STUDIA MATHEMATICA, T. LXXVIL. (1983) @ ©

icm

Hasse's principle for systems of ternary quadratic
forms and for one biquadratic form

by
A. SCHINZEL (Warszawa)

To Professor Jan Mikusiviski on
the occasion of the 70th birthday

Abstract. Lot K be an algebraic number field and f, ..., fy ternary quadratic
forms over K. If fi,..., fr have a common non- trivial zero in every completion of K
except at most one Lhen — it is proved here — they have a common non-trivial zero
in K. Besides an example is glven of an absolutely irreducible n-ary biquadratic
form (n > 3) that represents 0 in every completion of @ but not in Q.

Let K be an algebraic number field and fy,...,fr € Klwgy ..., #,]
quadratic forms. Hasse’s principle asserts thab if the forms fi, ..., I have
2 common non-trivial zero in every completion of K they have a common
non-trivial zero in K. The principle holds for k = 1, it trivially holds
for n =1, 2, and it fails for £ = @, k = 2, n >4 (see [2]). Thus it re-
mains to consnier the case n = 3.

We ghall prove

THEOREM 1. If quadratic forms fy, ..., f, € K[®, ¥, 2] have a common
non-trival zero in every completion of K except at most one then they have
a common non-trivial zero in K.

As to biquadratic forms over @ it is easy to give an example of a reduci-
Dle ternary form for which Hasse’s principle fails (see [1], p. 72). An example
of an irreducible ternary biquadratic form with the same property can be
constructed by using results of Hilbert [4], namely

norm (z -4y l/g—lrz]/tﬁ).

This form, however, is reducible in the corplex field. Mordell [6] has
left open the question whether. there exists an absolutely irreducible
ternary biquadratic form not fulfilling Hasse’s principle. The question is
answered by
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TueorEM 2. The absolutely irreducible biguadratic form o —2y*—
—16y2%? —492* represents 0 in every completion of @ but not in Q; for all
n = 4 the absolutely trreducible biquadratio form o} — 17wy —2 (@5 -+ ... +02)?
represents 0 in every completion of @ but not in Q.

LeMmA 1. If a binary form over K of degree not ewceeding 4 represents 0
i all but findtely many completions of I it represents 0 in K.

Proof. See Fujiwara [3]. ‘ ‘

LuMMA 2. Let R(@, Y5 Uyy -y Upy Vgy +o0y V) Do the resuliant of 2, S5,

me, with respect to = (u;, v, are mdete&*mmate.s) If

1) R(a,b;uy,... y ) =0, a,bel,a,b) 5= <0,0>

s Upy Vayoees
then either f; have a common non-trivial zero in I or

(bw—ay)? | B(@) 45 uy, ey Upy Vay -e ey V1)
and the forms f; (at, bt, 2) differ from theiy highest commion divisor by a con-
stant factor.

‘Proof. If f; are all of degree less than 2 with respect to z then they
have a ecommon non-trivial zero, namely <0 0 1> If at least one of the

forms f; is of degree 2 with respect to # then both 2 u,f; and 2 v, f; are

of degree 2 with respect to z with the lea.dmg coefflclents mdependent

- of w, 9. Thereforek(l) implies that

k

D wifila, b, )
i=1

have a common factor over the field K (u,, ..
over the ring K{uy, ..., U, vy, ..., 9,]. This factor must be independent
Of Uy .0y Uy, U1y ».ny U IE it is Of degree 1 in 2 it has a zero ¢ € K and we
have fi(a,b,¢) = 0 (L<i< k). If it is of degree 2 in 2 we consudei the

Sylvester matrix §(z, y; ul, ..

k -
and  D'o.fi(a, b, %)
i=1

vy Ugy D1y <5y V), hence also

o3 Ugy U1,y ...y ¥)) OF the polynomials 2, U

E
Z’ v:f;. In virtue of a well-known theorem (see [7], Satz 114) the rank of

the matrix S(a, bj vy, ..., U, vq,. ..y ¥) must be 2. Hence all the minors
of degree 3 of this ma,trix vanish and all the minors of degree 3 of the matrix
B(®y Y5 2y ... Uy D1y «..y V) aTe divisible by bx —ay. On. the other hand,
there are minors of degree 2 of the latter matrix not divisible by ba'—ay,
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in fact independent of x,y. Hence by a very special case of theorem of

Rédei [8]
E(@,y5%1,...

vk) = detS(z, ¥; %, .. )]

3 gy Vay - coy Upy Vay ooy
is divisible by (bx —ay)2

The last assertion of the lemma follows from the remark that if poly-
nomials fi(a,b,2) (L<i< k) have & common factor of degree 2 they
differ from th1s common factor by a constant factor.

