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Abstract. An irveducible Markov operator on 0(X) (X compact Hausdorf) is
uniquely ergodic ifl thero exists o sequonce By, of affine combinations of iterates of T
sucl that Iy, converge for the weak* oporator topology to an operator @ with Q7' = @
{(a semigroup zoro). Other “wealk” conditions implying unique ergodicity are also
found,

1. Introduction. Lot X be & compact Hausdorff space. A linear
operator ' acting on U(X), the space of real-valued continuous functions,
is sadd o e Markov if T'L «= 1 and Tf = 0 whenever f > 0. A Borel subset

. B ot X is dnvariant it 176,(B) == 1 for every @ ¢ B. T is called érreducible
it there are no proper cloged invariant sets.

Schaefer [107 proved that an irreducible Markov operator is uniquely
ergodic. i.e., there is a unique invariant probability (Radon) measure for 1"
iff the Cesaro means

Ayf = 0™ fHIf A T

convergo unitormly for every fe 0(X) (see also Sine [11]). The strong
operator convergence of 4, can be replaced by convergence of other
averages and in fact iy equivalent to the existence of an operator @, sat-
ifying 1'Q,+= €, and contained in the strong operator closed convex hull
of the eyelic semigroup {I,7,7%,...} e L(C(X)). It wag shown in [8]
that this assumption can also be replaced by pointwise convergence of
A, f for ovory fe0(X) (thig extends an carlier regult of Oxtoby [6] on.
continnons transformations). In this paper the assumption is further
relaxed by allowing more general averaging methods (Theorem 1).

Tor certain compact spaces all irreducible Markov operators are
uniquely ergodie. This is clearly the case for finite spaces. Ando ([1], Prop-
osition 2) proved that if X is o-Stonian and there exists an order conti-
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nuous probability measure on X then every irreducible Markov operator
on C'(X) is uniquely ergodic (more recently Lotz [5] proved that the Cesaro
means A, must then converge in the operator norm). In Section 8 we prove
that unique ergodicity occurs whenever 4, converge on. sufficiently large
sets (Theorem 2). This iy in particular the case if X has isolated points.

An example of a deterministic irreducible Markov operator with
many invariant measures was given by Raimi [7]. The example relics on
topological properties (discovered by Rudin [9]) of the gpace BNN\N.
It was subsequently extended by Ando ([1], Proposition 1 and Theorem 1)
to more general o-Stonian spaces and by Lotz ([5], Example 5 and Corollary
4). In all these examples the underlying space is nonmetrizable. In Section 4
we observe that the familiar unilateral shift on 0-1 gequencos restricted to
cerfiain invariant sets may result in non-uniquely ergodic irreducible Hy§-
tems. A similar example for the bilateral shift can be found in [6], § 10.

2. Weak* mean ergodicity. Let T be a Markov operator on ¢ X)),
There exists a Borel measurable (Radon) transition probability P (z, B)
such that

Tf(@) = [ f(y)P (@, dy)

for every fe 0(X) (see Rosenblatt [8]). The same formula extends 7' to
an operator acting on all bounded Borel functions. By the Tonescu Tulces
theorem, o every initial probability u on X corresponds a unique prob-
ability measure P, on the space of trajectories XV defining the canonical
Markov process &,.

The following proof is a modified version of the argument in [3],
Theorem. 5.

Lievva. Suppose we are given an irreducible Markov operator I' on O (X)),
an invariant Borel set B, and o bounded Borel Junction h. If the equality
Th(w) = h(») holds on B and if h|B has a continuity point @, then h is con-
stant on B.

Proof. Let © e B. The trajectory &, stays forever in B P -almost
surely. Since the restricted function h|B is invariant (for the restricted tran-
sition probability), it follows that h(£,) is a bounded martingale and con-
verges P -almost surely to a bounded random variable g. We have

(B (&) — (@)l < e

nfinitely often with probability one for every ¢ > 0 gince, by irreducibility,
every neighbourhood of w, is visited infinitely many times (Lemma 2 in
[3]; metrizability is unnecessary for this assertion). Therefore g = & ()
holds almost surely and we have h(m,) = [90P, = [ h(£)AP, = N(z)
by the martingale property. This clearly implies == congt on B.

Il
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The next result extends the corollary in [3] and should be compared
with [6], (5.8). :

TaworEm 1. Let T be an srreducible Markov operator on O(X). Then the
Sfollowing conditions are equivalent:

(1) T is uniquely ergodic.

(2 A,f converge uniformly for every feC(X).

(8) A,f converge pointwise for every fe C(X).

