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Abstract. The main result in this paper (Theorem 2) is a representation formula
of the tiype F(e) == oxp (A -}-B(z)) for operator valued functions F(2), where: 4 is
a IHermitian oporator and

Bg) = (¢/2m) f (6%t 4 &) (6 — 2)—1G (t) At

for & a guitable operator-valued function. The conditions of ' for the existence of this
representation are the following : (i) F (#) is analytic on 2| < 1 with values in the boun-
ded invertible operators on a Hilbert space; (ii) Re.F (2) » 0; (iii) F(0)— I & 0y, the
von Neumann-Schatten class of order 1< p < + oo (iv) ImF(2) € Op, and (v)

flilmlogF('re’”)]],, dt< O
for all 0<r<l and some 0.
Turthermore, the G appearing in the expression for B(e) satisfies: @ (t) is Hermi-
tian and /@) « =/2 for almost all ¢
Other rolated results are also proven.

Introduction and notation. We begin by quoting some definitions
and recording the notation used in this article. C designates the field of
coroplex numbers and D == {z e C: |2] < 1} the unit disc. H denotes a se-
parable complex Wilbert space. With. (£, ) we designate the scalar product
of two veetors & and n, with. || &] the norm of & L(H) designates the Banach
gpace of all bounded linear operators on H, ||.4 || designates the norm of .A4:
(A1 == sup{|l4 &|: |& =1}, I and 0 des:gnate, respectively, the unit and
the zero operator of H. Red == }(4-+4%) and ImA = 1/2 (4 — — A"
(wherd A* designates the adjoint of A) designate, respeetwely, the real
and the imagihary parts of 4.
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In this paper we are concerned with the classes 0, (H) of linear oper-
ators in H which were introduced by von Neumann and. Schatten [8],
DEFINITION. (See [9], p. 75.) When 1< p < oo, C,(H) is the set of
all operators 4 in L(H) which satisfy the following condition: for cach
orthonormal basis {p,} in H,
E I(Amlm (Pk)lﬂ< .

Ie=1

We shall pub by deflinition C,(H) = L(H). It is easy to see thati 0, (1)
iy a linear subspace of L(H) and that C,(H) ¢ C,(H) H 1< p < ¢ oo,

The operators belonging to C;(H) are called irace dlass operators or,
equivalently, nuclear operators. If A4 e ¢, (H), then tho trace of A, denotied
by tr 4, ig defined by

wd = 3 (Agw, oi),

fg=1

where {g;} is an orthonormal basis in H. tr.A depends only on A (not on
the choice of the orthonmormal basis) (see [9], Lemma 2.2.1, p. 82).
For 1 < p< oo, C,(H) is a Banach space with norm

(A, = (tr]Ad2)",

where |A| = (A%A)”, (see [9], Def. 2,3.2, p. 86 and Th, 2.3.8, p. 93), If
P = oo and A eC (H) = L(H), we write |4, = || 4].

The following relations are valid: A

(2) If A'eC,(H) and BeL(H), then AB and B4 belong to 0,(II)
and

I4Bl, < 141, 1B, [BAl,<IB| 4 ],;

(b) If 4 e 0,(H), then for every natural integer n, A" e C0,(H) and
1A, < 14 1l :

In this note (as well as in our paper [1]) a key role is played by Defi-
nition (1) below of the logarithm of an operator A e L(H) with positive
real part. Tor the interesting propertics of this definition, of. [1], pp. 8588,
The main result of this note is Theorem 2. Tty thegis (formula (18)) givos
an exponential representation of an operator-valued function s D1 (L),
analytic and of positive real part, whoge logarithm belongs to a ¢, class.
The appearance of these €, classes is one novelty of Theorem 2, whoso thesis
is formally identical to formula (3.6), p. 91 of [1]. Anothor novelty is con-
dition (v). The new conditions (iii), (iv) and (v) entail that the operator-
valued function &(f) which appears in the right-hand side of (13) is.Bochner
integrable. This integrability, which is essential for the proof of Theorems
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4, 5 and 6, is not shaved by the analogous function G (1) which appears
in the right-hand side of formula (3.6) of [1]. The proof of Theorem 2 is
exssontially based on Lemma 1 and on Theorem 1, which are, respectively,
operatior-valued versions of classical theorems of Plessner and of Herglotz.

