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Abstract. The main result of this paper gives a characterization of non-removable
ideals in the clags of commutative locally convex algebras. We give also some suf-
ticient conditions for non-removability of ideals in arbitrary topological algebras and
pose geveral open questions.

§ 1. Introduction. All the algehras considered in this paper are com-
mutative complex algebras having unit elements. The unit element of an
algebra A will be denoted by e, or, if it is necessary to indicate the algebra
in question, by e¢,. The group of all invertible elements of an algebra 4
is denoted by G (4). The radical of an algebra A is the ideal given by

radd = {z € A: e—axa e G(A) for all a in 4},

By a topological algebra we mean a topological linear space together
with a jointly continuous associative multiplication making of it an al-
gebra over €. We shall be concerned mostly with the class LO of locally
convex. algebras. The topology of such an algebra can be introduced by
means of a family (|@],), « e, of seminorms. Without loss of generality
wo can assume the following properties of this family. For each index a € %
there exists an index g in U such that

(1) layll, < llz il s

for all elements @, y in 4. The existence of such a family follows from the
joint continuity of the multiplication. We can assume, moreover, that for
ocach finite set (ay, ..., a,) there is a # in A such thab
(2) ”w”a1<”“”ﬁ7 t=1,2,...,m,

for all » in 4. This makes of the family (|2 [,), @ €%, & partially ordered
set, and under condition (2) a seminorm ||z} on a locally convex algebra A
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is continuous if and only if there is an index a € ¥ and a constant ¢ such
that

lzll < Cllzl,

for all # in A. In this case we say that the seminorm |@ ]|, dominates the
seminorm |z|. Two families of seminorms (|#|,), ¢ € A, and (= |,), § B,
of an algebra 4, are said to be equivalent if they give the same topology
on A. In the case where both families satisfy condition (2), they are equiv-
alent if and only if each seminorm of one family is dominated by som.
seminorm of the other family, and conversely. '

A locally convex gpace X is called a By-space if it is moreover comple-
tely metrizable. A By-algebra is a locally convex algebra which is a B-space.
The topology of a Bj-algebra can be given by means of a sequence (||z|))
of seminorms which, according to conditions (1) and (2), satisfies the fol-
lowing conditions:

(3) oyl < 1 a9 lirs

for ¢ = 1,2,... and all elements » and y in 4, and

{4) ool < 2l

for i =1,2,... and all # in 4. For the purpose of this paper we ghall

denote by B, the class of all metrizable locally convex algebras without
the customary assumption of completeness. A locally convex algebra A
is said to be locally multiplicatively conves (shortly m-conven) if the system.
(lzll,), « e, of seminorms giving the topology of A satisfies instead of
condition (1) the gtronger condition

(5) ley e < N2 la ]9l

for all ¢ in A and all z,y e 4. Denote by M the class of all m-convex al-
gebras. For an m-convex algebra with the topology given by means of

a system of seminorms (||zll,), « =%, satisfying conditions (2) and (5)
we let

I, ={wed: @], =0}, aei,
which is a closed ideal in 4, and denote by 7w, (%) the natural projection of
an element & in A onto the normed algebra 4, = A /T, equipped with the
norm ||z}, '

We also put My = B,nH, so that the topology of an algebra 4 e M,
can be given by means of a sequence of seminorms satistying conditions
(4) and (5). )
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Denoting respectively by B and T the classes of all (commutative)
Banach algebras and topological algebrag, we have the following in-
clusions

BeM,c McLOcT
and
BecMycB, <Ll cT.

Let K bo any class of topological algebras and let 4 ¢ K. We say
that & topological algebra B is a K-eatension of the algebra A, or a superal-
gebra of the class I for A, if B € K and there exists a unital topological
isomorphism of 4 into B, Le., a homeomorphism ¢: A—B, which is an
algebra isomorphism and ¢ (e,) = ¢5. Wo can then identity A with P(4)
and treat A as a subalgebra of B with the topology inherited from B. In
this case we ghall write simply 4 < B.

The term ideal in the context of a topological algebra A will be used

© in a purely algebraic sense: it will mean just a proper ideal I (i.e., I = A)

with no assumptions about its topological structure.

1.1. DeriNirioN. Let K be any class of topological algebras and leb
A e K. We say that an ideal I = A is removadle in the class K, or K-re-
movable, if there is a K-existension B of 4 such that I is not contained in
any proper ideal of B. In this case we say that the algebra B removes the
ideal I. Otherwise we say that the ideal I is K-non-removable.

Since the smallest ideal J generated in an extension B of 4 by an ideal
I <4 is of the form

J = {Zmib,ieB: x;€l, be B, néN},
4=l
we immediately see that an extension B of 4 removes an ideal I = A4 if
and only if there are elements @, ...,#4,€I, b,,...,b, B such that

‘(6) 2 w@-bi = €,

1.2, Durinrron. Let K be any class of topological algebras and let
A e K. We gay that an a-tuple (@, ..., «,) of clements of A4 is regular in
the ¢lass X, or K-regular, if there are a J-extension B of A and elements
byy ooy by, & B guch that relation (6) holds true. Otherwise we say that the
netuplo (@4, ..., @) is K-singular.