(4) There ewists an infinite matria (a,;) (0= 1, ¢ 2= 0) satisfying a,, = @, ‘
220, 3y =1, and lima,, == 0 such that the averages %_7 @, TF

] n

1
converge pointwise for every f e O(X).

(B) There exists a sequence R, of affine combinations of iterates of T
such that B;, converge for the weal™ operator topology in L (C(X)') to an oper-
ator @ such that QT == ¢.

Proof. (1)=(2) is well known (see e.g. [11]) and (2)=(3)=(4) are
trivial. (4) = (5) follows from the Lebesgue dominated convergence theorem
and from the following observation:

“(I"'T)Z“m—,ﬁ
K

We prove (B)=(L). Suppose @ = limR, where R, are affine com-
binations of I, T, T%, ... For every fe 0(X) and w e X the sequence &, f (v}
= (f, B;,8,) converges to f(2) = (f, @4,). The function f is bounded by
the Uniform Boundedness Principle and is T-invariant sinee QT = Q.
Ag a limit of a sequence of continuous functions, f has a continuity point.
By the Lemma, f must be a constant funetion. To prove unique ergodicity
agsume x and » are invariant probabilities. The Lebesgue dominated con-
vergence theorem implies

(s 1) = (Bofy ) = (F, 1) = (F, ) = (£, %),

which implies p = » because f was arbitrary in C(X).

= O+ 2 (a/ni—a’n,'l+1) = 2“@10”)0'
1

3. Points of convergence. If X contains isolated points then every
irreducible Markov operator is uniquely ergodic. Indeed, if x4 and » are
extreme (hence ergodic) invariant probabilities then, by irreducibility,
every isolated point w, is contained in both supp x and supy whence u ({mo})
>0 and »({my}) > 0. This implies u A» 5= 0, and se p = » gince ergodic
meagures form an orthogonal family (this fact is well known and follows
from the individual crgodic theorem). Now invoke the Krein-Milman
theorem. to obtain unique ergodicity.

The seope of the above remark is rather limited, because for deter-
minigtic irreducible Markov operators isolated points only exist in the case
of finite X. Indeed, agsume that an irredueible operator is given by T',f(w)
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= fp(#) where ¢: X—X is continuous. If x, is an isolated point then
letting X, = {m,} and X, = ¢ (X,,_;) for n =1 we oblain

Y= (UX,)” #0
L onzEk

and ¢(Y) < Y. This implies ¥ = X and «, ¢ X,, for some » = 1. It follows
that the finite invariant set {m,, (@), ..., 9" (%)} coincides with X.

The following result extends the remark to isolated points and gives
another equivalent condition for unique ergodicity.

TumorEM 2. Let T be an irreducible Markov operator on C(X). Then T
is unigquely ergodic iff

(6) For every feC(X) fhere emisis an open set V 55 @ such that
lim A, f(s) = f(®) ewisis on V.

Proof. It suffices to prove the “if” part. The proof will be probabili-
stic. Fix f € 0(X) and o, € X. By Lemma 2 in [3], the trajectory &, visits
V P, -almost surely. Let v denote the Markov time of the first visit to ¥
after time 0. We have v < co almost surely and

07 (F(E) + oo FF () = 0T (FE+ oo Hf(Erpand)) F
A+ )+ o () = (&) = oo —f(den))

for » > 1. The second term on the right is bounded (since the first is boun-
ded and so is the left-hand side) and converges to zero as n —-oo. By the
strong Markov property we get

Bon (8D + oo F S (Eepnen)) = B e 0™ (£ (&) + - 5 (5am))

= B, Af(8) T, J(£)
becanse &, e V. Therefore

Anf(wo) = Exan_](f(éa) + ... '[”f(‘fn——l))'—)EmOf(Er)

by the Lebesgue dominated convergence theorem. Since @, was arbitrary,
A, f converges pointwise. Now apply Theorem. 1.

The next theorem uses the lemma in ity full strength and gives one
more equivalent condition for unique ergodicity. Note that for every
f e U(X) the set of all points » for which the limit of 4,f(») exists iy an
If’f,,, (by the Cauchy condition) and of invariant meagure one (by the indi-
vidnal ergodic theorem).

) TaeorEM 3. Let T be an irreducible Markov operator on €(X). Then T is
uniquely ergodic iff

(7) For every f e 0(X) there emists a G, set Gy of invariant measure one
such that A, f(x) converges on @G,.