The case p = 1 of Theorem 2 (and of its particular case Theorem 3)
is especially interesting. This is connected with the fact that the O, clasg
coincides with the class of nuclear or trace-clags operators. This has a con-
sequence that, when p = 1, a determinant can be defined for the operator-
valued fanetion J(z) which appears in the left-hand member of (13) (and
of (21)). This determinant ean be expressed as an infinite product (formulae
(28) and (29)). In the particular case in which the Hilbert Space H ig finite-
dimensional, (28) and (29) reduce to known formulae for the determinant
of matrices analytical and of positive real part (respectively positive-real
or impedance matrices) in D,

We remark, finally, that in an article to appear elsewhere we shall
establish gimilar formulae when the unit disc D is replaced by the right-
half plane. These transplanted formulae are relevant for applications to
the theory of Hilbert ports.

The logarithm of an operator with positive real part. If 4 e L(H),
Red = 0 and 4 has a bounded inverse, we have defined in [1] the logarithm
of 4, denoted by log 4, by the formula *

(1) o logd = [ (1) T - (A b o-T)
. 0
where the integral is a Bochner integral. We have proved in [1] that under
the stated conditions log.4 e L(H), exp(logd) = A and
) Mmlog A < n/2.

Limmma 1. Let A e L(H) be an operator such that Red > 0, and A has
& bounded inverse. Lhen A —1I e C,(H) (LK p < oo) if and only if log A
& C,, (H).

Proof. If A —1 e, (H), then

() L (A tD) ™ e (1) A AAT) (A D) € O, (H);

and
Mog A llp < 14—l [ (1-+1) (A +2I)"Ydt < oo.
0
Oonversely, if B == logd e (,(H), A = expB and
B B
A ] = B+~—2—"+..~f—;ﬁ-+ ces
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Hence
o B
la—1i,< 328 < o im,) <
n=1

A Herglotz’s Formula for operator-valued functions.
LEMMA 2. Let B: D—L(H) be an analytic operator-valued function such
that 1 < p < oo and
(i) F(0) e C,(H),

(i) V(z) = ImF(2) € C,(H) for each ze D,

(i) 3 JIvVEea<0< o (0<r<l).

-7t

Then, for zeD,

o
-~
§ zﬂAn

(3) F(e) =
n==0
with A, € C,(H) (n =0,1,2,...); and
(4) 14al, <C (> 0).

Moreover, (the convergence being in the norm of C,(H))

A4, if n>0,
By llm——m f Virdye it = 121V (0) if n=o0,
‘ r— —4*, if w<o0.

Proof. That the function # admits the Taylor expangion (3), which
converges in the norm of 0,(H), follows from the theory of vector-valued
analytic functions (see [7], Chap. ITI, § 2). From (3) we obtain

o0
Z,rneintjln 0<

N0

Ire") = r<1y,

o0
I,‘I(Mit)* — E’I'"e"iMA: (0<r<1).
%=

From these formulae it is easy to see that, for n > 0,
4 = 1 n],’v il —int‘ Y
”_E-n:_r’? .(10 )(3 at (0<?<1),
-
™

f F(re#)* e~ gt

—T0

1
T 2m®
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Wo get, therefore

(6) Ay = e | V(g™ ™dt  (n>0) (0<r<1).

In an analogous way, we obbain

- k2 .
. q : N
(7) M.\A.in e ——;—gm;:f‘?'il‘m f V(a'e”)(;"mdt (n< 0) (0< < 1)_
e .

Letting r-=1 in (6) and (7) we oblain (5) when % = 0. The Case N ==
is teivial.

Iinally, relation (4) follows easily from (6).

By ' we designate the halt-open interval (—, =] with the topology
given by the distance d(t,s) = [¢%—6"|, t,s e T. T is a compact space
because it is the homoeomorphic image of the umnit cirele of the complex
plane. With # wo designate the a~a1gebra. of the Borel subsets of 7.

LA 3. Suppose 1< p < co. Let F': D—L(H) be an analytic operators
valuwed function which sr(mgfws condilions (1), (ii) and (iii) of Lemma 2. Then
there ewists a finite positive Bovel measure p on T such. that

‘ 1 1—]z]?
(®) V@< 2]

Proof. 'Wo list prove that the continuous function z—||V(2)
subharmonic on D. Indeed, if 2y e D and 0<< 7 << 1—|g,|, then

Iy is

1 ™
szyfV+M%
and congequoently

‘ 1
IV elly < 5= [ 1V Gortre®) .