The proof of the following proposition is straightforward:

1.3. Proposmion. Let K be a dass of topological algebras and let A e K.
An ideal T < A 18 K-non-removable if and only if for each natural n every
n-tuple (@yy ..., 0y) < I is K-singular. ‘

3 — Studia Math, 77.2
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The above proposition reduces the problem of characterization of
K-non-removable ideals to the characterization of K-singular or JC-regular
n-tuples of elements of A.

If K, and K, are two classes of topological algebras with K, = K“,k

then each K,-removable ideal of an algebra 4 in K, is also Kp-removable,
and each K,-non-removable ideal of 4 is K,-non-removable.

1.4. DmrmNiTIoN. Let K be a class of topological algebras. We say that
the concept of removability of ideals in algebras of the class I is of absolute
character if each K-non-removable ideal of an algebra A in I is also I-non-
removable. Otherwise, we my that the concept of I-removability is of
relative character.

This means that if the concept of K-removability of ideals is of rela-
tive character, then there is an algebra A = K and a K-non-removable ideal
I = A which is removed by a certain extension B of A outside the class K.

Recently Miiller [5] obtained a characterization of B-non-removable
ideals; it follows that the concept of B-removability is of absolute character.
In paper [12] we reduced the problem of characterization of M-removabi-
lity to the problem of characterization of B-removability. Thus, both results
give the characterization of M-removability and also of M -removability.
These and related results will be described in § 2, where we shall also give
some sufficient conditions for removability of ideals in arbitrary topologi-
cal algebras.

Our main result —the characterization of LC-non-removable ideals
and By-non-removable ideals-is given in § 3. We apply here a method used
in [15], where we characterized permanently singular elements in the
clagses LC and B,.

In § 4 we pose several open questions concerning non-removable
ideals in various classes of topological algebras. For more information on
topological algebras the reader is referred to [7] and [8].

§ 2. Various types of nom-removable ideals in topological algebras.

2.1. DurFmviTIoN. Let A be a topological algebra. We say that a non-
void subset 8 < A consists of joint topological divisors of zero if there i
a neighbourhood U of the origin in A such that for each. finite subset

(@) -y &,) = 8 and each neighbourhood V of the origin in .4 there is an
element 2z € ANU with

7) ‘ ' veeV

for ¢ =1,2,...,n.

Perhaps a clearer version of this definition can be obtained from the
following )

2.2. PROPOSITION. A non-void subset 8 of a topological algebra A com-
sists of joint topological divisors of zero if and only if there is a net (s,) = A
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which does mnot tend to zero bui
(8) lime,z = 0

Jor -all © in 8.

Proof. Suppose that relation (8) holds true. Since the net (z,) does
not tend to zero, there is a neighbourhood U of the origin in 4 such that
for each index a there is an index §, > a, with 2, ¢ U. Take any finite
n-tuple (2, ...,%,) = 8§ and any neighbourhood V of the origin in A.
Relation (8) implies that for each ¢, 1 <4 < , there is an index @, such
that

(9) 2, eV

for all a > ;. Take any index y larger than any a;, 1 < i< n, and find an
index §2 y with 2, ¢ U. By (9) we now have

2w eV

foré =1,2,...,n and 1ela.t10n (7) holds true with & = ;. Thus the set S
consists of joint topological divisors of zero.

Suppose conversely that a subset 8§ < A consists of joint topological
divisors of zero. We have to construct a net (2), a € %, which does not tend
to zero in A4, such that relation.(8) holds true for each x in S. We first
construet a directed set U of indices. The elements o of 9% are the pairs
a = (¥,,V,), where F, is a finite subset of § and V, is a neighbourhood
of the origin in 4. We take here all finite subsets of § and all neighbour-
hoods of the origin. Write a < it F, = Fyand V, » V; Let U be a neigh-
bourhood of the origin in A satisfying. the condition in Definition 2.1.
For any index a we can choose an element z, € 4, z, ¢ U, satisfying re-
lation (7) for 7 = ¥, and all 2; in F,. Obviously the net (2,) does not tend
to zero. It remains to show that relation (8) holds true for all  in 8§, i.e.,
we have to show that for an # € § and a neighbourhood V of zero in 4
there is an index a(x, V) e such that

2. xeV

for all o z a(w, V). But this holds if we take a(m V)
are done.

2.3. DurrnirIoN. If § is a non-void subset of a topological algebra A,
congisting of joint topological divisors of zero, then any net (2,) = A which
does not tend to zero and satisfies relation (8) will be called an annililating
net for the set §. In this case we shall write (z,) LS.

2.4. ProrosrrioN. Let A be a topological algebra and let 8 be a subset
in A eonsisting of joint topological divisors of zero. The smallest ideal Iy gen-

= ({w}, V), and we
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evated in A by S is a proper ideal in A and consisis also of the joint topological
divisors of zevo. Moreover, (2,) L Iy if and only if (&) LS.
Proof. We have

Ig= {jaﬁieA: pmelS, a;€d, i =1,2,...,n, %EN}-

=1

If (2,) LS then (z,) L Iy since 11mz Za, *; —-Za hmz,,'m = 0.

