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Holomorphic extension from the sphere
to the ball in Hilbert space*

by J. A. Cima and J. A. PraLtzGrAFF (Chapel Hill, North Carolina)

Abstract. Agranovskii and Valskii [1] and Nagel and Rudin [3] have shown that if fis a
complex valued continuous function on the boundary of B,, the unit ball in C" (with Euclidean
structure), and if f has the one-dimensional extension property, then f extends to a holomorphic
function in B, In this note we generalize their extension theorem to Banach space-valued
continuous functions with the one-dimensional extension property defined on the boundary of
the unit ball in a complex Hilbert space. It is interesting to note that our proof uses only the
two-dimensional case of the result of [1], [3]), and hence even the n-dimensional result of [1],
[3] for n> 2 follows from our work and the two-dimensional result.

We let )¢ denote a complex Hilbert space with inner product { , > and
norm || ||, and

B={xe#: ||xll <1}, S=I(xei:||x|]=1]}.

If Y is a complex Banach space, then C(S) = C(S, Y) denotes the set of
continuous functions from § into Y. A complex line L in a complex linear
space is a translate of a one dimensional subspace, i.e. L= L(x, y) = {zx+
+y: zeC|} for fixed x, y in the linear space. We say that fe C(S, Y) has the
one dimensional extension property if for every complex line Lin 2 such that
LN B # O the restriction of f to the circle Ln S has a (Y-valued) holomor-
phic extension to the open disk L~ B that is continuous on its closure.
The function f: B — Y is holomorphic in B means it has a Fréchet derivative
at every point in B. Finally we let Y* denote the dual space of continuous
linear functionals on Y.

* AMS (MOS) subject classification (1970) 58C10, 32A10.
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TueoreMm. If feC(S, Y) has the one-dimensional extension property, then
f has a holomorphic extension to B.

Proof. We prove this theorem by establishing the following three
assertions:

(1) the various one dimensional extensions to a point xe B define a
unique value f(x);

(ii) The extended function f(x) is locally bounded at some point in B
and hence holomorphic in B [4];

(iii) The extended function is continuous on the closed ball, B.

In the finite dimensional case ([1], [3]) (i) 1s an automatic consequence
of the holomorphic extension, but an additional argument is needed in the
infinite dimensional case since B is not compact.

To prove (i) we fix xeB, x # 0 and let f; denote the one dimensional
extension of fto L, n B, where L, = {Ax: AeC}. Suppose x is also on the
complex hne L, determined by two points u,, u,€S (x = Bu, +(1—B)u, for
some BeC) and let f, denote the extension of f to L, ~B. Note that it
suffices to assume only one of the lines, L,, is in general position missing the
origin since we will show f,(x) = f; (x) and hence that all possible extension
values at x are uniquely defined by f,(x). Since L, # L,, u, and u, are
linearly independent and [u,, u,], the complex linear subspace spanned by
u,, uy, is two dimensional. Clearly v,, v, defined by

vy =y, Uy =(uy—aw)//1—|ad? @ =uy, u),

are orthogonal unit vectors that enable us to define explicitly a linear
isometric isomorphism T: C? — [u,, u,]. Il F denotes the restriction of f to
Sn[uy,u;] and yeY* then yoFoT is a complex valued continuous
function on the unit sphere in C? which has the one dimensional extension
property since T is a linear isometry. There is a unique point p in the unit
ball of C? such that x = Tp and there are lines A,, A, in C? that correspond
to L,, L, via T. The one dimensional extensions f;, f, induce corresponding
one dimensional extensions of Yy oFo T to the lines A,, A, in C?. By the
two-dimensional case of the result in [1], [3], all such extensions yield the
same value at p, and therefore 'Il(fl (x)) = l,ll(fz (x))- This is true for arbitrary
YeY* hence fl (x) =f2(x). We can take care of the value at x =0 by an
obvious continuity argument.

