =1,..., N the system
& s 0™(Q)),, < V(6 )
i
which corresponds to the system
(B, 571(2)): n>n(o7(Z)) = om (1%

-1 ’
o )

is, by (9.10), da-biorthogonal to §,.
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I?y.'l‘heorem 9.16, the system ; forms (in the rectangular ordering)
a bagis in # (Qi)z,. which is unconditional if 1 < P < oo by Theorem 9.17.

It follows that the system

&= f: fe B}
is p-biorthogonal to ;. Since the multiplication by ¢;! defines an auto-
;}110?.‘1)}}i$111 of each space #F(Q),);, this system remains a Schauder basis
n Wy(Qvt)m;-l(Z;Y
Finally, since V5! = T the set
Vit (gr B - uey ) = 0

is w-biorthogonal to (f,)q, and hence, snitably ordered, it coincides with
{gn)er- Therefore, conditions (A3), (Al’), (A2’) are satisfied thanks to
Theorems 4.9, 9.16 and 9.17. This completes the proof of Theorem A.

As we already mentioned in the introduction the sequence (f,)=; is
actunally a basis in Wj’i(M Yfor —m < k<< m, 1< p< oo and is an uncondi-

tional basis if 1< p < oo. Analogously (g,)%., is a basis in V‘I’Q’ﬁ(M) for
—m<Sk<m1l<p< o and is an unconditional basis if 1< p< oco.
The construction of the basis from Theorem B is similar. Instead of
the F,’s one uses the systems G, ¢ = 1, ..., N, corresponding to
(G0, 27 (Z0): m= (@72} = OMIYo
Also Theorems 9.16 and 9.17 are replaced by Corollary 10.24 and the
subsequent remark. -

One checks first that (B1) and (B2) are satisfied for 0 << s < m. This
is not difficult but rather tedious. It may be more convenient to order the
union of the ;’s a bit differently. Recall that each ®,; ig split into blocks
Ny Nyy ... with Card(N,) of the order 2% Now we require that the jth
block of G, precede the jth block of G, for ¢ =1, ..., N—1 and the jth

" block of ®, precede the (j -+ 1)-st block of %,. This new ordering will not spoil

the properties of the sequence as a basis in W (M).

Using Corollary 10.24 and Corollary 4.11 we obtain, for 0 < s < m,
formulas similar to (B1) and (B2) with b} , replaced by another, explicitly
defined, sequence space. It is not difficult to check that the latter space is
equal as a seb to bS , the respective norms being equivalent. We omit this
verification.

To complete the proof of Theorem B we need some facts concerning
duality and interpolation between the Besov spaces on M (cf. [17]).

Dualizing (B2) for 0 < s<m, we obtain that (B1l) holds also for
0 > ¢ > —m. Moreover, since

BY (M) = (By (D), B}y g

10 .4

4 ~ Studia Math. 76.2
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and (cf. [3], Theorems 5.6.1 and 6.4.2)
Vi = 05 by e

we obtain that (B1) is true for s = 0 as well..

The proof of (B2) for —m < s << m is analogous.

It should be rather clear that the constant ¢ in (B1) and (B2) can be
taken uniformly bounded for |s| < m—¢, if ¢> 0 i3 fixed.

The bases constructed in Theorems A and B satisfy m(,quamaes of
Bernstein and Jackson type, i.c. one has

COROLLARY 11.2. There emists 0 < oo such that if Sy, N = 2*, denoles
the N7 projection operator with respect to (f,)3u; (08 1o (gu)ln) cor-
responding to Uy in Theorem 9.20, then
(11.3) WSyt WE(IM)—>WEH (M
(11.4) M —8y:

whenever —m < k<E+1<<

Proof. The speelal case Where 1 = 0 follows from ’l‘heorem A (vesp.
Theorem B).

Since T' in (11.1) is an isomorphism for # = Wi’ﬁ(M Y —m < E < my
1 < p < oo, and the basis in & (M) is eomposed from bases in the summands
in the way described above, it will suffice to verify the analogous state-
ment for the bases in & F(Qi)z, for i =1,..., N.

This, however, hag been done in Theorem 9.20 at least in the case
0<k<k+1<m. The verification in the case —m<hk<<lh-+1<<0 i
reduced (by a duality argument) to the case 0 <k < &'+ < m (with
k' = —k—1,1 =1) for the biorthogonal system. Finally, if —m < k< 0
< k1< m, since the §y’s are idempotents, we can simply use the inequality

18: Wh—TVE < [8ys WE—WSI-18,: Wo—Wht|

and a similar one for I —8y (cf. [17]). This completes the proof.