If (2,) L Ig then (z,) 1 S since S < Is Alé:O Igis zu 1)r0p01 ideal since
the nets (z,) annihilating § do not tend to zero.

2.5. ProrosrrioN. Let A be a topological algebra and let I be an ideal in
A consisting of joint topological divisors of zevo. Then I is a T-non-removable
ideal in A.

Proof. Let B be any extension of A. Since I, treated as a subset of B,
consists of joint topologieal divisors of zero, by Proposition. 2.4 I generates
in B a proper ideal J and I = J. Thus B does not remove I.

The class of ideals consisting of joint topological divisors of zero in
Banach algebras was introduced and studied in paper [10]. Further results
concerning these ideals can be found in [5] and [6]. Recently Miiller has
ghown in [5] that for Banach algebras the class of all non-removable ideals
coincides with the class of all ideals consisting of joint topological divi-
sors of zero. So an n-tuple (%, ..., #,) € A =B is B-regular if and only if
t is T-regular and if and only if there is a constant ¢ such that

(10) Dzl = Clizl
i=1

for all z in A. Thus the concept of B-removability of ideals has an absolute
character.

Let us note that for a locally convex algebra 4, with the topology
given by means of the family ([lz|l,), feB, a subset 8 < A congists of
joint topological divisors of zero if and only if there is a net (z,) < A4,
ae?, and a fixed index f§,e®B such that

a1y

20 llg, =1
for all a €, and
(12) lim ||z, 2]y = 0

for all # in S and all g in B.
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2.6. ExAMPIE. Tet 4 = O(— o0, co) be the algebra of all continuous
complex-valued funetions on the real line. It is an m-convex By-algebra in
the topology given by the sequence of seminorms

(13) l#ll; = max|e(f)].

<
‘We shall see that all ideals in A are T-non-removable, whereas not
all of them consist of joint topological divisors of zero.

2.7. PROPOSITION. ATl finitely generated ideals in the algebra C ( — ©0, 00)
consist of joint topological divisor of zero.

Proof. Let I be an ideal in 0(—oo, oo) generated by the elements
Byy .0y 2, €4, ie,

n
= {sz%: a; € 0(—oo, oo)}
F1
The functions @y, ..., «, must all vanish at a certain point to € R; otherwise

o1 Yn with 2 t)J'z(t) = 1
so that the ideal I would be improper. Take any sequence ( (1)) of positive
continuous functions such that the suppors of e, is in [¢,—1/n, t,+1/n],
0<#,(t) <1 and #,(f,) = 1. One can easily verify that

there would exist continuous functions v,, .

limz, s, =0, ¢=1,2,...,n,
3

and [z, [, = 1 for & = |%,]. Thus (2,) L {&,, ..
we have (z,) LLI. The conclusion follows.

2.8. CororrLARY. All ideals in C(—oo, oo) are T-non-removadle.
Proof. If not, then there is an ideal I = U(—co, co) and elements
Byyoens @y el, by,...,b,eB, for some extension B of ((—co, oo) such

that
n
Zmibi =e.

=1

., #,} and by Proposition 2.4

This means that B removes the ideal in ¢( — oo, co) generated by the el-
ements (@, ..., #,). Bub it is impossible by Propositions 2.5 and. 2.7.

2.9. Remark. There are ideals in ¢(—oco, oo) which do not consgist
of joint topological divisors of zero. :

Proof. Put

I = {meA: there exists a t(v) e B with x(i) = 0 for t = t(w)}.
Suppose that there is a net.(zu)k annihilating I and satisfying relations (11)
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and (12). Let t, > B, where f, satisfies relation (12) and take an. element
@, in 0(—o0, o) given by

1 for E<iy,
@,(t) = { continuously decreaging to zero for fy<C{ <+ 1,

0 for txt,+1.
We have z, el and
Hzamo”ﬁo = 1

for all a, which is in contradiction with relation (12). The conclusion follows.

The above shows that there is a wider class of T-nom-removable
ideals than the class of ideals consisting of joint topological divisors of
zero. This example suggests the following '

2.10: DEFINITION. An ideal I of a topological aloebra. 4 iz said to
consist locally of joint topological divisors of zero if each finite subset of I
consists of joint topological divisors of zero.

Clearly every ideal consisting of joint topological divisors of zero
consists also locally of joint topological divisors of zero. As shown in Remark
2.9, the converse statement fails and the class of ideals given by Defi-
nition 2.10 is essentially larger than the class of ideals consisting of joint
topological divisors of zero.

Exactly in the same way as in Corollary 2.8 we can prove the fol-
lowing

2.11. ProrosrioN. All ideals consisting locally of joint topological
divisors of zero are T-non-removable.

Combining the results in [5] and [12] we can give a characterization
of M-non-removable (resp. M -non-removable) ideals. By the use of Prop-
osition 1.3 we give it in terms of regular n-tuples.

2.12. THEOREM. Let A be an m-comvex algebra (resp. an m-conves
By-algebra). An n-tuple (4, ...,x,) of clements of 'A is M-reqular (resp.
My-regular) if and only if there is a continuous submultiplicative seminorm
llzlly on A such that for every submaltiplicative continuous semz’wmm 2
on A, dominating the seminorm ||@lo, the n-tuple (m (%), ..., w,(®,)) of 6l
ements of the normed algebra A = (A|I,, ||%|,) consists of joint topologzoal divi-
sors of zero.