Having established our claim (i), we now have an extended function f
defined throughout the closed ball B such that f = f on S and f is Gateaux
differentiable at each point in B since it is holomorphic on lines. By a
theorem of Zorn [4], p. 582, f will be holomorphic in B if we can produce
at least one point in B with a neighbourhood in which f is bounded, i..
(i) holds. It is worth mentioning that the most commonly used form of
Zorn’s theorem [2] (Theorem 3.17.1) states that G-differentiability plus local
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boundedness at every point in a domain implies F-differentiability, but we
are using the stronger result which requires local boundedness only at a
single point.

To prove (ii) we fix peS and let P={Ap: |A| =1, AeC}. Then P is
compact and maxl[f (APl = M < 0. To each ApeP there corresponds &

=06(4)>0 such that ||[f(x))] < 2M if xeS§S and |[x—Ap|| < 6(4) since f is
continuous on S at the points Ap. The sets
D, =|xeS: ||Ix—Apll < 8(4)] for |A| =1, AeC,

form an open cover of the compact set P. Let D, j =1, 2,...,m, be a finite
subcover of P. Then there exists ¢ > 0 such that

A=|xeS: dist(x, P)<e}c U D
j=1

and consequently |[f(x)l| < 2M for all xe A.

We can complete the proof of (ii) by showing that ||f(x)l| < 2M for all
xeQ = {xeB: ||x—p|l <¢/2} since this then shows any point xcQ has a
neighbourhood contained in B in which f is bounded. Let xeQ and write %
= x/||Ix|l. Then 1—|ix|| = |ipll —lIxl| < llx—pll <&/2 and

1= pll < [1X~xl+|lx—pll = 1—|ixl|+lx—pl| <e.
Clearly {Ax: AeC, JA| =1} is a subset of A since
dist(A%, P) < jlAx—Apll = |AllIx—pll <e (14 =.1).

The function g(4) = f(A%) is Y-valued and holomorphic for complex A in the
open unit disk and by the maximum principle

max |[f (%) < max[lg(A)l| = max [f(AR) <

[A] <1 1a)=1 [A]=1

Hence |[f(x)Il = ||f(Ixl ®)|| < 2M for all xeQ.

Finally we shall show that the extended function f is continuous on B.
Fix xeS§ and let {x,} = B—{0} with x, —» x. Writing x¥ =||x,||x and %,
=x/lIx,J] (n=1,2,..) we have

W () = F O < W Ge) = DU+ IF () = F O

The second term tends to zero as n — oo because all the x¥ lie on the same
complex line through x. For the first term we have

I (e = £ = JIF Gbxeall %) =7 llxall )] < maXIlf(Cx..) — (il < -

for all n > N = N(¢). The first inequality is a consequence of the maximum
principle applied to the function g({) = f({x,)—f({x) on the unit disk, |{| < 1.
Given ¢ > 0 there exists N depending only on ¢ such that the second
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inequality holds for n > N because the continuous function f = f|s is uni-
formly continuous on the compact set

(U tsholtdes =1,

An interesting consequence of our theorem is the following identity
principle.

CoroLLARY. Suppose fe C(S, Y) has the one-dimensional extension prop-
erty. If f is constant on an open subset of S, the f is constant on §.

Proof. By hypothesis there is a point peS and &£ > 0, such that f
is constant on the set N(p, c) = {xeS: ||x—p|| <e!. We shall show that 7,
the holomorphic, extension of f to B, is constant on the open set Q
= {xeB: ||x—p|| <¢/4), and hence, by the standard analytic continuation
argument, that f is constant throughout B. Let xeQ, x = x/|Ix|| and {eC
with |{| =1 and |[{—1] < ¢/2. Then {xe N(p, ¢) since ||X—p|| < 2||x—p|| and

I€% = pll < IZIN1X—pll+1C—TMpIl < &/2+¢/2.