) Proof. It s.uffices to show unique ergodicity assuming (7). There
exists a decreasing sequence of open sets V, such that Imyy, = %a,

icm®
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Since T is given by a transition probability, we have T yyp, | T xg,. There-
fore
for Tog, (@) =1} = (N O fo: Ly, (@) >1—1/k}
n o
is a ¢y set (the funetions Ty, are lower semi-continuous since the V,, are
open and the transition probabilities are Radon measures). This implies
that the set

and similarly the sets
Gn = {:‘1)‘ C"Gnml: TXG,,‘,I == 1}

for m > 1 are Gy of invariant measure one. Clearly

is a @, sob of invariant meaguve one. It iy easy to see that & is invariante
By assumption the funetion F == limd,f is well defined on & and is of
the first Baire class. The space G is topologically complete, hence f has
o continuity point. By the lemma, f must be constant on @ For any two
invariant probabilities x and » we have

(fyw) = [Jau = [Fav = (F,9).
[£3 [

This implies that 7' is uniquely ergodic.
Tt should be noted that instead of Cesaro means in (6) 4nd (7) other
means can be used provided they satisty the conditions of (a,;) in (4).

4. Example. We present an example of a non-uniquely ergodic irreduc-
ible component of the unilateral shift ¢ defined on the Cantor set {0, 1.

‘We shall construct a 0-1 sequence & such that -

(i) every initial block is repeated at equal intervals,

(i) the density of L’s does not exist.

By (i) the seb X == {p"(z): nz 0}~ will be minimal invariant (see
Proposition 2.4 in Furstenberg and Weiss [2]). The gecond condition implies
that T, is not uniquely ergodic since A, f(z) diverges for f(wy, ®a, ...) == @y.

Lot 0 < &< 1./2. In the fivst step of the construction we place 1’8 at
the positions nfey -1 (n 2 0) where 1/k <Ce. All the remaining pogitions
are loft blank, Tn the second step we fill up the blanks 2, ..., ky with 0's;
in the subsequent blocks of length %, the blanks are left intact. We continue
up 1o & point &y = Mk, (ny > 1) where the fraction of the filled positions
in the injtial interval of length &, is less than & The next blocks of length &,
are repeated periodically. In the third step we £ill up with 1’3 all the blanks
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in the initial interval of length %, and leave intact the blanks in the follow-
ing ky-blocks up to k; = ngky (1, > 1) where the fraction of the filled
positions is less than s. The next blocks of length &, are repeated period-
ieally. We continue this process by induction by filling up the blanks with 1’s
and 0’s at odd and even steps, respectively. The fraction of the filled
positions in the initial interval of length %, is less than ¢ at the nth step.
In the resulting sequence 2z the initial blocks of lengths %, &, ... are
repeated at intervals of lengths %, &y, ..., respectively. Since k,~-oo,
(i) is clearly satisfied. The density of 1’s in the initial block of length %, is
less than & for » odd and greater than 1 —e for n even, whence (ii) is also
satbisfied.
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Some convergence properties of convolutions
by,
KLAUS KELLER (Dortmaund)

Abstract. For cerbain spaces X of test funotions the following reversed form
of eontinuity is shown to hold for convolutions: If Tje X’ and Ty*p-»0 in X’
for all g e X, then Ty-> 0 in X'. The proofs are based on theorems of Grothen-
Jdicek and Raikov-o Silva on inductive limit spaces.

Oonsidering the operation of convolution on &' x% (% the space
of rapidly decreasing 0*-functions, &’ its strong dual), the following prop-
erty i3 easily proved: If T;—0 in &', then T, +p-+0 in &’ for all p € &.
In the sequential approach of Mikusivski [1] and [2] a reversed problem
is of interest: If for T; € &' we have T;xp—>0 in &’ for all p e &, is it
true that T),—0 in &'? Similarly does Zj#p—0 in ' for all ¢ € 2 imply
T;—0 in 2'% In both cases we infer from

(Lysq, w) = (g, 9~ %9), @ (0): = @(—a),

{weak) convergence on the subspaces [F+F] = & or [2*2] c D, which .
are built of finite sums of convolution products. If [¥x&] ([2+2D]) is

equal to & (2) or at least of second category in & (2), then (7)) is certainly

bounded and convergent. Performing Fourier transformation we may ask

whether [&-&] = & and [ Z] = %% Whereas [ -Z] =% can be

verified by rather deep and lengtly methods [3], a systematie treatment

for the case of other test function spaces iz not known.*

In this note we give a divect solution for the original problem. It util-
izes the following “Theorem B” of Grothendieck [4] and can be generalized
to various other test funection gpaces.

Tanornv B, Let I} be o locally convew Hausdorff space, I and F,(i € N)
Tréchet spaves. Lot w be o continvous mapping F'-=1 and w; continuous
mappings I3 If w(B) < | w,(F,), then there ewists some indew &, such
that w (Y < ) w(IF). g

1y

This theorem will imply the convergence of (T;x¢); on a larger space,

® In the mean time J. Voight Las announced a proof of &-& = &.
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