2.13. Remark. It follows from a result in [9] that the concepts of M
and M,-removability is of relative character. There is an m-convex B-

algebra A and an M-non-removable ideal in A which can be removed by
a certain Bg-extension of A.
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Using Theorem 2.12 it is easy to give an example of an m-convex
By-algebra in which all non-zero ideals are M ,-removable.
- 2.14. ExAMPLE. Let # be the algebra of all ertire functions of one
complex variable. It is an m-convex Bj-algebra with the seminorms of
the form (13). Let I be an ideal in # and let ¢ be a non-zero element in I.
We shall show that there exists no seminorm ||, on & satisfying the
conditions of Theorem 2.12.

For, if |z ]|, is such a seminorm, then there is a seminorm llz1,, of form
(13) and a constant ¢ > 0 such that

(14) llzllo < Cllal,

for all # in B. Since o i3 a non zero entire function, it has at most a count-
able number of zeros, and there is a number » > n with
(15) inf |a(f)] = 6> 0.
lEl=7r
By the maximum principle

(16) lzl. = =,
for all # in E, where

lol, = max jo(2)]-
Relation (15) now implies

llaz]l, = élz],

for all 2 in B, which implies that =,(a) is not a topological divisor of zero
in the normed algebra (&, ||z],). Also, by (14) and (16), |||, dominates
l#ll,, and -we obtain a contradiction proving our assertion.

‘We now pass to the class T and give yet another type of non-removable
ideals. To this end we first give a description of elements having small
powers. These elements were introduced in paper [14].

2.15. DErINITION. Let A be a topological algebra. An element x € 4
is said to have small powers if for each neighbourhood U of the origin in A
there is an integer » such that

) A e U

for all complex scalars A

As shown in [14], the above relation then holds for ‘all exponents
n larger than a certain n(U, ). If A is a locally convex algebra, then an
element 2 in 4. has small powers if and only if for each continuous seminorm
||lz[, there is an integer »(a) such that

(18) fla™l, = 0
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for all n > n(a). We have shown in [14] that the set I,(4) of all elements
of a topological algebra A which have small powers is an ideal in 4 con-
tained in the radical of each superalgebra B of A. Also I(4) < I,(B) where
Bis an extension of 4. Thus I,(4) is a T-non-removable ideal for any topo-
logical algebra A.

2.16. Exawerz. Let 4 be the algebra of all power series with complex
coefficients and convolution multiplication. It is an m-convex By-algobro
with seminorms

” Saﬂf”n == j [ay].
j=0 =0

Evidently the generator ¢ has small powers, and the only maximal
00

ideal of A consisting of elements of the form 3 a; coincides with I,(4).
=1

Moreover, this ideal does not consist locally jof joint topologieal divisors
of zero. The algebra 4 has no topological divisors of zero exeept the zero
element (cf. [4], [14]).

The following proposition gives yet another type of a non-removable
ideal: '

2.17. PROPOSITION. Let K be any class of topological algebras and let
A e K. Let I, and I, be any two ideals in A, with I, = I,(A). Then the ideal
I = I,+1, is E-non-removable if and only if I, is such an ideal.

Proof. It is sufficient to show that I, is a K-removable ideal in 4
if and only if T is such an ideal. Suppose then that the ideal T, can be re-
moved by an extension BoA, BeK. Since I contains I,, the same exten-
sion also removes I. Suppose now that the ideal I can be removed by an
extension B of 4 with Bel. Thus there are elements ,, ..., s, € I and
elements b, ...,b, € B such that

n

A
Z w;b; = e.
=1

Since each z; can be written in the form
Ty = Ui+v;,, t=1,2,...,n,

with w; e I, v; e I,, we have

(19) j b+ jmbi = ¢.

f=1 i=1

But the element > v,b; has small powers, and so, by a result in [14], it is
1 .
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k2
contained in the radical of B. Consequently the element b = ¢ — Sogb, is
N 1

an invertible element in B. This implies, in view of (19),

7
Zuibib*l = ¢,
4=1

and since w; € I;, the extension B removes the ideal I,. The conclusion
follows.

As a corollary we obtain the following:

2.18. PROPOSITION. Let 4 be u topological algebra and let I be an ideal
wn A contained in an ideal of the form

(20) J = 11+Is(A)a

‘where I, consists locally of joint topologieal divisors of zero. Then I is
a T-non-removable ideal in A.

This is the most general type of a non-removable ideal, known to
the author.

§ 3. A characterization of LC-non-removable ideals. The result given
here is a generalization of the main result given in [15], where we
characterized permanently singular elements in commutative locally
convex algebras. Also the proof is similar; its origin is in paper [13].
Before proving the characterization theorem we introduce some notation
useful in the sequel. We denote by Z the set of all integers and by N the
subset of all non-negative numbers in Z. We fix a natural number n. Any
element p of N™ will be called a multitndex. Thus

(21) A CTRITF R

where 4;> 0. On multiindices we can perform coordinatewise addition

~ and subtraction; the latter, however, may lead from elements in N™ to

clements in Z% We write also |u| = 43+ ... +1, for u of the form (21).

