

Hasse's principle for systems of ternary quadratic forms and for one biquadratic form

bу

A. SCHINZEL (Warszawa)

To Professor Jan Mikusiński on the occasion of the 70th birthday

Abstract. Let K be an algebraic number field and f_1, \ldots, f_k ternary quadratic forms over K. If f_1, \ldots, f_k have a common non-trivial zero in every completion of K except at most one then — it is proved here — they have a common non-trivial zero in K. Besides an example is given of an absolutely irreducible n-ary biquadratic form (n > 3) that represents 0 in every completion of Q but not in Q.

Let K be an algebraic number field and $f_1, \ldots, f_k \in K[x_1, \ldots, x_n]$ quadratic forms. Hasse's principle asserts that if the forms f_1, \ldots, f_k have a common non-trivial zero in every completion of K they have a common non-trivial zero in K. The principle holds for k=1, it trivially holds for n=1, 2, and it fails for K=Q, k=2, $n \geqslant 4$ (see [2]). Thus it remains to consider the case n=3.

We shall prove

THEOREM 1. If quadratic forms $f_1, \ldots, f_k \in K[x, y, z]$ have a common non-trival zero in every completion of K except at most one then they have a common non-trivial zero in K.

As to biquadratic forms over Q it is easy to give an example of a reducible ternary form for which Hasse's principle fails (see [1], p. 72). An example of an irreducible ternary biquadratic form with the same property can be constructed by using results of Hilbert [4], namely

$$norm(x+y\sqrt{5}+z\sqrt{-31}).$$

This form, however, is reducible in the complex field. Mordell [6] has left open the question whether there exists an absolutely irreducible ternary biquadratic form not fulfilling Hasse's principle. The question is answered by

THEOREM 2. The absolutely irreducible biquadratic form $x^4-2y^4-16y^2z^2-49z^4$ represents 0 in every completion of Q but not in Q; for all $n\geqslant 4$ the absolutely irreducible biquadratic form $x_1^4-17x_2^4-2(x_3^2+\ldots+x_n^2)^2$ represents 0 in every completion of Q but not in Q.

LEMMA 1. If a binary form over K of degree not exceeding 4 represents 0 in all but finitely many completions of K it represents 0 in K.

Proof. See Fujiwara [3].

LEMMA 2. Let $R(x, y; u_1, ..., u_k, v_1, ..., v_k)$ be the resultant of $\sum_{i=1}^k u_i f_i$, $\sum_{i=1}^k v_i f_i$ with respect to z (u_i, v_i are indeterminates). If

(1)
$$R(a, b; u_1, ..., u_k, v_1, ..., v_k) = 0, \quad a, b \in K, \langle a, b \rangle \neq \langle 0, 0 \rangle$$

then either f, have a common non-trivial zero in K or

$$(bx-ay)^2 | R(x, y; u_1, ..., u_k, v_1, ..., v_k)$$

and the forms f_i (at, bt, z) differ from their highest common divisor by a constant factor.

Proof. If f_i are all of degree less than 2 with respect to z then they have a common non-trivial zero, namely $\langle 0,0,1 \rangle$. If at least one of the forms f_i is of degree 2 with respect to z then both $\sum_{i=1}^k u_i f_i$ and $\sum_{i=1}^k v_i f_i$ are of degree 2 with respect to z with the leading coefficients independent of x, y. Therefore (1) implies that

$$\sum_{i=1}^k u_i f_i(a, b, z) \quad \text{and} \quad \sum_{i=1}^k v_i f_i(a, b, z)$$

have a common factor over the field $K(u_1,\ldots,u_k,v_1,\ldots,v_k)$, hence also over the ring $K[u_1,\ldots,u_k,v_1,\ldots,v_k]$. This factor must be independent of $u_1,\ldots,u_k,v_1,\ldots,v_k$. If it is of degree 1 in z it has a zero $c\in K$ and we have $f_i(a,b,c)=0$ $(1\leqslant i\leqslant k)$. If it is of degree 2 in z we consider the Sylvester matrix $S(x,y;u_1,\ldots,u_k,v_1,\ldots,v_k)$ of the polynomials $\sum_{i=1}^k u_i f_i$, $\sum_{i=1}^k v_i f_i$. In virtue of a well-known theorem (see [7], Satz 114) the rank of the matrix $S(a,b;u_1,\ldots,u_k,v_1,\ldots,v_k)$ must be 2. Hence all the minors of degree 3 of this matrix vanish and all the minors of degree 3 of the matrix $S(x,y;u_1,\ldots,u_k,v_1,\ldots,v_k)$ are divisible by bx-ay. On the other hand, there are minors of degree 2 of the latter matrix not divisible by bx-ay,

in fact independent of x, y. Hence by a very special case of theorem of Rédei [8]

$$R(x, y; u_1, ..., u_k, v_1, ..., v_k) = \det S(x, y; u_1, ..., u_k, v_1, ..., v_k)$$

is divisible by $(bx - ay)^2$.