New, by Theorem I, 6.7 of [5], p. 38, there exisls a positive harmonic
funetion (2) on D wuch that |V (2) ll, = u(e) for each 2z ¢ D. On the other
hand, & woll-known. theorem ([5], p. 19) atlirms that there exigts a positive
Borel measure g on 7' such thatb

This proves the lemma..
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To formulate the following theorem, which is an operator-valued
version of a well-known theorem of Herglotz, we shall use the theory of
integration of scalar functions with respect to a vector measure of finite
variation (cf., for example, Chapter IT of [3]).

‘We note that, since T' is a metric compact space, any Borel vector
measure on 7' is regular.

THEOREM 1. Let F: DL (H
Assume that 1 < p < oo and that

(i) F(0) e Op(H);
(ii) V(2) = ImF(2) e O, (H

) be an analytic operator-valued function.

) for each 2 e D;
(i) 1 17 (el de < 0 < oo
T n

Then F(z) admits the representation

10
©) PE) = A+ o IE= 2 a4,

where 4 = ReF(0) and A: B—C0,(H) is a unique Borel vector measure
of finite variation on I' such that A(M) is a hermitian operator for each
Me2.

Conversely if A e Cp(H) is a hermitian operator and A: B0, (I[)
s @ vector measure whwh verifies the above conditions, then the fumtwn
F: D—~L(H) defined by formula (9) is analyiic in D and satisfies con-
ditions (i), (i) and (iii).

Proof. For each 0 <7< 1 weo define the linear operator ¢,: ¢(T)
—C,(H) (C(T) is the Banach space of all complex continucus functions
with the norm ||f|l, = sup|f(t)]) by the formula

(10) o (f)= [FfO)V@ehar  (feo(D).
By condition (iii), we have
(11) 192 () lp < Ol f -

By Lemma 2 the limit
limg,(f)
el

exists in the norm of (), () for each trigonometric polynomial J. Sinee |,
< O, by (10), and the set P(T) of all ‘ongouometme polynomials is a dense
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gubspace of ¢(T), there exists, by Theorem 2.11.4 of [7],
linear operator ¢: (1)), (H) such that

p. 41, a bounded

limp, (f) = o(f)

L

for every f e C(T) (the convergence heing in the norm of the space C, (H )).
We shall see that this operator ¢ satisties the relation

(12) o (Nl < f IFOldu)  (fe0(T))

where p ig @ positive Borel meagure on 7.
In fact, by formula (10) and Lemma 3, we have

1—r?
A 1—27rcos(t—s)+r?

i ()l < f {’2%7'{ lf(s)}ds} du(t).
P

From this formula, passing to the limit for r—1, and using well-
known properties of the Poisson kernel, we obtain formula (12). This
formula means that ¢ is a dominated linear operation in the sense of
[3], p. 379. Therefore the operator p: C(T)}->0,(H) satisfies the hypoth-
osig of Theorem 2 of [3], p. 380. Consequently, there exists 2 unique Borel

veclor measure A: #->0,(H) of finite variation on T such thab

o(f) = [ fnaaw
T
Hence, from (b) we get
L
A,,f = ife aA(t)

and

ImAgy =V

Therefore, from formula (3), we obtain

1 °'°‘1~n al
7 = -+-_1f{~2u+2e“ | 240,

LR
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Finally, taking into account the relation

1 etz 1 ~
= 6" (ze D)
i

26— 2 %‘

formula (9) follows.

The uniqueness of representation (9) follows eagily from the sealar

case. The converse part can be easily verified.

Expounential representation. }
THEOREM 2. Assume that 1< P < oco. Let F: D—»%L(I[ ) be an analytio
operator-valued function such that
(i) ReF(e) = 0 for each 2 eD; :
(i) F (%) is an operator wilh o bounded inverse /m" cach : ‘é]‘);
(iii) F(0)—Ie0,(H);
(iv). Iml?’(z) &, (H) for evmg/ 2 e_D

1
v) = f |Tm log 7 (xei) |, dt < 0< o (0<r<1).
Then the funotwn F(z) admzis the H’]M a.semamon

; i -z
(13) F(z) = exp {A '[-‘12—7; —i' 'G'WG(Z)'(HI, :
where A is a hermitian operator in Cp(H) and G: ( —m, n)~C,(H) és a Ro-
chner integrable fumction such that:
(a) G(t) is hermitian for almost every ie(—m, n);

(b) 1GMI < w2 for almost every t e (~m, w). .