"We shall use some special multiindices, setting :

(22) 8; = (8],..., 8},

where &} is the Kronecker symbol. So ; has the jth coordinate equal to 1
and other coordinates equal to zero. A multisequence with values in a set
S is any function from N™ to 8. As § we shall take a locally convex algebra.
A multisequence will be denoted by (%,); sometimes we shall treat x, as
a function defined on Z" and supported by a subset in N, ie., z, = 0

“for weZ"™N"
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Let ¢ = (t, ..., 1,) be an n-tuple of variables. For a multiindex y of

the form (21) we write

o 4% L
o= g, L, i,

Similar notation will be used for an n-tupled = (by, ..., b,) in an algebra B.

For an algebra A denote by 4(t) the algebra of all polynomials in
variables ¢ = (ty, ..., %,) with coefficients in 4. Any polynomial in A (t)
can be written as

p=p0) = Da,
"

_ ‘where a, is a multisequence supported by a finite subset in N*, i.0., @, =0
for |u| sufficiently large. We shall write also

P =p(t) =D p),

i=0

(23)

where p, () is a homogeneous polynomial of degree j, i.e.,
2 (1) = D a1,
1uf=i

The product of two polynomials p = 3 ,t*, ¢ = 3 b,t" is given by

pg =} ot
Cp = an—vbvl

i.e., the multisequence (¢,) is a convolution of multisequences (a,) and (b,).
A part of our construction is contained in the following lemma.
3.1. LummA. Let A be a By-algebra with topology given by means of
a sequence (| ];) of seminorms satisfying conditions (3) and (4). Let (af"),
t=1,2,...,=0,1,2,... be a matriz of positive real numbers satis-
fying the following conditions:

where

(24) af) =1
fori=1,2, ...

(25) a)(f) < “5t+1)
Jor j =0,1,...,i= 1,2,.., and

(26) oy < aff N+

Jor k120, i=1,2,...
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Introduce -a sequence of seminorms on A(t), givem by

Ipls = D a1l

i=

27)

where v, p; € A(t), p; ave related 1o p by formula (23), and

(95l = Z 12,11

[u=j

(28)

where , are the coefficients in p.

The algebra A (1) is then an (incomplele) algebra of type B, with the semi-
norms (27). Moreover, these seminorms satisfy conditions (3) and (4), and
A(t) is a B-extension of A.

Proof. Relation (4) for seminorms (27) follows immediately from
the same relation for the seminorms (jz|;) and from inequalities (25).
To prove relation (3) take p = > x,#*, ¢ = > ¥,i* By (26) and (3) for
the seminorms (|2|;) we have

legli = > o 3| 3wy,
2 _

1

lof=g ¥
7 1 (i) (41
< D) Y Dl el @, i 19 b
i olul=j v
. iil
= 2“&'&1311%_11 li+1a‘|1|*’!@/vl¢+1 = P liralglliss-

[%d

By (24) we see that each seminorm ||p ||; restricted to the algebra A treated
as the subalgebra of constant polynomials in A (%) coincides with [« |; for
9 = o € A. The conclusion follows.

For the sake of ecompleteness we reproduce the proof of the following
Jlemma (ef [13], Lemma 3).

3.2. LeMMA. Let (a,)7 be a sequence of positive real numbers with a, = 1.
There ewists o sequence (b,)Y of positive real nwmbers such that by = 1 and

(29) @y < by

for all mon-negative integers i and j. Assuming, in particular, j = 0 we

have

(30)

for 2 =0,1,2,...
Proof. Put b, = 1 and proceed by induction. If we already have

boybyyeenyby_y, We pub

a; < b

2
b, = MaX{ty, yy1 /b1y Gpyafbay s Gon1/br1s ain}.
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‘We can now formulate our main result. According to Proposition 1.3
we can formulate it in terms of LC-regular tuples.

3.3. THEOREM. Let A be a commutative locally conves algebra (resp. an
algebra of type B,) with unit element e. Let (|xl), ae W (resp. (|a];),
i =1,2,...) be asystem of semimorms giving the topology of A and satisfying
eonditions (1) and (2) (resp. (3) and (4)).

An n-tuple of elements of A, (#,, ..., %,), i8 LC-regular (resp. By-regular)
if and only if for each indexr a e U there is -an index f € W and a sequence ((,)
of positive numbers such that for each finite multisequence (a,), peN",
of elements of A (i.e., a, = 0 for |u| sufficiently large) the following in-
equality holds true:

=] w
0 e < ZGJ' 2 fzap—a‘sm /ary)

i=l  lul=s sl
where g is given by formula (22).
Proof. Suppose first that (@, ..., 2,) is an LC-regular (vesp. B,reg-

ular) n-tuple in 4. Thus there is an c\’renbmn B of the algebra 4, Bel.C
(resp. B € B,) such that

(31) " lag, ..

for a certain n-tuple (by,...,0,) = B. Let (||l«|ll,), /3 € B, be o family of
seminorms on B defining 1ts topology and satisfying 101@1011?-1 (1) and (2)