Thus for any yeY* and fixed xeQ the complex valued function g({)
= w(f ({x)) is analytic in the open unit disk, |{| < 1, continuous on its closure
and constant on the arc {{eC: |{{] =1, |{—1| <¢/2}. Hence, g({) = M,, a
constant depending on ¥, in |{| < 1, and therefore

¥ (f(x2)—f(x1) = My—M, =0

for all x,, x,€Q and arbitrary e Y*. This shows that f(x,) = f(x,) for all
Xy, X,€€Q and proves the corollary.

In view of Hartogs’ Theorem and the coordinate representation of
point in B,, one might conjecture that in the finite dimensional case the
extension theorem should hold if one merely requires the existence of one-
dimensional holomorphic extensions into B, along lines parallel to the
coordinate axes. To see that this is false consider the monomial f(z, w)
= |z]> w = zzw defined for points (z, w) on S,, the unit sphere in C2. Clearly f
is continuous on S, and corresponding to any fixed point (z, w)€S,, f has
the one-dimensional holomorphic (in A1) extensions f(1z, w) =|z|*w and
f(z, iw) = A)z}*w (|4| < 1) respectively, along the two lines through (z, w)
that are parallel to the coordinate axes. However, the next proposition shows
that f cannot extend to a function that is holomorphic in B,.

ProPosSITION. If f(z, w) = z™Z"W?W on the sphere |z]®+|w|? =1

(m, n, p, r positive integers) extends to a function holomorphic in B,, then n
=0=r.



Holomorphic extension from the sphere 55

Proof. Fix (z, w)eS,. If f extends to a holomorphic function of 4 on
the disk {(4z, w): |4] < 1], then the exlension must be

F(A) =F(Az, w) =z"Z"W?W A" "= A™ "f(z, w)

since F must be holomorphic in [A| <1 and continuous in |4 <1 with
boundary values z"zZ'wwe'™ ™% on the circle A=¢"% 0<0<2n
Furthermore m > n since there are no negative Fourier coeflicients. Similarly
if (u, v)e S, is fixed and if f extends holomorphically to the disk [(u, {v): |{|
< 1!, then the extension must be G({) =G (u,{v) = "f(u,v) and p>r.
Now choose points (z, w) = (I/Vf”2, 1/\/5), (u, v) = (1/2, \/3/2) and note that
when 4 = 1/\/’3, (= \/2/_3 we have (Az, w) = (u, {v) = (1/2, 1/ 2). Since the
two extensions must agree at the common point (1/2, 1/\,:2) we must have
AT (2, w)=C"""f(u,v) when A=z=w= I/V:"Z, u=1/2, v=./3/2 and {
= \:"'2/3. By a simple calculation this yields the equation 2"*" =3’ and
consequently r =0 = n.

Finally it is natural to ask whether the extension theorem can be
generalized further by removing the assumption that the domain space .# be
a Hilbert space. We have used the inner product structure of .# only in
establishing claim (i) of our proof, i.., the existence of a uniquely determined
extension value f(x). The inner product structure enabled us to construct a
linear isomorphism between the subspace [u,, u,] = .# and C? which was
also an isometry and therefore enabled us to use the known [1] finite
dimensional result for the ball in C2. If .# is merely a complex Banach space
there is still the obvious linear isomorphism T(z,, z,) =z, u;+2z,u,
(uy, u,e.#) between C? and [u,, u,], but instead of the ball in C? one
now must consider the convex domain

2.
D = {(z,, )€ C?: |z uy +zyuylp < 1).

If D has a 42 boundary, then one can apply a theorem of E. L. Stout (Duke
Math. J. 44 (1977), p. 105-108) to prove our claim (i) and hence establish the
extension theorem. For example, if # = C" with P norm (2 < p < w), then
the extension theorem holds. We conjecture that in general the extension
theorem is true if ¥ is a complex Banach space with “sufficiently smooth”
unit ball, but we do not have a precise result at present.

The authors thank the referee for suggesting the addition of a reference
to the recent work of E. L. Stout.
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