The last assertion of the lemma follows from the remark that if polynomials $f_i(a,b,z)$ $(1 \le i \le k)$ have a common factor of degree 2 they differ from this common factor by a constant factor.

Proof of Theorem 1. Let us consider the resultant $R(x,y,u_1,\ldots,u_k,v_1,\ldots,v_k)$ of $\sum u_if_i$ and $\sum v_if_i$ with respect to z. Viewed as a polynomial in x,y it is either 0 or a quartic form. In the first case f_i $(1 \le i \le k)$ have a common factor, say d. If d is of degree 2 then for each $i \le k$ we have $f_i = c_id$, $c_i \in K$. The solvability of $f_i(x,y,z) = 0$ $(i \le k)$ in a completion K_v of K implies the solvability of d(x,y,z) = 0 in K_v , and if it holds for all but one completion then by the product formula and Hasse's principle for one quadratic form we get solvability in K of d(x,y,z) = 0 and hence of $f_i(x,y,z) = 0$ $(1 \le i \le k)$. If d is of degree 1 then it has again a nontrivial zero in K and the same conclusion holds.

If $R(x,y;u_1,\ldots,u_k,v_1,\ldots,v_k)$ is not identically 0, let r(x,y) be the highest common divisor of its coefficients when viewed as a form in $u_1,\ldots,u_k,v_1,\ldots,v_k$. If $f_i(x,y,z)$ $(1 \le i \le k)$ have a common non-trivial zero $\langle a_v,b_v,c_v \rangle$ in $K_v,\sum u_i f_i$ and $\sum v_i f_i$ have it also, hence $R(a_v,b_v;u_1,\ldots,u_k,v_1,\ldots,v_k)=0$, which implies

$$(2) r(a_v, b_v) = 0.$$

(Here we use the fact that the coefficients of R are forms in x, y). If $a_v = b_v = 0$ we have $c_v \neq 0$; hence the coefficient of z^2 in f_i is 0 for each $i \leq k$ and the forms f_i $(1 \leq i \leq k)$ have in K a common non-trivial zero $\langle 0, 0, 1 \rangle$. If $\langle a_v, b_v \rangle \neq \langle 0, 0 \rangle$ for each valuation v of K except at most one then by Lemma 1 r has in K a zero, say $\langle a, b \rangle \neq \langle 0, 0 \rangle$. Thus bx - ay | r(x, y),

$$bx - ay | R(x, y; u_1, ..., u_k, v_1, ..., v_k)$$

and by Lemma 2 either f_i have a common non-trivial zero in K or

(3)
$$(bx - ay)^2 | R(x, y; u_1, ..., u_k, v_1, ..., v_k)$$

and the forms $f_i(at, bt, z)$ $(1 \le i \le k)$ differ from their highest common divisor by a constant factor. In the latter case, by (3)

$$(bx-ay)^2 | r(x,y)$$
.

Let

(4)
$$r(x, y) = (bx - ay)^a s(x, y),$$

where $\alpha \geqslant 2$, $s(a,b) \neq 0$, $\deg s = \deg r - \alpha \leqslant 2$. For every valuation v of K except at most one we have by (2) and (4)

$$ba_n - ab_n = 0$$
 or $s(a_n, b_n) = 0$.

The first equation implies $a_v = at$, $b_v = bt$ for a $t \in K_v^*$; thus

$$F(t, u) = s(t, u) \text{h.c.d.} f_i(at, bt, u)$$

has a non-trivial zero in K_v . Since by (4)

$$\deg F = \deg s + 2 = \deg r + 2 - a \leqslant 4,$$

we infer from Lemma 1 that F has in K a zero, say $\langle c, d \rangle \neq \langle 0, 0 \rangle$. If this is a zero of the h.c.d. $f_i(at, bt, u)$, then

$$f_i(ac, bc, d) = 0$$
 $(1 \le i \le k)$, $\langle ac, bc, d \rangle \ne \langle 0, 0, 0 \rangle$.