(resp. (3) and (4)). For an a in % there is a y € B and a positive congtant ¢
such that -

(32) lle < Olll2]ll,

for all # in A. Such a y exists, because the system (||| ]}), restricted to 4,
gives its topology. By (1) (vesp. (3)) we can find a 6 ¢ B with

(33) Ny 1, < 2 llslly s

for all w, y € A. Let (a,), p € N, be an arbitrary finite multisequence of
elements of 4. We have

o0 o=lfe- Sl Zorl)

_Z’ 2 (Z RN w%)) B

gzl Iul==1 g=1 Iy

> Nt ol =[] 3 3 (e, o= V||

.721 lul=§ s=1

y?
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where b = (by, ..., b,). In the same way as we obtained (32) we find an
index f €Y and a positive constant D so thab
(35) Nallls < Dimlg

for all » in 4. Formulas (1) (resp (3)), (32), (33), (34) and (35) imply now

6,02t 1, <O ||| 3 (D s =),

l#]=1 s=1

*Q%HHZa-w—a)wm 03 111|b“1||d}5j2au_am all
GDZHWIM 00— < 30, 3| D spi—aly

1 =1 jal=d a=1

where C; = CDmax||[b"]||;. Thus relation (31) holds true.
laj=d
Conversely, suppose that the condition given by formula (31) is sat-
isfied. We have to construct a locally convex (resp. of type B,) extension
B of A such that

Ewibi =e

for a certain n-tuple (44, ...,b,) =« B. We shall construct the algebra B
in the form of the quotient algebra of the algebra A (i) of polynomials,
topologized similarly as in Lemma 3.1. Consider first the ease where A4
is a B-algebra. Without loss of generality we can assume that the sequence
of seminorms (|#|;), giving the topology of A and satisfying conditions (3)
and (4) satisfies moreover the following condition: For a = 4, the suitable 5
satisfying (31) equals ¢+1 (otherwise we could pass to a subsequence of
the sequence (|z|;)). Relation (31) implies now that there exists a matrix
(0, 4,1, of positive entries such that

n
3 Szl

, S g
(36) 180, ...,0) [ 2, C_(f)
J=1 laf=1 8=1

4 =1,2,..., for each finite multisequence (a,), u € N", of elements of A.

By means of the matrix O we shall construct another matrix (af),

i=1,2,..., j=0,1,..., satisfying conditions (24), (25) and (26).
This is done in the following way:

Assume firgt .

af) =1,

afh) = on, §=1,2,..
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Setting @; = af’ in Lemma 3.2, we obtain a certain sequence b, and
we put

“gz) =1,
We proceed by an induction. If we have already defined the numbers o,
i<m,§=0,1,2,..., weput in Lemma 3.2 &; = af* ™, j = 0,1,..;
obtain a suitable b, j = 0,1, ..., and putb

aj(-z) - ma.x(bj, 059)), i=1,2,..

a® =1 and af” = max(b;, OM), J=1,2,..

The matrix (a{?) obtained in this way evidently safisties condition (24),
while conditions (25) and (26) follow from conditions (29) and (30), res-
pectively. The construction gives also the following relation:

(37) ) = 0P

for i, =1,2,3,... Using the matrix (a{’) we topologize the algebra
A (1) by meang of the seminorms given by formula (27). We denote these
seminorms by (|p ). We have [jz[) = ||, for all i and all # in 4.
We now put

G .
1 = Y@ pil, =1,2,...

j=0
for any p € A (i) of form (23). Relations (4) and (25) imply

eI <l P <2l <lp I < ..o,
and so the new sequence (||p[®) is equivalent to the sequence (||p||{").
Finally we define on A (t) yet another sequence of seminorms, equivalent
to the previous ones. Namely, for any polynomial p e A (t) written in form
(23) we put

(38) 2l = 1polet > af? (9] 14,

izl

i =1,2,..., where |p;|; is given by formula (28). We have
21 <liipl< 2 1P,

and so the seminorms (38) give the same topology as the seminorms (27).

Consider now the case of a non-metrizable locally convex algebra A.
For a given a €, where 2 is the index set for a system of seminorms
giving the topology of 4, we form a sequence (| |{*) of seminorms of A in
the following way. We put 2| = |z|, and find indexos By, B, c¥ w0
that a together with §, satisfies relation (1) and a together with f, satisfies
relation (31). Relation (2) now implies that there is an index f§ e 9 such
that together with « relations (1) and (31) are both satisfied and, moreover,

— ¢
1= 1,2,...,
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|2l < |w|g for all » in A. We then put [z = |#|; and proceed by induc-
tion. If we have already chosen the seminorms ||, 1< i<<n—1, sat-
isfying

@< |21 < ... < |29,

for all » e 4, we construct |#|) by means of |x], exactly in the same
way as we constructed |z|{ by means of |4|®. The sequence (|z]|®) is
contained in the family (| 1,), « e U, and satisfies the following relations:

(39) l2f) = |21,
for all ze 4,
(40) [y |£fa)\<\ I”IS—QIWIEQU t=1,2,..,

for all z,y e 4, and

n
(41) lag, .07 < D 0P X' | Y apsm—a;,,
j=l =1 g=1
for ¢ =1,2,... and all finite multisequences (a,) = 4. Here 0P (a) is.

the matrix obtained from condition (31) exactly in the same way as in
proving relation (36). By means of the sequence (|2 [$*) we now form a se-
quence (|p|) of seminorms on A4 (f) given by formula (38). The system
of seminorms (|| ), ¢ = 1,2, ..., a e, gives the desired topology on
A (t). Bach seminorm in this family is in fact of the form

(42) 12 ey = 1Polat > Cila, B)1D;las

izl

where p == 3 p; as in formula (23) and the indexes «, § together with
the sequence (C‘j(a, ) satisfy relation (31). The same holds true if A is
a B -algebra.

‘Wo now construct the desired extension B of 4 in the form of a quo-
tient of the algebra A (#). We put

—
I=(e=2 w,itf)fl(t),
=1
which is a closed ideal in 4, and define
B = A(t)/I.

There ig & natural imbedding of A into B given by #—[z], where [z] is
the coset of the constant polynomial #. This mup is clearly an algebra homo--
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morphism, and we shall be done if we show that it is also a homeomorphism,
since we have in B

o5 = ) [m][h].

T==1

The topology in B is given by the quotient seminorms obtained from
the seminorms (42). They are given by

{43)

02y = it {[| 2+ g o~ 2 aity)||(p: 284D}

‘We obviously have

H[P]“(u,ﬂ) <lp ”(a,[f))
and, in particular, for each » in A we have
(44) 12y < 1liagy = |21

On the other hand, for any « in 4 and an arbitrary ¢ in A (1),
g = > y,1, relations (31) and (42) imply
»

H”‘f‘ (3“jwiti)2yutl‘ @n = [2=Y0, .0 lt
1 “
kil
+ 2000, 8) 3| Y yuso0ul,
izl lul=1"§=1

28—y, o) lat W0, sy e 2 (@ o

Thus L

2], g = |# 1.,
which, together with (44), gives

1L5]0a, y = |2 s

for all #-in A. Bince ¢ is an arbitary index in 9, the map #—[2] of 4. into B
is ‘a homeomorphic imbedding. The .conclusion follows.

§ 4. Final remarks and open problems. The characterization of LO-
non-removable ideals given in the previous section is similar to the charac-
terization of B-non-removable ideals given in [2]. Tt seems to be rather for-
mal and not easy for applieations, but it is the only characterization
'we have in hand. On the other hand, we have clearer sufficient conditions
formulated in Section 3. We now formulate the remark closing Sectioa 2
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in the form of the following problem, in which and in the sequel by a non-
removable ideal we mean a T-non-removable ideal.

PrOBLEM 1. Let 4 be a topological algebra and let I be a non-re-
movable ideal in A. Is it true that I is contained in an idea] of theform (20)?

It will be useful in the sequel to have the following concept.

4.1. DEFINITTON. Let P be any property of an ideal of a topological
algebra 4. We say that an ideal I = 4 is mawimal with respect to the property
P, oris a mawimal P-ideal, if for any ideal J = A with I < J either we have
I = J, or the property P fails for the ideal .J.

The next two propositions show that there exist maximal ideals
containing a given ideal having the property P in the case where P means
“K—non-remova,ble”, or “consists locally of topologieal divisors of zero”.

4.2. PROPOSITION. Let K be any class of topological algebras. Let A e K
and let I be a I-ron-removable ideal in A. Theve exists @ maximal K-non-
removable ideal J in A with I < J.

Proof. Let F be a family of ideals in A such that each ideal in #
containg I and is a K-non-removable ideal. The family F is a partially
ordered set with inclusion as the order relation. Leb (I,) be a chain of el-
ements in F and put J = (J I,. We claim that J is 8 K-non-removable

ideal in 4. Tt is clearly an ideal, and if some K-extension B removes J s
then

Zwibi =g

i

for some n-tuple (#y,...,2,) cJ and (byy --+5 b,) = B. But since (I,)
is a chain, there is an index ¢, with (1 ouny ) = 1,,. This is a contradic-
tion since I, is K-non-removable. Thus any chain in F has an upper bound
there and the conclusion follows from the Kuratowski-Zorn lemma.

In a similar way one can prove the following result, whose details are
left to the reader.

4.3. PROPOSITION. Let A be a topological algebra, and let T be an ideal
in A consisting locally of joint topological divisors of zero (cf. Definition 2.10).
Then I is contained in an ideal J mawimal with respect to the property that it
consists locally of topological divisors of zero.

We can now rewrite Problem 1 in the following way:

Irosrem 1a. Let 4 be a topological algebra and let I be a maximal
non-removable ideal in 4. Is it true that

(45) I =1I+1I,(4),

where I; is maximal among ideals consisting locally of joint tepological

4 — Studia Math. 77.2
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divisors of zero and I, (4) is the ideal consisting of all elements in A having
small powers?

ProOBLEM 2. Is it true that every L{-non-removable ideal of a locally
convex algebra A contained in an ideal is of the form (45)?