Theorem B simplifies considerably the study of the embedding maps
between Besov spaces on M by reducing them to diagonal maps hetween
the sequence spaces b} .. In the sequel we always put

o=rld—1/p+1/2, o =s/d—1/g--1/2.
Observe first that the inclusion
(11.5) By (M) = B (M)
is equivalent to r>s¢, 0> o if 4> v and to =802
follows easily from Theorem B. Recall also that
(11.6) B\ (M) = WE(M) < BE (M)

(ef. e.g. [17]). (If % is not an integer, for WE one can take the complex
interpolation space.)

Il < OV,
W’““(M)~>W7°( < oN,

o if vz w. This

icm
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Let A be a quasi-normed operator ideal in the sense of [47]. One can
agk whether the embedding map (11.5) belongs to 2. By Theorem B this is
equivalent to j € %, where j is the embedding b3 by Clearly, the latter
is equivalent to the condition

(11.7) (Dy: b),—~b%,) € ¥,

where 2 = ¢—c and D, is the diagonal operator (D,)(z,) = (n™*z,).

It i easy to see that there is a A, € R such that (11.7) holds if A > i,
and (11.7) does not hold if A < 4, The number 4, depends on U, p, ¢ but does
not depend on either u or v. This follows from the inclusions

a8 a a a
btm = btl = btw = bt,oo

for &> 0, 1 <, w< oo. Taking u = p, v = ¢, we have bl , =1, b),
hence 1, commdes with the number A(%[, p, ¢) called the lmm,t order of the
ideal U (cf. [47]). This generalizes the result of H. Konig [44] (formulated
for Sobolev spaces and r > s> 0). (This follows from (11.6).)

Limit orders for many important ideals are computed in [47]. We shall
discuss briefly the case where % = 9, is the ideal of ¢-absolutely summing
operators (see [47]).

A sufficient condition for (11.5) to belong to P, is that D, in (11.7)
admits a factorization of the type

b

p‘“—-‘»l 4 Zt—" b

For this it suffices that a+8 = 1, a > 1/t, B> 1jg—1[t, § > 0. Numbers
a, B with these properties exist iff 21> 1/¢ and ¢> 1/A. Hence we have
obtained : ,

COROLLARY 11.8. If r —s > d/p, then the embedding (11.5) is t-absolutely
summing for t>1[2, where

A=¢—0=(r—s)ld—1/p+1/q.

This corollary, the inclusions (11.6) and the well-known relationship
between i-absolutely summing and t-Radonifying maps (cf. [47]) imply,
e.g., the following result concerning random fields on the manifold M
(abstract Wiener measures).

COROLLARY 11.9. Let y be a cylindrical Gaussian probability on the space
By () (04 Wi( )) If s < r—d[p, then y can be uniquely extended to o Ea-
don probabzhty measure on By (M),

Let us pass to applications concerning the distribution of the eigen-
values of operators acting in Besov spaces. In the results we shall formulate
(}m(ﬂ)) will denote the sequence of non-zero eigenvalueg of the (bounded
linear) operator §: X—X. (They are counted according to their algebraic
multiplicities and are ordered so that |1,(8)| decreases as » tends to oo.)
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First we shall extend a result of B. Carl [37] who considered the case
d = 17 P<q. .

COROLLARY 11.10. Let 1 < p, g << o0, > 8 and (r—s8) > d(1/p —1/q).
Let M be o compact d-dimensional O manifold and let 8: By, (M)—Bj (M)
be a bounded linear operator such that ;S’(Bg,l(M )) & B} o (M). Then

2, (8)] = O (n~tr—90d),

Proof. Clearly, without loss of generality we may assume that p < ¢
Carl’s proof for this case can be carried with some obvious changes. Indeed,
now we know by Theorem B that the entropy numbers of the embedding
By, o(M)—B5 (M) decay at the same rate as those of the embedding
ByL ()~ BIA(I).

A stronger result was obtained earlier by A. Pietsch [48] in case &
is a sort of “integral operator with kernel X ”. Also he had to consider only
the case d = 1 because Theorem B was not available for d > 1 at that time.
The following theorem, conjectured at the end of [48] can be obtained
using Pietsch’s method and Theorem B.

CororLARY 11.11. Let M be a compact d-dimensional C° manifold.
Suppose that 1 < p, ¢, 4,0 < 00,7 > 8, ¥ —s > d(1p—1/q). If 8: BE, (M)
~+Bg (M) is the integral operator defined by a kernel K of dlass [BS,,, By,
then (1,(8)) belongs to the Lorentz space 1,,, where

1/t = (r—s)/d+min(1/2,1/¢).
In particular, if w = oo, then [4,(8)] = O (n~"").