Proof of Theorem 1. Let us consider the resultant R (x, y, %y, ..., Uy,
Dyy oeny V) Of 3 af; and 3 o,f; with respect to 2. Viewed as a polynomial
in @,y it is either 0 or a quartic form. In the first case f; (1 <7< k) have
a common factor, say d. If d is of degree 2 then for each i <%k we have
fi = ¢;d, ¢; € K. The solvability of f; (%, y,2) = 0 (¢ < k) in a completion
K, of K implies the solvability of d(z,y,2) = 0 in K,, and if it holds for
all but one completion then by the product formula and Hasse’s principle
for one quadratic form we get solvability in K of d{(«x, y, 2) = 0 and henee
of fiz,y,2) = 0 (L<i<<k). If dis of degree 1 then it has again a non-
trivial zero in K and the same conclusion holds.

If R(@, Y3 Uy eeny Uy Vyyerey O) I8 not identically 0, let »(x,y) be
the highest common divisor of its coefficients when viewed as a form in
Ugy ooy Ugy Vg oey Ve IE fi(@, 9, 2) (1 <4< k) have a common non-trivial
7610 {ay, by, G» in K,, > u;f; and 3 vf; have it also, hence R(a,, b,;
UyyerrjUpy Oy .oiey ) = 0, which implies
(2) 7(@y, by) = 0.

(Here we use the fact that the coefficients of £ are formsin z, y). If a, = b,
= 0 we have ¢, # 0; hence the coefficient of 22 in f; is 0 for each i < % and
the forms f; (1 <4< k) have in X a common non-trivial zero <0, 0, 1>.
If <a,, b,y #* <0, 0)> for each valuation » of K except at most one then by
Lemma 1 7 has in K a zero, say <{a, b)> # <0, 0>. Thus bw —ay|r(z, y),

b —ay | B(x, Y5 %, ..

vy Ugy Vg -eey Vg)

and by Lemma 2 either f; have a common non-trivial zero in K or
(3) (b —ay)? | R(%, 45 gy ovey ) O

Uy Vyyvee

and the forms f(at, bt, 2) (1 <7< k) differ from their highest common
divisor by a constant factor In the latter case, by (3)

(bx —ay)?|r (@, ).


GUEST


106 A. Schinzel
Let
(4) r@,y) = (be—ay)'s(@, y),

where a2, s(a,b) %0, degs = degr—a<2. For every valuation
v of K except at most one we have by (2) and (4)

ba, —ab, = 0 or  §(a,, b,) = 0.
The first equation implies ¢, = at, b, = bt for a ¢ e K;; thus
F(i, u) = s(t, wh.c.df(at, bt u)
~ 1<k

has a non-trivial zero in K,. Since by (4)

degF = degs+2 = degr+2—a <4,
we infer from Lemma 1 that F hag in K a zero, say <c¢, d) {0, 0).
Tt this is a zero of the h.c.d.f;(at, b, ), then

I<i<k
filac, be, @) =0 (A<<i<<k), <ae,be,d> # <0,0,0>.
If, on the other hand, s(¢, d) = 0 then by (4) (¢, d) = 0; thus
R0y @5 Uyy euony Upy Vygieny V) = 0
and by Lemma 2 either f; have a common non-trivial zero in K or
(dz—cy)2 | B(Xy Y35 Ugy oory Ugy Vyy -y Vg)

and f;(ct, @, 2) (L <4 < k) differ by a constant factor from their highest
common divisor. In the latter case

(dw —cy)?|r(@, ¥)
and by (4) '
r(x, y) = e(baw —ay)?(ds —oy)?.
For every valuation v of K except at most one we have by (2)
ba, —ab, = 0 or da,—ca, = 0;

thus for a suitable t € K} either a, = at, b, = bt or a, = cl, b, = dt. It
follows that the quartic form

G(t, u) = h.c.d.f;(at, bt, u) -h.c.d.f;(ct, di, u)
1<i<k <<k

has a non-trivial zero in K. By Lemma 1 & (, ») hagin K a zero, say {ly, %)
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# 0, 0>, If (ty,uo» is a zero of the h.c.d.f;(at, bt, u) then

1<i<k
Flatoy bloyug) =0 (L<i<k), (ato, bhyy ue> # <0, 0,055
if (ty, 1oy is a zero of the h.e.d.f;(ct, dt, u) then

I<i<k
Jilety dtg,ug) =0 (A<i<E), <{cby, dby, Ue> # £0,0,05>.