If, on the other hand, s(c,d) = 0 then by (4) r(c,d) = 0; thus

$$R(c, d; u_1, ..., u_k, v_1, ..., v_k) = 0$$

and by Lemma 2 either f_i have a common non-trivial zero in K or

$$(dx-cy)^2 | R(x, y; u_1, ..., u_k, v_1, ..., v_k)$$

and $f_i(ct, dt, z)$ $(1 \le i \le k)$ differ by a constant factor from their highest common divisor. In the latter case

$$(dx-cy)^2 | r(x,y)$$

and by (4)

$$r(x, y) = e(bx - ay)^2(dx - cy)^2$$
.

For every valuation v of K except at most one we have by (2)

$$ba_v - ab_v = 0$$
 or $da_v - ca_v = 0$;

thus for a suitable $t \in K_v^*$ either $a_v = at$, $b_v = bt$ or $a_v = ct$, $b_v = dt$. It follows that the quartic form

$$G(t, u) = \underset{1 \leqslant i \leqslant k}{\text{h.c.d.}} f_i(at, bt, u) \cdot \underset{1 \leqslant i \leqslant k}{\text{h.c.d.}} f_i(ct, dt, u)$$

has a non-trivial zero in K_v . By Lemma 1 G(t, u) has in K a zero, say $\langle t_0, u_0 \rangle$

 $\neq \langle 0, 0 \rangle$. If $\langle t_0, u_0 \rangle$ is a zero of the h.c.d. $f_i(at, bt, u)$ then

$$f_i(at_0, bt_0, u_0) = 0$$
 $(1 \leqslant i \leqslant k), \quad \langle at_0, bt_0, u_0 \rangle \neq \langle 0, 0, 0 \rangle;$

if $\langle t_0, u_0 \rangle$ is a zero of the h.c.d. $f_i(ct, dt, u)$ then

$$f_i(ct, dt_0, u_0) = 0$$
 $(1 \leqslant i \leqslant k), \quad \langle ct_0, dt_0, u_0 \rangle \neq \langle 0, 0, 0 \rangle.$

The proof is complete.

For the proof of Theorem 2 we need three lemmata.

LEMMA 3. The equation $u^4-17v^4=2w^2$ has no solutions in Q except $\langle 0,0,0 \rangle$.

Proof. See Lind [5] or Reichardt [10].

LEMMA 4. Let $F(x_1, \ldots, x_n)$ be a polynomial with integer p-adic coefficients and $\gamma_1, \ldots, \gamma_n$ p-adic integers. If for an $i \leq n$ we have

$$egin{align} F(\gamma_1,\ldots,\gamma_n)&\equiv 0\,(ext{mod}\,p^{2\delta+1})\,,\ rac{\partial F}{\partial x_i}(\gamma_1,\ldots,\gamma_n)&\equiv 0\,(ext{mod}\,p^\delta)\,,\ rac{\partial F}{\partial x_i}(\gamma_1,\ldots,\gamma_n)&\equiv 0\,(ext{mod}\,p^{\delta+1}) \end{array}$$

(δ a nonnegative integer) then there exist p-adic integers $\theta_1, \ldots, \theta_n$ such that

$$F(\theta_1,\ldots,\theta_n)=0$$

and $\theta_1 \equiv \gamma_1 \pmod{p^{\delta+1}}, \ldots, \theta_n \equiv \gamma_n \pmod{p^{\delta+1}}.$

Proof. See [1], p. 42.

Lemma 5. $f(x, y, z) = x^4 - 2y^4 - 16y^2z^2 - 49z^4$ is irreducible in every field of characteristic different from 2 and 17.

Proof. Let k be a field of this kind. It is enough to show that f(x, y, z) is irreducible as a polynomial in x over k(y, z). If it were not, then by Capelli's theorem (see [9], Satz 428) $\pm (2y^4 + 16y^2z^2 + 49z^4)$ would have to be a square in k(y, z). This condition implies that

$$16^2 - 4 \cdot 2 \cdot 49 = -8 \cdot 17 = 0,$$

which is possible only if char k = 2 or char k = 17.