Moreover, ‘
(14) Lim |[Im B (re®) — G (1), = O

r—>1
for almost every te(—mw, wm).
Proof. Let J: D—L(H) be the function defined by J(2) == logh'(z),
where the logarithm iy defined as in Lemma 1. That tho function J ()
ig analytic is proved as in Theorem 3.1 of [1]. Moreover, wo have

(18) Mmd ()< =2 (2eD)
and
(16) F(z) = expd (z),

(see [1], Th. 2.5 and Th. 2.4, respectively). By conditions (i), (iv) and (v),
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and Lemma 1, the function J(#) satisfies the hypothesis of Theorem 1;
therefore it admits the representation

6 2

(17) J(z) w A, - ‘2;.“_ f et ! d/l(t)

Py

where A: @+, (H) i o Borel vector measure of bounded variation on 7'
such that A(M) is a hermitian operator for every Borel subset M of T,
and A i% u hermitian operator in O, (H).

Treom formuls (17), wo gob

2
(18) (fm (2) §, ) == {J = IzlI gy ()
i

for every pair of vectors £ and » in I, where A, is the complex Borel
measure on 1 defined by 2g,() = (4()¢, n),

Wo observe that the funebion which appears in the right-hand mem-
her of (18) is harmonie and bounded for every pair of vectors & and % in
H. Indeed, from (L8) wo get

(T J () &, )] < (m2)11 €l Il

Tence, by o classie Gheorem of Fatou, the function (Imd (2)§, #) is the
Toisson integral of a function in L%(—m, n). Therefore the measure 4.,
it absolutcly continunous with respect to thoe Liehesgue measure. This implies
that A(N) == 0 for every Borel subset of (—m, ©) with Lebesgue measure
Zero, 'I‘hm*ofom the vector measure 4: #-0, (H) is absolutely continuous.
Consequently, since the space ¢, (H) (1< p < o0) hagthe Radon-Nikodym
property (seo [2], Chap. VII, §7, pp. 218-219), there exists & Bochner
intograblo function G (~m, n)-»0y(H) such that

(19) A(M) = [G@)a - (M e ).
) it

Now by Theorem 2, p, 169 of [3], formula (17) can be written ag

(20)

Tt iy eany to see from (14) that G(7) is & hermitian operator for almost
overy b e (=, m) '
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Taking imaginary parts in (20), we obtain

) 1 f 1—r?
Tmlog F (re') = 5 G(s)ds  (0<<r<1).

T ) 1 -27cos (t —8)+#2
Tence (14) follows for almost every ¢ e (—m, ) from Lemma 4. below.
Formula (13) follows from (16) and (20). ‘
Finally, from formulae (14) and (15) the relation ||6:(1)] < =/2, follows
for almost every i.
LEMMA 4. Let X be a Banach space, let G: (—mn, ©)—X be a Bockner
imtegrable function and let K: D—+X be the function defined by

kg

N 1 —2 '
K(re") = —— 1o @(s)ds.

T J 1 —2rcos(f—s)4-r*

‘Then
Lm || K (re™) —G ()| = 0
r—>1

for almost every t € (—=, w). (||| denotes the norm of the Banach space X.)

Proof. We omit the details. The proof follows, as in the scalar case,
from the fact that almost every ¢ is a Lebesgue point of @, i.e.

t+h

lim-%; f 1@ (s)—G(B)llds = 0.

2
h—0 W

(See Theorem 3.85, p. 87, of [T].)

Exponential representation in the case in which F'(#) is a real bermitian
-operator for every real ¢ €(—1,1). In this section we assume that the Hilbert
space H has a conjugation £—Z which satisfies the conditions:

F=¢&; Efn=F+m; & =10F (5n)=(57).

Tor every 4, we define the conjugate 4 of 4 as the operator defined
by A& = AE. Itis easy to see that 4 e L(H) and that ||A{ == ||4] for
every A e L(H). An operator 4 is said to be real it 4 = 4. It is also cusy
to see that A* and A belong to C,(H) if 4 e C,(H).

THEOREM 3. Assume 1 < p < oo, Let I': D~ L (H) be an operator-valued
-analytic function which satisfies conditions (1)-(v) of Theorem 2 and, besides,
dhe following owme: .

(vi) F(») 48 a real hermitian operator for every g e (—1,1).
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Then the function F(2) admits the representation

17 zsent

21 T(s) = oxp 14 _fm“ .
1) (%) pl 1 mJ 1—2sent+e? Gmdi,
where A e O, (H) is a real hermitian operator and G: (0, n)->C,(H) is
a Bochner integrable function such thoi:

(a) G(1) i8 @ real hermitian operator for almost every t e (0, w);

(b) |G| < /2 for almost every e (0, ).