The proof is complete.

For the proof of Theorem 2 we need three lemmata.

LevumA 3. The equation u'—17v* = 2w? has no solutions in @ except
0,0, 05.

Proof., See Lind [5] or Reichardt [10].

LevMA 4. Let F(#y, ..., x,) be a polynomial with integer p-adic coef-
ficients and yy, ..., y, p-adic integers. If for an i< n we have

F(pyy..es y) = 0(modp™*?),

o
"5;6;(7’17 ey V) = O(mOde))

oF
Ern (Y17 0009 ¥n) & O(mOdeH)
&y

(6 & monnegative integer) then theve exist p-adic integers 0y, ..., 8, such that
F(0yy...,0,) =0

and 0y = y;(modp®), ..., 0, = y,(modp’*?).

Proof. See [1], p. 42.

LEMMA B. f(z, ¥, 2) = ot —2y*—16y%* —492* . is drreducible in every
field of characteristic different from 2 and 17.

Proof. Let % be a field of this kind. It is enough to show that f(z, ¥, 2)
is irreducible as a polynomial in @ over & (y, 2). If it were not, then by Capel-
Ii’s theorem (see [9], Satz 428) - (2y*-+16y2? 4 492¢) would have to be
a square in k(y, 2). This condition implies that

161 —4-2-49 = —8-17 = 0,

which ‘is ‘possible only if chark = 2 or chark = 17.

" Proof of Theorem 2. f(z, y, 2) = @ 1724 —2 (y2 -+ 422)2; hence
by Lemma 3 if f(2,y,2) =0 and @,y,2€Q we have & = y*+4e* =0
and thus @ = y =2 = 0. Also a!—172%—2(23+ ... +a;)° = 0 implies
@y =Ty = ... = &, = 0 for ;€Q. '
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It remains to show that f(z, ¥, 2) represents 0 in every field @, includ-
ing Q. = R. We verify this first nsing Lemma 3 for p = oo, 2,5, 7,13
and 17. B
For p = oo we take z = V2,y=1,z=0.
Forp = 2 weuse Lemma 4 with y; = 3,9, = 2,9, = 1,8 = 2,7 = 1.
For p = B weuse Lemma 4 with y; = 0,y, = 2,y5= 1,0 = 0,0 = 2.

For p = 7 weuse Lemma 4 with y; = 2,9, = 1, p3 == 0,8 == 0,4 = 1.
. For p = 13 we use Lemma 4 with y; =1, y, =2, y3 =3, 6 = 0,
i = 1.

For p = 17 we use Lemma 4 with y; = 0, y, = 1, y3 = 2, § == 0,
i =2.

For p 2, b, 7, 13, 17 we have either p > 37 or for a suitable
sign(4-7lp) = 1

In the latter case the congruence
flz, 0,2) = (2% —T2?) (024 T2?) ==
is solvable nontrivially, and denoting its solution by y;, y; we use Lemma 4
with p, =0, § =0, ¢ = 1. ‘
Tt remains to consider primes p > 37. For such primes f is by Lemma 5

absolutely irreducible over F,. Moreover, it has no singular zeros. Indeed,
the equations

4% = 0,

(modp)-

—8y® —32y2% = —32y% —196=° = 0

imply @ = 0 and either y = 0, 1962% = 0 or y2-+422 = 0, 682 = 0;
thus in any case ¢ = y = 2z = 0. By the Riemann-Hurwitz formula the
curve f(z,y,2) = 0 is over F, of genus 3.

Therefore by Weil’s theorem the number of points on this curve with
coordinates in ¥, is greater than p +1—6 Vp, i.e., at least one. Since all
points are non-singular, Lemma 4 applies with § = 0 and a suitable 4.

Note added in proof. I have learned that already in 1981 A. Bremner,
D. J. Lewis and P. Morton found the example 3w4-4y?—19¢% of a ternary hi-
quadratic form- for which Hasse’s principle fails, but they did not publish it.
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