Theorem B enables us also to simplify the estimates of the s-numbers
of the embedding operators by reducing to finite dimensional problems.
Tor the definition of the general notion of the s-number function we again
refer to [47]. Here we shall only describe a typical case in which almost

all is known (cf. [43]), namely the Kolmogorov diameters (d,,(l’)).
Recall that for the operators 7: X—Y¥ and n = 0,1, 2, ... one pubs

dp(T) = inf{|QzT): B < Y, dim¥ < n},

where Qz: ¥—Y/E denotes the quotient map. Clearly,
a compact operator.

If ¥ < ¥ and T is the embedding operator, one writes d, (X, X)
instead of d,(T: X—Y). The embeddings (11.6) show that

073, (By (M), Bioo (A0) < @, (W2, (M), Wi(I)) << O, (B, o (3), B, (M),

where ¢ does not depend on . In order to estimate d, (B, 000 Biyp) from
above and 4, (B}, ,, By ;) from below one can nge Theorem B which reduces
the problem to the sequence spaces or, alternatively, to the case where
d = 1. In most cases settled so far the best upper and lower ostimabes
coincide up to a constant factor.

4, (1) >0 it T is
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The diameters d, (054 Ug.0) aTe now almost completely determined.
Let

a = minf¢ —o+a(p, 9), (e —o)max(l, ¢/2)) > 0

where v
0 i Il<p<g<?,
a(p,q) =12-1jg i 1<p<2<y,
1/p—1jg otherwise.’
Then (assuming % > o if o = 0) one has for » > 2
(11.12) O™ < A, (B2, B2,0) < Can—*(logn)’

for some 8 <3 and 0 < 0, < 0,;<< oo depending only on o—o, P, q, %, ¥
and g. Moreover, (11.12) obtains with § = 0 in each of the cases ¢ < p,
42,4 = o0, g—0>(1jp—1/9)/(q/2—1), p =1 5~ q{e—0).
Let us indicate how these results are deduced from the corresponding
finite dimengional facts.
Observe that if n, m >

(11.13) (03 s b7,0) =

(recall that d (1, 1) = 0 if & < n). On the other hand, if %,, > 0 ave integers

0, then
9"m(€'—”)d (nm l?'m)

and Y %, <, then

m=0

(11.14) Ay (030 Do) < Z omme=ag, (12", 1),
m=0

(This is a version of the method of V. BE. Maiorov [45].)
The lower estimates in (11.12) follow from (11.13) and

(11.15) 0, 1) = On~eed it N> 2,

(11.16) &, =12 if 1<p<g>2 and N>=0n.

Inequality (11.15) can be found in [43] or [41], for a slightly weaker form
of (11.16) we refer to E. D. Gluskin [41].

Upper estimates in (11.12) follow from (11.14) after a suitable chome
of the k,’s. One may assume that « > 0.

The case where g<{p or ¢<2 is easy, because then d, (Zl-}’, w
= N-4»:9, (Jusgt put k, = 2™ if 2" < n/2, k, = 0 otherwise.)

Hence we may assume that 2 < p < ¢ < oo (the case where 1<{p < 2
< ¢ being an easy consequence). Let j = [log,n]—1, 1 = [(1/2)gj]. Given
7> 0,1et b satisfy b (! -9+ 4 L. +0h) =0 —27. Pubk, =2"it0 << m< ],
b = [br™] if j<m<T, by =0 if m>1. Using these values in (11.14)
and B. S. Kasghin’s estimate (valid for 2<p< g o0)

(11.17) (1, ) < O (2N {log (e /)],

Do
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where y = (1/p—1/q)/(1/2—1/q) (cf. [43] and. [41]), we obtain (11.12) if
r = 1. In some cases, e.g. if ¢ —o > y/q, a better choice of » yields (11.12)
with g = 0. .

It is not known whether the logarithmic term in (11.17) can Dbe re-
placed by a constant depending on (log NV) logk. If this can be done for some
2 < g < oo, then one obtains easily that (11.12) holds for this ¢ with 8 = 0
except for the case a(p, q) = (¢/2—1)(¢—o) (ef. Added in proof).

In some cages, however, the factor (logn)’ may be necessary. Namely,
if ¢> 2 and %> v>1, then ‘

(B34, bG,0) > On™* (logn)Ho=tiv,

This can be deduced using (11.16).

We cloge the paper with bibliographical comments. The firgt spline
basis in O(I) and I, (I) were treated by Haar [42], Faber [40], Schauder
[61] and Franklin [39]. Extensions of those results to spaces of smooth
functions over cubes are given in the papers of Ciesielski [11], Schonefeld
[62], Ciesielski and Domsta [14] and Ryll [50].

The first result on unconditionality of the spline bages concerns the
Haar system and it is due to Marcinkiewicz [46]. In Bochkariev [36] we
find the proof that the Franklin system is an unconditional basis in I,,(I),
1< p< co. For extension of those results to higher order splines we refer
to -Ciesielski [13].