Proof. By Theorem 3 the function F(2) admits representation (13).
We claim that the function @ (1) verifies the relations

(22, a) G(—1) = —G(8),
(22, 1) Gt = G().

Indeed by condition (vi), we can apply Lemma 5.3 of [1], to verify that
F(7) = F(2)*. Thus V(re ™) = —V(re") (0 r<1). Hence, by (14),
we obtain (22, a). Likewise, in virtue of condition (vi), we can apply Lemma
5.2 of [1], to obtain V(re~") = —V (re%). Hence, by (14) we have G (1)
=s —(F(—1) for almost every t. Whence, from (22,a) we obtain (22, b).
Thus G(¢) is a real hermitian operator for almost every t.

Finally, taking into account relation (22,a) it is easy to see that
formula (21) follows from (13).

The determinant of an operator-valued fumction ¥': D—L(H). If
A ey (H), wo define the determinant of (I —4) ag in [6], Chap. IV,
Sect. 1. I A e, (H), then I—expd eC,(H). Therefore we can define
the determinant of exp.d by the formula

det(expd) = det[I—(I —expd)].
LomMmA 5. (Generalized formula of Jacobi) If A e Oy (H), then
(23) det(expd) = oxp(trd).
Proof. In [6], p. 163, it is proved that if K (2) is an operator-valued
funetion with values in ¢, (H) and holomorphic in some region, then the
doterminant det (I —K (#)) is holomorphic on the same region. Moreover,

the formoula

(24) «z%«]og [det (I —K (2))] = —tr [(I——K(z))‘lK’ )] .
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is valid for points # at which the operator I —K (2) has a bounded inverse.

By choosing K (2) = I —exp(24) in formula (24), we obtain
a
——log[det(expzd)] = trd.
dz
Hence, integrating from 2z = 0 to # =1, the lemma is proved.

TEEOREM 4. If F: D—L(H) satisfies the hypothesis of Theorem &
with p =1, then-

o o pete C
(25) deb F(s) = exp {‘.“ng,; _‘[ - g(t)clt} (ze D),

where @ = trd and gt) = tr@ @) (4 and G(t) are as in formula (13) of

Theorem 2).

Proof. We first note that the function g( ) in formula (25) is integrable
sinee |g () < |G @) < G @), € L' —m=, -:r) bw'mse the operator- vmlued
funetion G (¢)' is Bochner integrable. '

I‘rom fmmula.e (13) and (23), we get

(26) debl’( ) = exp {trA l—--—t (J ma(t)dt)}

On the other hand, it is easy to prove'that

T n &t
@7) tr( f%@(t)dt) - f; tr (G (1) dt.

Indeed, let {p,} be a orthonormial basis of H. Thbn

gl g r c“-{-; S
o ([ oma) = m [ 51 {;}4 (@0re, i ar
—~T% —TT ched

Passing to the limit under the integral'sign we obtain (27). To justify this
procedure we can applv the dominated convergence Theorem of Lebesguo,

since
‘ 2 (G(t)WIH (/)In)

k=1

< N6Wlh e L (—m, ).

Finally, the theorem follows from (26) and (27).
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THROREM b, Let B': D-+L () be an operator-valued function which satis-
Jies the hypothesis of Theorem 2 with p = 1. Then

(28) A det I (¢) = ] [#:)  (ze D,

Je=1
where fi(2), & ==1,2,..., arc complex functions such that:
(w) frle) is analytic on D;
(b) Refy(2) = 0 for each ze.D.
Proof. Lot {g,} ve an orthonormal basis in H, Then, by Theorem. 4

; S PP
dobF'(2) = exp {‘}_J (Aipy, 1) + Z 5o ,[ 7 (@O ) dt}

¢
Joml Joms
Ilence
det (2 n Fu(2),
Fo=1
where

™ it

4 et -z
Ju(#) = exp {(-A-%; P) o I o (@@ pu P1) dt} .

The function f,(2) is ovidently analytic on D. To prove that Ref(z) = 0,
it suffices to see that

R
27 ) "=z

(6o, ) dtl 2.

This is easy because [(G(t)pg, @) < |G(1)| < =/2 almost everywhere and

An eagy congequence of the previous theorems ig
TuroREM 6, Let I1': D—L (H) be an operator-valued function which satis-
fies the hypothesis of Theorem 3. Then

(29) det (e ]'] fol2) (2eD),

Jomsl

where fi(2), kb = 1,2, ..., are complex valued functions such that
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) fu(2) is analytic on D;
) Ref(z) =0, for each z € D;
(c) fr(w) is real for every xe(—1,1).
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