A positive answer to Problem 2 would give a positive answer to the
following one.

ProsrEM 3. Is it true that the concept of LC-removability has an
absolute character? (ef. Definition 1.4),

The next problems ave connected with the question of removability
of families of ideals. The definition below and some subscquent problems
are analogous to the ones given in [17

4.4, DupivmrioN. Let K be a class of topological algebras and let
A e K. Let (I,) be a family of K-removable ideals in A. The family (I,)
is said to be HK-removable if there is a K-extengion B of 4 which removey
all ideals in this family.

Tt is known ([5]) that any finite number of removable ideals of & Ba-
nach algebra 4 is a B-removable family ; the same holds true for countable
families of ideals (V. Miiller —oral communication).”

The problem of removability of finite familics of removable ideals
can be formulated in several ways, as can be seen from the following result
proved in [11] in a more general, purely algebraic situation.

4.5. ProrositioN. Let K be any class of topological algebras and Tet
A e K. The following conditions are ecquivalent:

(i) Bvery finite family of IK-removable ddeals in A is K-removable.

(ii) Bvery family consisting of two I-removable ideals in A is K-
removable. ‘

(iii) Boery maximal K-non-removable ideal in A is a prime ideal.

By [5] and [6] the above conditions are satisfied for K = B.

PrOBLEM 4. Are conditions (i)—(iil) satisfied in the classess My, M, B,,
LG, T

The positive answer to the above question would follow from the
positive answer to the following

ProsrEM 5. Let K be one of the classess MM, M, By, LC, T, and leb
A e K. Isit true that every maximal I(-non-removable ideal in 4 ig a maxi-
mal ideal?

Unfortunately, the answer to the above question is in negative even

in the case of the smallest class M. Indeed, from Example 2.14 it follows

that the only non-removable ideal in the algebra I of all entire functions
is the zero ideal.

* (Added in proof). This result will be published in [16].
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ProBrEM 6. Let K be as in Problem 5 and let A e K. Let (L,)5° be .
a sequence of K-removable ideals in 4. Is (I,) a K-removable family?

To formulate yet another version of Problem 4 we need the following

4.6. DEFINITION. Let 4 be an algebra. The product of an n-tuple
(#1y -y @) = A and an k-tuple (y4, ..., 9;) = 4 we define as the nk-tuple
(B1Y1y B1Ysy vy B1Yrs BaY1y ey BY5)-

The positive answer to Problem 4 would follow from the positive
answer to the following

ProBLEM 7. Let K be as in Problem 5 and let 4 € K. Is it true that the
product of two K-regular tuples is K-regular?

As remarked in [10], the Bolleb4s construction in [3] shows that there
is & Banach algebra A such that the family of all removable ideals in A
is not a B-removable family. Tt easily follows that the same family is not
AM-removable either, but it is still unclear whether the job can be done by
an extension of a larger class. So we pose the following

ProBLEM 8. Let K = LC or 7, and let A € K. Is the family of all
K-removable ideals in A a K-removable family?

The answer is not known even if 4 is a Banach algebra.

4.7. Remark. The construction in Bollob4s [3] is rather complicated
The fact that the answer to Problem 8 is negative for K = M or K = M°
follows immediately from Example 2.14. For, if some m-convex extension
removed the family of all ideals in the algebra F of entire functions, then,
in particular, all non-zero elements in F would be invertible in B. Thus B
would contain the field of all meromorphic functions. But, as follows from
the Gelfand-Mazur type theorem for m-convex algebras (cf. e.g.‘ [7Dn,
this is impossible.

The following problem is open even in the class of Banach algebras
(I learned it from V. Miiller —oral communication).

ProsreM 9. Let I be one of the classess B, M, M, By, LC, T, and let
4 e K. Is the union of two K-removable families of ideals a I-removable
family ¢
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Entropy numbers of r-nuclear operators
between L, spaces

by
BERND CARL (Jena)

Abstract. We show that the sequence of entropy numbers of r-nuclear operators
acting from Iy into Ly, 0 <7< 1, 1 < p, g< co, belongs to the Lorentz sequence
space g, where

1/s = l/r+min(1/2; 1/1))—~ma-x(1/2; 1/g).

Introduction. Since the fundamental work of Grothendieck the #-
nuclear operators (“operateurs 4 puissance r-igme” [6]) were intensively
investigated. A rvepresentation of the theory of these operators can be
found in the book Operator ideals of Pietsch [14]. A remarkable fact about
the distribution of eigenvalues of r-nuclear operators was proved. by
H. Konig [8].

The aim of this paper is to determine the “degree of compactness”
of r-nuelear operators in terms of entropy numbers. As an application
we also get once more Konig’s result about the behaviour of eigenvalues
of r-nuclear operators acting in I, spaces.

Let 0<<#»< 1. An operator S e % (¥, F) from a Banach space H
into a Banach space F is called r-nuclear if it admits a representation

0
8=20,04, @k, y,cF
=1

with 3 fja, [ 9,17 < oo. Let

fs=l
N,(8): = int (Z laall iy 1),

where the infimum is taken over all possible representations of S. The class
of these nuclear operators is denoted by 9, (&, F'). [N, N,] forms an »-
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