Special cases of Theorem B were proved in Ciesielski [38], [10] and
[12] and by Ropela in [49].

Theorems A and B in a less general form are presented in Ciesielski
and Figiel [16].

Added in proof. The correct order of the diameters dn (I3 , 1Y) in all the remainin
cases has been recently found by E. D. Gluskin [53]. In(f;arhm)ﬂar, he proved tha%
for 2 <111;_ <.g4 < oo estimate (11.17) holds with 0 = ((p, g) and 3/2 replaced by 0.
Using this in the argument sketched above (now with > 1), we obtain that the
logar}t];zrlnlc) factor in (11.12) may be necessary ouly if ¢> max(2, p) and g(p—o)
= min(l, p).
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O crpoennn Ge3ycIOBHBIX GAa3MCOR HEKOTOPLIX HpocrpancTe Kére

B. IIl. KOHTAHKOB (Pocron-a-Ilony)

- Pearome. B mpocrpancreax Hére umemoBHX mOCHeR0BarensHOCTeH

lam] = { = & {3 Usalarm PPl = 18, < o0, 1 = 1,2, ..,

1 < p < o0, NOKABAHO, UTO I M0G0k IOCIeOBATEILHOCTH HIEMEHTOB (fy,), IMeloiIeit
PABHOCTOHeHHO HEIPEPHBHYI0 GHOPTOTOHATBHYI0 CHCTéMY (YHKIMORANOB, BHIOIHBHO:
YCIIO0BUG: CYMECTRYIOT TaKKe oTo0pamenns B i: N»EBt, o: NN, s: N—N, c: N>R+,
qTo

el ay (a(m) < Ag | fmlser) < 0r“s(r+1)(ﬂ'(m)): r,m e XN.
D10 HaGT BOBMOKHOCTHL IOJYUHTH IPOCTOE JFOKABATENHCTBO KBABMIKBUBALGHTHOCTH
GesycmopEMX 0asmcoB B IpocTpamcrsax Hére Ipley ()], p=1,2, co, mMeOMUX

TII)a.BI’IJILHLIﬁ’ 698yCJIOBHH)7I Gasme, a TAKMHE NOKA3ATh KBABMOKBIBAIEHTHOCTH Gasucos:
1 IANOTesy Beccarx B HEKOTOPHX ZPYrAX KIACCAX MPOCTPAHCTBA.

Beemenwe. Fameit Ienblo ABAAETCA U3YYeHHE B - IPOCTPAHCTBAX
Kére cpoiicTB GA3MCOB, OCHOBHEIMH M3 KOTOPEIX CUHTAeM HKBASHOKBM-
BATTENTHOCTE GeaycmoBHLIX Gasucos (KBB) n xaparrepmsanmio Gesycmo-
RHIIX 6a3MCOB MOMOMHAEMEIX IONIpocTpauncts (mpobnema Beccarn).

Hacrosmas pa6oTa NPOROIKAET . MHOTOYHCIEHHEE MCCTENOBAHA
B BTO#t o6macTy (cM., mamp., [17, [2], [4], [5], [10], [17], [19], [20], [23]).
TlompoGuee ¢ meropueil Bompocod m. Gubmmorpadmeil MOMHO NOSHAKO-
muTECA B 0030pax [21], [22]. . :

Bamuyo poms B palore mrpaer TeopemMa 1, KOTODad YTBEPHAALT,
4TO U3 MATPUIBL IPEXHOPM CTAHJAPTHOTO 0asmea OPTOB BCETHA MOKHO
TONYuITH MATDHIY, SKEHBATEHTHYIO MATPUIe IpefRHOPM oGOl mocaexo-
BATEIHHOCTH HIEMEHTOB, MMemell PABHOCTENEHHO HEIPEPHBHYI0 Ouop-
TOTONATBHYIO CHCTEMY (YHRIHOHAIIOB, IYTEM HOBTOPEHN OHAX crouboB
® yuamemus Hpyrux. 9To obofumlaer IBBECTHYIO TEOPEMY Jparunesa—
Beccarn [2], [5] mua 6asmcos FOMONHAEMHX NOXIPOCIPAHCIB AXCPHBIX
OpOCTPANCTE U Hefasumi pesyaprar B. I 3axapiors u asropa fud p-abco-
JMOTHBIX GABMCOB NOTONHAEMHX IIONUIPOCTPAHCTB IpocTpancts  Hére.

Paccymmenuss Teopembl 1 B HoMOMHAIMM ¢ YCOBEPIICHCTBOBAHMEM
npuénmos pador [17], [20], [7] nadr spauuTennbno YIPOWEHHOE IO CPABHEHHIO
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