Proof of Theorem 2. $f(x, y, z) = x^4 - 17z^4 - 2(y^2 + 4z^2)^2$; hence by Lemma 3 if f(x, y, z) = 0 and $x, y, z \in Q$ we have $x = y^2 + 4z^2 = 0$ and thus x = y = z = 0. Also $x_1^4 - 17x_2^4 - 2(x_3^2 + \ldots + x_n^2)^2 = 0$ implies $x_1 = x_2 = \ldots = x_n = 0$ for $x_i \in Q$.

and 17.

It remains to show that f(x, y, z) represents 0 in every field Q_y including $Q_{\infty} = R$. We verify this first using Lemma 3 for $p = \infty, 2, 5, 7, 13$

For $p = \infty$ we take $x = \sqrt[4]{2}$, y = 1, z = 0.

For p=2 we use Lemma 4 with $\gamma_1=3, \gamma_2=2, \gamma_2=1, \delta=2, i=1$.

For p=5 we use Lemma 4 with $\gamma_1=0, \gamma_2=2, \gamma_3=1, \delta=0, i=2$.

For p=7 we use Lemma 4 with $\gamma_1=2$, $\gamma_2=1$, $\gamma_3=0$, $\delta=0$, i=1.

For p=13 we use Lemma 4 with $\gamma_1=1$, $\gamma_2=2$, $\gamma_3=3$, $\delta=0$, i = 1.

For p=17 we use Lemma 4 with $\gamma_1=0$, $\gamma_2=1$, $\gamma_3=2$, $\delta=0$, i=2

For $p \neq 2, 5, 7, 13, 17$ we have either $p \geqslant 37$ or for a suitable $\operatorname{sign}(\pm 7|p) = 1.$

In the latter case the congruence

$$f(x, 0, z) = (x^2 - 7z^2)(x^2 + 7z^2) \equiv 0 \pmod{p}$$

is solvable nontrivially, and denoting its solution by γ_1, γ_3 we use Lemma 4 with $\gamma_2 = 0$, $\delta = 0$, i = 1.

It remains to consider primes $p \ge 37$. For such primes f is by Lemma 5 absolutely irreducible over F_v . Moreover, it has no singular zeros. Indeed, the equations

$$4x^3 = 0$$
, $-8y^3 - 32yz^2 = 0$, $-32y^2z - 196z^3 = 0$

imply x = 0 and either y = 0, $196z^3 = 0$ or $y^2 + 4z^2 = 0$, $68z^2 = 0$; thus in any case x = y = z = 0. By the Riemann-Hurwitz formula the curve f(x, y, z) = 0 is over F_n of genus 3.

Therefore by Weil's theorem the number of points on this curve with coordinates in F_v is greater than $p+1-6\sqrt{p}$, i.e., at least one. Since all points are non-singular, Lemma 4 applies with $\delta = 0$ and a suitable i.

Note added in proof. I have learned that already in 1981 A. Bremner, D. J. Lewis and P. Morton found the example $3x^4+4y^4-19z^4$ of a ternary biquadratic form for which Hasse's principle fails, but they did not publish it.

References

- [1] Z. I. Borevich and I. R. Shafarevich, Number Theory, New York and London 1966.
- [2] J.-L. Colliot-Thélène, D. Coray, J.-J. Sansuc, Descente et principe de Hasse pour certaines variétés rationnelles, J. Reine Angew. Math. 320 (1980), 150-191.
- [3] M. Fujiwara, Hasse principle in algebraic equations, Acta Arith. 22 (1973) 267-276.
- [4] D. Hilbert, Über Diophantische Gleichungen, Nachr. Königl. Gesell. Wiss. Göttingen 1897, 48-54.

[5] C. E. Lind, Untersuchungen über die rationalen Punkte der ebenen kubischen Kurven vom Geschlecht Eins (Doctoral dissertation), Uppsala 1940.

[6] L. J. Mordell, The diophantine equation $Ax^4 + By^4 + Cz^4 = 0$, Proc. Cambridge Philos. Soc. 68 (1970), 125-128.

[7] O. Perron, Algebra I, Berlin 1951.

[8] L. Rédei, Über die Determinantenteiler, Acta Math. Acad. Sci. Hungar. 3 (1952), 143-149.

[9] - Algebra I, Leipzig 1959.

[10] H. Reichardt, Einige im Kleinen überall lösbare, im Grossen unlösbare diophantische Gleichungen, J. Reine Angew. Math. 184 (1942), 12-18.

> (1764)Received June 2, 1982